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As there is a growing interest in applications of multi-objective optimization methods to real-world
problems, it is essential to develop efficient algorithms to achieve better performance in engineering
design and resources optimization. An efficient algorithm for multi-objective optimization, based
on swarm intelligence principles, is presented in this article. The proposed algorithm incorporates
a Pareto dominance relation into particle swarm optimization (PSO). To create effective selection
pressure among the non-dominated solutions, it uses a variable size external repository and crowding
distance comparison operator.An efficient mutation strategy called elitist-mutation is also incorporated
in the algorithm. This strategic mechanism effectively explores the feasible search space and speeds up
the search for the true Pareto-optimal region. The proposed approach is tested on various benchmark
problems taken from the literature and validated with standard performance measures by comparison
with NSGA-II, one of the best multi-objective evolutionary algorithms available at present. It is
then applied to three engineering design problems. The results obtained amply demonstrate that the
proposed approach is efficient and is able to yield a wide spread of solutions with good coverage and
convergence to true Pareto-optimal fronts.

Keywords: Multi-objective optimization; Swarm intelligence; Particle swarm optimization;
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1. Introduction

Multi-objective optimization techniques play an important role in engineering design,
resources optimization, and many other fields. Their main purpose is to find a set of best
solutions from which a designer or a decision-maker can choose a solution to derive maximum
benefit from the available resources. Various objectives of a multi-objective optimization
problem (MOOP) often conflict and/or compete with one another. Complex relationships in
the decision space and/or function space, such as non-convex and disconnected Pareto-optimal
fronts, are also involved. In multi-criterion decision making, no single solution can be termed
as the optimum solution to the multiple conflicting objectives, as a MOOP is amenable to a
number of trade-off optimal solutions (Deb 2001). For this purpose, multi-objective optimiza-
tion generates a Pareto front, which is a set of non-dominated solutions for problems with more

*Corresponding author. Email: nagesh@civil.iisc.ernet.in

Engineering Optimization
ISSN 0305-215X print/ISSN 1029-0273 online © 2007 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/03052150600930493



50 M. J. Reddy and D. N. Kumar

than one objective. The major goal of any MOOP algorithm is to generate a well-distributed true
Pareto-optimal front or surface. A brief description of multi-objective optimization concepts
is presented in the next section.

2. Multi-objective optimization

A general formulation for a multi-objective optimization problem is

Minimize f (x) = {f1(x), f2(x), . . . , fm(x)}, x ∈ D (1)

where f (x) represents the vector of objectives and fi(i = 1, 2, . . . , m) is a scalar decision
variable which maps decision variable x into the objective space fi = Rn → R. The
n-dimensional variable x is constrained to lie in a feasible region D which is constrained
by J -inequality and K-equality constraints, i.e.

D = {x : gj (x) ≤ 0, hk(x) = 0, j = 1, 2, . . . , J ; k = 1, 2, . . . , K}. (2)

In MOOPs, the desired goals often conflict with each other and it is not possible to satisfy
them all simultaneously. Hence the Pareto-optimal solution is a solution, around which there is
no way of improving any objective without degrading at least one other objective (Deb 2001).
The other definitions related to Pareto solutions are given below.

• Pareto front. A Pareto front is a set of non-dominated solutions, being chosen as optimal, if
no objective can be improved without sacrificing at least one other objective. On the other
hand a solution x∗ is referred to as dominated by another solution x if, and only if, x is
equally good or better than x∗ with respect to all objectives.

• Weakly Pareto solution. A solution x∗ ∈ D is said to be weakly Pareto optimal if there does
not exist another solution x ∈ D such that fi(x) ≤ fi(x

∗) for all i = 1, 2, . . . , m with strict
inequality for at least one i.

• Strongly Pareto solution. A solution x∗ ∈ D is said to be strongly Pareto optimal if there
does not exist another solution x ∈ D such that fi(x) < fi(x

∗) for all i = 1, 2, . . . , m.
Strongly Pareto solutions are a subset of weakly Pareto solutions. A solution which is not
a weakly Pareto solution is an inferior solution.

Classical optimization problems often fail to yield true Pareto-optimal solutions when
the objective function is non-convex and consists of disconnected Pareto fronts. They also
require human expertise and a large number of simulation runs in order to obtain the
trade-off solutions. Recently it has been emphasized that meta-heuristic techniques such as
evolutionary algorithms (EAs) are attractive alternatives for solving MOOPs. Since EAs are
population-based stochastic search algorithms, while solving MOOPs they can locate multiple
Pareto-optimal solutions in a single run. They can also easily handle non-convex disconnected
Pareto-optimal fronts. For this reason, more research is in progress on them at present and
various methodologies are being evolved to solve MOOPs. Among existing multi-objective
evolutionary algorithms (MOEAs), the strength Pareto EA (SPEA) (Zitzler and Thiele 1999),
the Pareto-archived evolutionary strategy (PAES) (Knowles and Corne 2000), and the non-
dominated sorting genetic algorithm (NSGA-II) (Deb et al. 2002) have been successfully used
to solve MOOPs. Achieving a well-spread and well-diverse Pareto solution front is the pri-
mary goal of the MOOP. In MOEAs, apart from finding the non-dominated solution in each
generation, more computational effort is required for diversity-preserving mechanisms. This
computational complexity is directly related to the level of diversity and distribution that a
particular MOEA aims to obtain (Deb 2001).
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Another population-based meta-heuristic optimization technique, particle swarm
optimization (PSO), has been applied to single-objective optimization tasks and has been
found to be fast and reliable, often converging to global optimal solutions within a few steps
(Kennedy and Eberhart 2001). The high speed of convergence of the PSO algorithm has led
some researchers to develop multi-objective optimization algorithms using this technique.
Recently, procedures for multi-objective particle swarm optimization (MOPSO) have been
developed (Coello et al. 2004). However, it has been observed that MOPSO may encounter
difficulties when solving complex problems because of its limited operators.

In this article a novel strategic procedure for MOPSO is presented and the efficiency of PSO
for multiple-objective optimization is explored. Previous works on MOEAs have shown that
NSGA-II performs better than PAES and SPEA (Deb et al. 2002). Therefore the efficiency
of the proposed algorithm is demonstrated by comparison with NSGA-II and evaluated with
standard performance measures taken from the MOEA literature.

The remainder of the article is organized as follows. First, a brief description of PSO
is presented and the working of MOPSO is explained. The next section gives details of
performance measures and test problems, and presents simulation results for unconstrained
optimization for three engineering design problems. Finally, brief conclusions are outlined.

3. Particle swarm optimization

Swarm intelligence is a new area of research in that the PSO technique is inspired by studies of
the social behavior of insects and animals (Kennedy and Eberhart 2001). In the PSO technique,
such social behavior is modelled as optimization algorithm which guides a population of
particles (the swarm) moving towards the most promising area of the search space. In PSO,
each particle represents a potential solution and its position is changed according to its own
experience and that of its neighbours. If the search space is D-dimensional, the ith individual
(particle) of the population (swarm) can be represented by a D-dimensional vector Xi =
(xi1, xi2, . . . , xiD)T. The velocity (position change) of this particle can be represented by
another D-dimensional vector Vi = (vi1, vi2, . . . , viD)T. The best previously visited position
of the ith particle is denoted by Pi = (pi1, pi2, . . . , piD)T and acts as a local guide to the
particles. The swarm is manipulated according to the following two equations:

vn+1
id = χ

[
wvn

id + c1r
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1
(pn

id − xn
id)

�t
+ c2r
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where g is the index of the global guide of a particle, the superscripts denote the iteration
number d = 1, 2, . . . , D, i = 1, 2, . . . , N , N is the size of the swarm population, χ is a
constriction factor which controls and constricts the magnitude of the velocity, w is the inertia
weight which is often used as a parameter to control exploration and exploitation in the search
space, c1 and c2 are positive constant parameters called acceleration coefficients, r1 and r2 are
random numbers uniformly distributed in [0, 1], �t is the time step, usually set as 1, and n is
the iteration number.

The similarities between PSO and the EAs allow the algorithm to be extended to handle
multiple objectives. For example, PSO maintains a population of solutions, which allows
simultaneous exploration of different parts of the Pareto front. By incorporating the Pareto
dominance principle into the PSO algorithm, MOPSO techniques are proposed. However, the
main difficulties in extending PSO to multi-objective problems are finding the best way of
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selecting the guides for each particle in the swarm and finding an effective strategy to maintain
diversity in the population and to achieve convergence to true Pareto-optimal solutions. The
difficulty is apparent as there are no clear concepts of personal and global bests that can be
clearly identified when dealing with many objectives rather than a single objective. In addition,
the diversity maintenance mechanism while seeking global Pareto-optimal solutions is rather
poor compared with other techniques such as MOEAs.

Some approaches to extend the PSO technique to multi-objective optimization have recently
been reported. Ray and Liew (2002) proposed a swarm metaphor approach, which uses the
Pareto dominance relation and combines concepts of evolutionary techniques with the particle
swarm. Parsopoulos and Vrahatis (2002) proposed a MOPSO algorithm, adopting different
types of aggregating functions to solve MOOPs. Hu and Eberhart (2002) proposed a dynamic
neighbourhood PSO, in which only one objective is optimized at a time using a scheme
similar to lexicographic ordering. A revised version of this approach, which uses a secondary
population, was presented by Hu et al. (2003). Coello and Lechuga (2002) proposed a MOPSO
based on the idea of having a global repository in which every particle deposits its flight
experiences after each flight cycle. The repository is updated using a geographically based
system defined in terms of the objective function values of each individual. This repository is
used by the particles to identify a leader that will guide the search. A revised version of the
approach, in which a special mutation operation on decision variable space is used to improve
the performance of the algorithm, was presented by Coello et al. (2004). Fieldsend and Singh
(2002) incorporated an unconstrained elite archive to store the non-dominated individuals
found during the search process. The archive interacts with the primary population in order
to define local guides. This approach also uses a mutation operator which acts on the velocity
value used by PSO. Li (2003) proposed a non-dominated sorting PSO, which incorporates the
main mechanisms of NSGA-II (Deb et al. 2002) into a PSO algorithm. This approach showed
a very competitive performance when compared with NSGA-II.

Most of these studies basically adopted procedures from the MOEA literature. At present
much research on MOPSO is under way, with particular attention being paid to reducing the
complexity of computations to speed up the model performance, identifying an efficient way
of selecting the global guides; and creating effective selection pressure for reaching the true
Pareto-optimal region. In this study an efficient procedure for MOPSO called elitist-mutated
MOPSO (EM-MOPSO) is explored. Details of the algorithm are given in the next section.

4. Multi-objective particle swarm optimization procedure

The procedure combines Pareto-dominance principles with PSO and uses elitism in its
evolution. The main algorithm consists of initialization of the population, evaluation,
performing PSO operations, and reiterating the search on the swarm to reach true Pareto-
optimal solutions. In this process, the particles are first evaluated and checked for dominance
relations among the swarm. Then the non-dominated solutions found are stored in an
external repository (ERP). The size of this repository is restricted to a predefined number.
This restriction is imposed using a crowding distance comparison operator (Deb et al. 2002),
which gives the density measure of the existing particles in the function space. The ERP with
the crowding operator helps the particles to create effective selection pressure toward true
Pareto-optimal solutions.A stepwise linearly variable ERP is used in this procedure. This helps
to achieve a well-distributed Pareto front and saves considerable computational time during
optimization. The selection of global guides for each particle is performed by randomly choos-
ing one solution from those stored in the ERP. In addition, an efficient strategic mechanism
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called elitist-mutation is incorporated into the algorithm. By attracting the swarm towards
sparsely populated regions in the ERP, it helps the search to distribute the non-dominated
solutions uniformly along the true Pareto-optimal front. Some of the main mechanisms used
in this procedure are explained below.

4.1 Elitist-mutation

In this study a new strategic mutation mechanism called elitist-mutation is proposed to
improve the performance of the algorithm. The idea underlying this method is to effectively
explore and exploit the search space in the feasible region, where members of the repository
that are isolated in the non-dominated ERP should be preferentially mutated and replace the
poorest particles in the swarm. This mechanism acts on a predefined number of particles. In the
initial phase, it replaces the infeasible solutions with the least crowded solutions in ERP, after
performing the elitist mutation mechanism on them, and in the later phase it tries to exploit
the search space around the sparsely populated particles along the Pareto fronts.

This is a special mechanism which helps to overcome the drawbacks of the traditional PSO
algorithm when it is extended to MOOPs. It also promotes diversity in the population and
consequently helps the search to find the true Pareto-optimal front. The pseudo-code of the
elitist-mutation mechanism is given below:

(i) Randomly select one of the objectives from m objectives. Sort the fitness function in
descending order and obtain the index numbers (DscSortPos) for the respective particles.

(ii) Use the crowding distance assignment operator to calculate the density of solutions in
the ERP and sort them in descending order of crowding value. Randomly select one of
the sparsely populated solutions from the top 10% of the ERP as a guide (g).

(iii) Perform an elitist-mutation on a predefined number of particles (nMutMax).

Let Rp be the length of repository |ERP|, pem be the probability of mutation, mutScale be
mutation scale used to preserve diversity, intRandom(a, b) be an integer random number in the
interval [a, b], rand be a uniformly distributed random number U(0, 1), randn be a Gaussian
random number N(0, 1), and V R[i] be a range of decision variable i.

For i = 1 to nMutMax
l = DscSortPos(i)
g = intRandom(1, 0.1 ∗ Rp)

For d = 1 to dim
if (rand < pem)

X[1][d] = ERP[g][d] + mutScale∗ VR[d]∗ randn
else

X[1][d] = ERP[g][d].

If the mutated value exceeds the bounds, then it is limited to the upper or lower bound. During
this elitist-mutation step, the velocity vector of the particle is unchanged.

4.2 Crowding distance computation procedure

The crowding distance value of a solution provides an estimate of the density of solutions
surrounding that solution (Deb et al. 2002). Crowding distance is calculated by first sorting
the set of solutions in ascending order of objective function values. The crowding distance value
of a particular solution is the average distance of its two neighbouring solutions. The boundary
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solutions which have the lowest and highest objective function values are given infinite
crowding distance values, so that they are always selected. This process is done for each
objective function. The final crowding distance value of a solution is computed by adding all
the individual crowding distance values in each objective function. An efficient quick sorting
procedure is used. The pseudo-code of the crowding distance computation is given below.

(i) Get the number of non-dominated solutions in the external repository (ERP)
l = |ERP|

(ii) Initialize distance
For i = 1 to l

ERP[i]·distance = 0
(iii) Compute the crowding distance of each solution

For each objective m

Sort using objective value
ERP = sort(ERP, m)

Set the boundary points to a large value, so that they are always selected
ERP[1]·distance = ERP[l]·distance = ∞

For i = 2 to (l − 1)

ERP[i]·distance=ERP[i]·distance+(ERP[i+1]·m−ER[i − 1]·m)/(f max
m − f min

m )

4.3 Handling overlapping solutions

When elitism is used in multi-objective optimization, some overlapping solutions may exist
in the population or the external repository. In such a case an effective removal strategy is
performed in the objective space. Only a single solution among the overlapping solutions
with the same objective vector is left in the current population, i.e. overlapping solutions are
removed, so that each solution in the current population has a different location in the objective
space. This also enhances the performance of the algorithm.

4.4 EM-MOPSO algorithm

The EM-MOPSO algorithm obtained using the above mechanisms can be summarized as
follows.

Step 1 Initialize the population position and velocity vectors. The current position Xi of the ith
particle is initialized with random real numbers within the specified decision variable
range; each particle velocity vector Vi is initialized with a uniformly distributed random
number in [0,1].

Step 2 Evaluate each particle in the population. The personal best position Pi is set to Xi .
Identify particles that give non-dominated solutions in the current population and store
them in an external repository (ERP). Set the iteration Counter, t to 0.

Step 3 Randomly select a global best Pg for the ith particle from the solutions stored in
the ERP. Calculate the new velocity Vi , and the new Xi using equations (3) and (4),
respectively. Repeat the procedure for all the particles.

Step 4 Evaluate each particle in the population. Then check each individual for dominance
with its current personal best solution. Replace Pi with the current solution if the new
one dominates the current Pi .

Step 5 Set ERP to a temporary repository (TempERP) and empty ERP. Identify particles that
give non-dominated solutions in the current iteration and add them to TempERP.
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Step 6 Find the non-dominated solutions in TempERP. If the number of non-dominated
solutions found exceeds the desired size of the ERP, use the crowding distance operator
to select the desired solutions and store them in the ERP. Empty the TempERP.

Step 7 Re-sort the ERP according to crowding distance values and perform the elitist-mutation
operation on specified number of particles.

Step 8 Increment the iteration Counter, t to t + 1 and check for termination criteria. If the
termination criterion is not satisfied, go to step 3; otherwise output the non-dominated
solution set from ERP.

The algorithm was implemented following these steps and tested on various problems as
discussed in the next section.

5. Experiments and results

The EM-MOPSO algorithm has been applied to several test problems taken from the literature,
including both unconstrained and constrained optimization problems. Standard performance
measures of MOEAs have been used to evaluate the performance of the proposed algorithm.
A brief description of the performance measures is given below.

5.1 Performance measures

For any multi-objective problem, the main goals of optimization are to minimize the divergence
of the Pareto front produced by an algorithm from the true Pareto front (i.e. convergence to the
true Pareto-optimal solution set) and to maximize the spread of solutions found (i.e. maintain
diversity among the generated set of solutions). This should also ensure that the solutions
generated are uniformly distributed along the true Pareto-optimal front. Various performance
measures for evaluating a set of non-dominated solutions have been proposed in the literature.
Three metrics for the test problems have been used to test the performance of the algorithm
developed in this study. Following Deb et al. (2002), the average performance is calculated for
each test problem over 20 runs. However, it should be noted that no performance measure can
simultaneously evaluate various aspects of a solution set (Knowles and Corne 2000, Zitzler
et al. 2000). Therefore a sample solution from a single run is shown graphically for each of
the test problems with two objective functions.

5.1.1 Set coverage metric. This metric was proposed by Zitzler (1999) and gives the
relative spread of solutions between two sets of solution vectors A and B. The set coverage
metric calculates the proportion of solutions in B, which are weakly dominated by solutions
of A:

C(A, B) = |{b ∈ B|∃a ∈ A : a ≤ b}|
|B| . (5)

If C(A, B) = 1 all solutions in B are weakly dominated by A, and if C(A, B) = 0 none of
the solutions in B are weakly dominated by A.

5.1.2 Generational distance. This metric gives the closeness of the Pareto-optimal
solutions obtained to the true Pareto-optimal solutions. Let Q be a solution set obtained by a
MOEA. The proximity of Q to the Pareto front is evaluated by the generational distance (GD)
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defined as follows (Veldhuizen 1999):

GD =
( ∑|Q|

i=1 d
p

i

)1/p

|Q| (6)

where P ∗ is a reference solution set (i.e. the set of all possible true Pareto-optimal solutions).
A Euclidian distance-based metric is used in this study. Therefore, for p = 2, the parameter

di is the Euclidean distance between the solution obtained by the algorithm i ∈ Q and the
nearest member of true Pareto-optimal solutions P ∗:

di = |P ∗|
min
k=1

√∑
(f

(i)
m − f

∗(k)
m )2 (7)

where f ∗(k)
m is the mth objective function value of the kth member of P ∗.

5.1.3 Spread. The spread or diversity metric (�) measures the extent of spread achieved
among the solutions obtained. Here the main interest is finding a set of solutions which span
the entire Pareto-optimal region. Deb et al. (2002) suggested the following metric for effective
measurement of the spread:

� =
∑M

m=1 de
m + ∑N−1

i=1 |di − d̄|∑M
m=1 de

m + (N − 1)d̄
(8)

where di is the Euclidean distance between consecutive solutions in the non-dominated set of
solutions obtained, d̄ is the average of all distances di , i = 1, 2, . . . , (N − 1), assuming that
there are N solutions on the best non-dominated front, and de

m is the distance between the
extreme solutions of true Pareto-optimal solutions and the Pareto-optimal solutions obtained
corresponding to the mth objective function.

5.2 Unconstrained optimization

The details of the test problems for unconstrained optimization are given in table 1. The
first and second problems (SCH and FON) were suggested by Schaffer (1987) and Fonseca
and Fleming (1998), respectively, and the remainder (ZDT problems) were suggested by
Zitzler et al. (2000). The sensitivity of PSO parameters for single objective optimization
was thoroughly investigated in an earlier study (Kumar and Reddy 2006). However, in this
study a thorough sensitivity analysis was also carried out for various parameters of EM-
MOPSO algorithm, after which the following parameters were adopted: initial population,
100; constants c1 and c2, 1.0 and 0.5, respectively; inertial weight w, 1; constriction coefficient
χ , 0.9; number of non-dominated solutions to be found (maxERP), 100. In the elitist-mutation
step, the size of the elitist-mutated particles was set at 15, pem was set at 0.2, and the value of
mutScale decreased from 0.2 to 0.01 over the iterations. In order to avoid any ambiguity in the
performance of the algorithm with respect to the number of iterations, a sufficient number of
iterations was chosen depending on the complexity of the problem. For test problems SCH and
FON, EM-MOPSO was run for 250 iterations, whereas 500 iterations were used for ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT6.

For NSGA-II, the initial population size was 100, the crossover probability was 0.9, and the
mutation probability was 1/n (n is the number of real variables). The SBX and real parameter
mutation were 15 and 20, respectively (all these parameter values are similar to those used by
Deb et al. (2002)). The number of iterations was the same as used for EM-MOPSO.
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Table 1. Test problems used for the performance evaluation of EM-MOPSO.

Test problem n Variable bounds Objective functions

SCH 1 [−103, 103] f1(x) = x2

f2(x) = (x − 2)2

FON 3 [−4, 4] f1(x) = 1 − exp

[
− ∑3

i=1

(
xi − 1√

3

)2
]

f1(x) = 1 − exp

[
− ∑3

i=1

(
xi − 1√

3

)2
]

ZDT1 30 [0, 1] f1(x) = x1

f2(x) = g(x){1 − √[x1/g(x)]}
g(x) = 1 + 9

( ∑n
i=2 xi

)
/(n − 1)

ZDT2 30 [0, 1] f1(x) = x1

f2(x) = g(x){1 − [x1/g(x)]2}
g(x) = 1 + 9

( ∑n
i=2 xi

)
/(n − 1)

ZDT3 30 [0, 1] f1(x) = x1

f2(x) = g(x){1 − √[x1/g(x)] − [x1/g(x)] sin(10πx1)}
g(x) = 1 + 9

( ∑n
i=2 xi

)
/(n − 1)

ZDT4 10 x1 ∈ [0, 1] f1(x) = x1

xi ∈ [−5, 5], i = 2, . . . , n f2(x) = g(x){1 − √[x1/g(x)]}
g(x) = 1 + 10(n − 1) + ∑n

i=2[x2
i − 10 cos(4πxi)]

ZDT6 10 [0, 1] f1(x) = 1 − exp(−4x1) sin6(6πx1)

f2(x) = g(x){1 − [f1(x)/g(x)]2}
g(x) = 1 + 9

[( ∑n
i=2 xi

)
/(n − 1)

]0.25

The EM-MOPSO algorithm was applied to the above set of test problems. Some of these are
by far the most difficult problems for unconstrained multi-objective optimization suggested
in the literature (Deb et al. 2002). Table 2 compares the performances of EM-MOPSO and
NSGA-II, showing the best, worst, mean, variance, and standard deviation (SD) values for the
performance measures considered in the study (i.e. set coverage metric, generational distance,
and spread metric). The statistics shown are based on 20 random trials. It should be noted
that the results are compared based on model performance in a run. In all test problems, a set
of |P ∗| = 500 uniformly spaced true Pareto-optimal solutions were used to calculate SC and
GD metrics. In the set coverage metric SC(P ∗, A), P ∗ is the true Pareto-optimal solution and
A is the non-dominated solution set obtained from a MOOP algorithm by either EM-MOPSO
or NSGA-II.

It can be seen from table 2 that EM-MOPSO is able to converge closely to the true Pareto-
optimal solution, with good distribution of non-dominated solutions, for most of the problems.
On the basis of SC metric, EM-MOPSO performed better than NSGA II as five (SCH, FON,
ZDT1, ZDT4, ZDT6) of seven test cases have minimal mean SC values compared with NSGA-
II, whereas NSGA-II has the minimal mean value for only two test cases (ZDT2, ZDT3).
Table 2 also shows the GD statistics for 20 simulation runs for both the algorithms. This GD
metric gives an idea of how closely a solution set converges to true Pareto-optimal solutions.
Again, EM-MOPSO performs well for five test cases (SCH, FON, ZDT1, ZDT4, ZDT6),
while NSGA-II performance is good for the other two cases. The diversity of non-dominated
solutions is assessed by the spread metric � for both EM-MOPSO and NSGA-II simulations:
a lower value of � indicates a better performance. Table 2 shows that EM-MOPSO is able to
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Table 2. Performance measures of EM-MOPSO and NSGA-II for test problems considered in the study showing
the best, worst, mean, variance, and standard deviation (SD) values for set coverage metric (SC), generational

distance (GD), and spread metric (�).∗

SC GD �

Test case Statistic EM-MOPSO NSGA-II EM-MOPSO NSGA-II EM-MOPSO NSGA-II

SCH Best 0.00000 0.00000 0.00865 0.00843 0.31626 0.31686
Worst 0.02000 0.12000 0.01034 0.01082 0.40266 0.41266
Mean 0.00684 0.04778 0.00949 0.00983 0.35363 0.35462

Variance 0.00003 0.00212 0.00000 0.00000 0.00064 0.00066
SD 0.00584 0.04604 0.00047 0.00075 0.02537 0.02567

FON Best 0.73000 0.89000 0.00471 0.00578 0.21432 0.32664
Worst 0.83000 0.99000 0.00533 0.00645 0.29232 0.39060
Mean 0.77316 0.93667 0.00505 0.00611 0.24929 0.36685

Variance 0.00072 0.00087 0.00000 0.00000 0.00055 0.00038
SD 0.02685 0.02958 0.00017 0.00023 0.02347 0.01956

ZDT1 Best 0.07000 0.08000 0.00466 0.00365 0.22189 0.31545
Worst 0.32000 0.28000 0.00547 0.00608 0.27169 0.42042
Mean 0.18240 0.19550 0.00513 0.00524 0.24502 0.35750

Variance 0.00379 0.00345 0.00000 0.00000 0.00037 0.00083
SD 0.06156 0.05876 0.00012 0.00014 0.01923 0.02889

ZDT2 Best 0.13000 0.07000 0.00396 0.00312 0.25101 0.32387
Worst 0.42000 0.20000 0.00548 0.00376 0.32698 0.39442
Mean 0.22100 0.13000 0.00459 0.00332 0.28977 0.35368

Variance 0.00302 0.00135 0.00000 0.00000 0.00048 0.00062
SD 0.05495 0.03674 0.00039 0.00023 0.02181 0.02482

ZDT3 Best 0.15000 0.11000 0.00675 0.00655 0.69634 0.61442
Worst 0.49000 0.21000 0.00837 0.00711 0.85543 0.64894
Mean 0.33450 0.16333 0.00720 0.00677 0.76013 0.62978

Variance 0.00601 0.00142 0.00000 0.00000 0.00174 0.00015
SD 0.07752 0.03775 0.00038 0.00019 0.04174 0.01239

ZDT4 Best 0.00000 0.13000 0.00315 0.00335 0.30930 0.28178
Worst 0.34000 0.94000 0.00595 0.00505 0.43612 0.48404
Mean 0.07350 0.50333 0.00379 0.00406 0.35393 0.36810

Variance 0.00983 0.09175 0.00000 0.00000 0.00113 0.00191
SD 0.09917 0.30290 0.00087 0.00062 0.03364 0.04371

ZDT6 Best 0.00000 0.24000 0.00521 0.00621 0.38126 0.59876
Worst 0.03000 0.37000 0.01145 0.00667 0.88011 0.65439
Mean 0.00500 0.29889 0.00632 0.00650 0.53392 0.61615

Variance 0.00008 0.00169 0.00000 0.00000 0.01460 0.00043
SD 0.00889 0.04106 0.00132 0.00016 0.12085 0.02062

SC, Set coverage metric (P ∗, A) where P ∗ is the true Pareto-optimal solution set and A is the algorithm of interest (EM-MOPSO or
NSGA-II).
∗The results are based on 20 random trials for both algorithms.

find a better spread of solutions than NSGA-II for most of the test cases (SCH, FON, ZDT1,
ZDT2, ZDT4 and ZDT6); NSGA-II performs better only for ZDT3.

In order to demonstrate the working of the algorithm, a typical simulation run using
EM-MOPSO and NSGA is shown for all these test problems. The Pareto-optimal solution
sets obtained for SCH and FON are shown in figures 1 and 2 where it can be seen that both
the algorithms achieve true Pareto-optimal fronts. Figures 3 and 4 show all the non-dominated
solutions for ZDT1 and ZDT2, respectively, obtained after 500 iterations with EM-MOPSO
and NSGA-II. It can be seen that ZDT1 has a convex objective space, whereas ZDT2 has a
non-convex Pareto-optimal front. These figures demonstrate the abilities of EM-MOPSO to
converge to the true Pareto-optimal front and to find a diverse set of solutions in this front.
Figure 5 shows the non-dominated solutions for the ZDT3 problem, which has disconnected
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Figure 1. Non-dominated solutions obtained with EM-MOPSO and NSGA-II for problem SCH.

Figure 2. Non-dominated solutions obtained with EM-MOPSO and NSGA-II for problem FON.

Figure 3. Non-dominated solutions obtained with EM-MOPSO and NSGA-II for problem ZDT1.

Pareto fronts. It can be clearly seen that the algorithm captures those disconnected fronts quite
well. Test problem ZDT4 has 219 different local Pareto-optimal fronts in the search space, of
which only one corresponds to the true Pareto-optimal front (Deb et al. 2002). This is one of
the classic MOOPs. Figure 6 shows that EM-MOPSO is able to achieve a near-global Pareto-
optimal front, again proving its efficiency. Figure 7 shows that EM-MOPSO finds a uniformly
distributed set of non-dominated solutions to problem ZDT6 which converges better than the
solution obtained by NSGA-II. The graphical illustration also clearly demonstrates that the
proposed algorithm is efficient and is able to achieve true Pareto-optimal solutions.
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Figure 4. Non-dominated solutions obtained with EM-MOPSO and NSGA-II for problem ZDT2.

Figure 5. Non-dominated solutions obtained with EM-MOPSO and NSGA-II for problem ZDT3.

Figure 6. Non-dominated solutions obtained with EM-MOPSO and NSGA-II for problem ZDT4.

5.3 Constrained optimization

The EM-MOPSO algorithm has also been tested for constrained optimization for some
engineering design problems. In general, when comparing two feasible particles, the par-
ticle which dominates the other particle is considered to be a better solution. However, if
both particles are infeasible, the particle with fewer constraint violations is the better solution.
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Figure 7. Non-dominated solutions obtained with EM-MOPSO and NSGA-II for problem ZDT6.

The mechanism used by Deb et al. (2002) for handling constrained optimization problems was
adopted because of its simplicity in using feasibility and non-dominance of solutions when
comparing solutions. A solution i is said to constrained-dominate a solution j if any of the
following conditions are satisified.

1. Solution i is feasible and solution j is infeasible.
2. Both solution i and solution j are infeasible, but solution i has a smaller overall constraint

violation.
3. Both solution i and solution j are feasible and solution i dominates solution j .

The following parameters were used in the application of EM-MOPSO: population size,
100; constant parameters c1 and c2, 1.0 and 0.5, respectively; inertial weight w, 1; constriction
coefficient χ , 0.9; size of external repository (maxERP), 100. The value of pem was set at 0.2,
and mutScale decreases from 0.2 to 0.01 over the iterations. The parameters used for NSGA-II
were as follows: population size, 100; crossover probability, 0.9; mutation probability, 1/n (n is
the number of real variables). The distribution indices for real-coded crossover and mutation
operators are set to 20 and 100, respectively. The maximum number of iterations was set
at 100 for both algorithms. The same parameter settings were used for all the problems.
The consistency of the algorithm was verified by running all the problems for several trial
runs. However, as the performance has already been proved (see previous section), only the
results for the best sample run in 20 trial runs are reported here.

5.3.1 Two-bar truss design. This problem was originally studied using the ε-constraint
method (Palli et al. 1999). Later it was studied using NSGA-II (Deb et al. 2000). As shown
in figure 8, the truss has to carry a certain load without elastic failure. Thus, in addition to
the objective of designing the truss for minimum volume (which is equivalent to designing

Figure 8. The two-bar truss design problem (Deb et al. 2000). The two objectives are minimization of the cost of
fabrication and of the stresses in members (AC and BC).
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Figure 9. Non-dominated solutions obtained using EM-MOPSO and NSGA-II for the two-bar truss design problem.
The optimal solutions found using the ε-constraint method (eps-constr) are also shown for comparison.

for minimum cost of fabrication), there are additional objectives of minimizing the stresses in
each of the two members AC and BC. Therefore the design problem involves a two-objective
optimization problem for three variables: vertical distance y between B and C (metres), length
x1 of AC (metres), and length x2 of BC in (metres). The two-bar truss design problem can be
expressed in mathematical form as follows:

minimize f1(x) = x1

√
16 + y2 + x2

√
1 + y2

minimize f2(x) = max(σAC, σBC)

subject to

max(σAC, σBC) ≥ 1(10)5

1 ≤ y ≤ 3 and x ≥ 0.

The stresses are calculated as follows:

σAC = 20
√

16 + y2

yx1
σBC = 80

√
1 + y2

yx2
.

To apply the proposed method, the bounds on xi are taken as 0 ≤ xi ≤ 0.01 for i =
1, 2. The ε-constraint method reported only five solutions with the following spread:
(0.004445 m3, 89983 kPa) and (0.004833 m3, 83268 kPa). Figure 9 shows the optimized
fronts obtained using the ε-constraint, EM-MOPSO, and NSGA-II methods. The solutions
obtained with EM-MOPSO are spread in the range (0.004026 m3, 99996 kPa) and (0.05273 m3,
8434.493 kPa), and those obtained with NSGA-II are spread in the range (0.00407 m3,
99755 kPa) and (0.05304 m3, 8439 kPa). Thus both have a wide variety of alternatives.
However, the ε-constraint method was unable to find much variety in the solutions in terms
of the second objective (Palli et al. 1999). If minimum volume is desired, EM-MOPSO gives
a value as low as 0.004026 m3. If minimization of stress is important, it finds a solution
with stress as low as 8434.493 kPa, whereas the ε-constraint method finds a solution with a
minimumstress of 83268 kPa, which is nearly 10 times higher. The EM-MOPSO solutions are
very competitive with NSGA-II solutions in terms of both closeness to the true optimum front
and their spread.

5.3.2 I-beam design. The second design problem is taken from Yang et al. (2002). The
problem is to find the dimensions of the beam shown in figure 10. In this design problem, it
should satisfy the dimensions of the geometric and strength constraints, and at the same time
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Figure 10. The I-beam design problem (Yang et al. 2002). The objectives are minimization of cross-sectional area
of the beam and the static deflection of the beam.

minimize the cross-sectional area of the beam and the static deflection of the beam under a
force P . The mathematical form of the problem is as follows:

Minimize cross-sectional area (cm2)

f1 = 2x2x4 + x3(x1 − 2x4)

Minimize displacement (cm)

f2 = PL3

48EI

where

I = 1

12
{x3(x1 − 2x4)

3 + 2x2x4[4x2
4 + 3x1(x1 − 2x4)]}.

Find xi , i = 1, 2, . . . , 4

subject to

g(x) = σa −
(

My

Zy

+ Mz

Zz

)
≥ 0

10 ≤ x1 ≤ 80, 10 ≤ x2 ≤ 50, 0.9 ≤ x3 ≤ 5, 0.9 ≤ x4 ≤ 5

where

My = P

2
× L

2
, Mz = Q

2
× L

2

Zy = 1

6x1
{x3(x1 − x4)

3 + 2x2x4[4x2
4 + 3x1(x1 − 2x4)]}

Zz = 1

6x2
{(x1 − x4)x

3
3 + 2x4x

3
2}

E = 2 × 104 kN cm−2, σa = 16 kN cm−2, P = 600 kN, Q = 50 kN, and L = 200 cm.
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Figure 11. Non-dominated solutions obtained using EM-MOPSO and NSGA-II for the I-beam design problem.

Figure 11 shows the non-dominated solutions obtained after 100 iterations for both
EM-MOPSO and NSGA-II. It can be seen that EM-MOPSO is able to maintain a uniform
distribution of solutions. EM-MOPSO obtained the minimal cross-sectional area of 127.9508
units for a deflection of 0.05368 units, and for the minimal deflection of 0.005961 units the
cross-sectional area is 829.5748 units. NSGA-II obtained a minimal cross-sectional area of
127.2341 units with deflection of 0.0654 units, and a minimal deflection of 0.0060 units with
cross-sectional area of 829.8684 units. Thus the proposed method is able to find a wide spread
of Pareto-optimal solutions.

5.3.3 Welded beam design. The third design problem was studied by Deb et al. (2000).
A beam needs to be welded on to another beam and must carry a certain load (figure 12). The
overhang has a length of 14 inches and a force F of 6000 lb is applied at the end of the beam.
The objective of the design is to minimize the cost of fabrication and the end deflection. The
mathematical formulation of the two objective optimization problem is as follows.

Minimize

f1(x) = 1.10471 h2l + 0.04811tb(14.0 + l)

f2(x) = δ(x)

Figure 12. The welded beam design problem (Deb et al. 2000). The objectives are minimization of the cost and
the end deflection of the beam.
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subject to

g1(x) = 13, 600 − τ(x) ≥ 0

g2(x) = 30, 000 − σ(x) ≥ 0

g3(x) = b − h ≥ 0

g4(x) = Pc(x) − 6000 ≥ 0.

The deflection term δ(x) is given by

δ(x) = 2.1952

t3b
.

The first constraint ensures that the shear stress developed at the support location of the beam
is less than the allowable shear strength of the material (13 600 psi). The second constraint
ensures that the normal stress developed at the support location of the beam is less than
the allowable yield strength of the material (30 000 psi). The third constraint ensures that the
thickness of the beam is not less than the weld thickness from a practical standpoint. The fourth
constraint ensures that the allowable buckling load of the beam (along the t direction)is greater
than the applied load F . The stress and buckling terms are as follows:

τ(x) =
√

(τ ′)2 + (τ ′′)2 + (lτ ′τ ′′)√
0.25(l2 + (h + t)2)

τ ′ = 6, 000√
2hl

τ ′′ = 6000(14 + 0.5l)
√

0.25(l2 + (h + t)2)

2{0.707hl(l2/12 + 0.25(h + t)2)}
σ(x) = 504, 000

t2b

Pc(x) = 64, 746.022(1 − 0.0282346t)tb3.

The variables are initialized in the following ranges: 0.125 ≤ h, b ≤ 5.0, and 0.1 ≤ l, t ≤ 10.0.
The EM-MOPSO algorithm is applied with the same parameters and run for 100 iterations.
Figure 13 shows the optimized non-dominated solutions obtained using EM-MOPSO and
NSGA-II. Both algorithms are able to find a wide variety of solutions which are uniformly

Figure 13. Optimized non-dominated solutions obtained using EM-MOPSO and NSGA-II for the welded beam
design problem.
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spread. EM-MOPSO found the minimal cost solution as 2.382 units with deflection 0.0157
inches, and the minimal deflection as 0.000439 with a cost of 36.4836 units. For NSGA-II,
the minimal cost is 3.443 units for deflection of 0.0101 units, and the minimal deflection is
0.004 with a cost of 36.9121 units. The extreme solutions are captured well in EM-MOPSO.
Again, it is demonstrated that the proposed algorithm is efficient and is able to find a wide
variety of Pareto-optimal solutions.

It is more difficult to maintain a good spread of solutions in constrained optimization
problems than in unconstrained problems, because in order to maintain a spread of solutions
on the constraint boundary the solutions have to be modified in a particular manner as dictated
by the constraint function (Deb et al. 2002). However, the results clearly show that the proposed
algorithm does not have any difficulty in achieving a good spread of Pareto-optimal solutions
for constrained optimization. The results obtained for both unconstrained and constrained
optimization amply demonstrate that the EM-MOPSO technique can yield efficient Pareto-
optimal solutions for multi-objective optimization.

6. Discussion

The proposed approach is simple to implement, yet efficient in yielding true Pareto-optimal
solutions. The computational complexity is also reasonable. In this approach, in addition to
the objective function computations, the computational complexity of the algorithm is mainly
governed by the non-dominated comparison of the particles in the population, sorting, and
crowding distance computation. If there are m objective functions and N solutions (particles)
in the population, the objective function computation has O(mN) computational complexity.
The costly part of crowding distance computation is sorting the solutions in each objective
function. Sorting K solutions in the external repository has O(mK log K) computational
complexity. If the population and the external repository have the same number of solutions,
say N , the computational complexity for the non-dominated comparison is O(mN2). Thus the
overall complexity of the proposed EM-MOPSO is O(mN2).

The parameters of interest and their sensitivity are briefly discussed below.

• Population size and maximum number of iterations. In general these two parameters have
an inverse relation, as a higher population size generally requires fewer iterations and vice
versa. In this study, a population size of 100 is used for all the test problems. However,
depending on the complexity of the problem, the maximum number of iterations is varied
to run the algorithm. A large population size may be required to achieve a good performance
of the algorithm for more complex problems.

• Size of the external repository (ERP). The algorithm allows flexibility in setting the
size of the external repository to any maximum value. As the ERP size increases, the
computing requirement becomes enormous (as it is required for sorting and crowding
value calculations). Hence, in order to reduce additional computational cost in iteration,
this should be restricted to a desirable value, without affecting the performance of the
algorithm. In this study, for effectiveness, a variable-size external repository was chosen.
The size was initially set to 10% of maximum ERP, and then increased in a stepwise manner
until it reached the maximum ERP at the start of 90% of maximum iterations. This strat-
egy worked quite well for all the test problems considered in this study. Therefore this
approach is recommended to save computational time and to improve the performance of
the algorithm.

• Size of elitist-mutated particles. To experiment with the size of elitist-mutated particles, tests
were conducted with 5, 10, 15, and 20 particles for problems with a maximum population
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of 100. It should be noted that this also depends on the size of the population. The number
of particles to be elitist-mutated is preferably ≤20% of the population size to ensure that the
population should not lose control at the cost of exploring better non-dominated solutions.
The probability of elitist-mutated particles is fixed at a certain value after a few trials.
However, the mutation scale used in this study was varied linearly from 0.2 to 0.01 over the
iterations. This was selected after a few trials to ensure that the search would not stagnate at
an initial stage, and that there should be no deterioration while exploring the search space.
The strategy adopted worked quite well for all the test problems and can be used for similar
complex problems.

7. Conclusions

An efficient procedure for solving multi-objective optimization problems using swarm
intelligence principles has been presented. The proposed algorithm for multi-objective
particleswarm optimization (MOPSO) combines Pareto dominance criteria for non-
domination selection, an external repository for elitism, and a crowding distance comparison
operator for promoting solution diversity. The performance of the algorithm is enhanced
by effectively exploring the search space by incorporating an efficient mutation strategy
called elitist-mutation. This strategy helps the exploration and exploitation of the search space
for feasible non-dominated solutions. The proposed approach was tested on various bench-
mark problems, having complexity in the search space with convex and non-convex objective
functions. The algorithm was also applied to three engineering design problems to demon-
strate its applicability in practical problems. The results obtained amply demonstrate that the
approach is efficient in converging to the true Pareto fronts and finding a diverse set of solutions
along the Pareto front. Thus the proposed EM-MOPSO algorithm can be effectively applied
to real-world multi-objective optimization problems to arrive at efficient solutions.
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