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ABSTRACT

In this paper we focus on multi-resolution spectral anal-

ysis algorithms for music signals based on the FFT. Two

previously devised efficient algorithms (efficient constant-

Q transform [1] and multiresolution FFT [2]) are reviewed

and compared with a new proposal based on the IIR fil-

tering of the FFT. Apart from its simplicity, the proposed

method shows to be a good compromise between design

flexibility and reduced computational effort. Additionally,

it was used as a part of an effective melody extraction al-

gorithm.

1. INTRODUCTION

Many automatic music analysis algorithms, such as those

intended for melody extraction or multiple pitch estima-

tion, rely on a spectral representation of the audio sig-

nal, typically the discrete Short Time Fourier Transform

(STFT). A key issue that arises is the compromise between

time and frequency resolution. The frequency components

of a Discrete Fourier Transform (DFT) are equally spaced

and have a constant resolution. However, in polyphonic

music a higher frequency resolution is needed in the low

and mid frequencies where there is a higher density of har-

monics. On the other hand, frequency modulation gets

stronger as the number of harmonic is increased, requir-

ing shorter windows for improved time resolution. Thus,

a multi resolution spectral representation is highly desired

for the analysis of music signals. In addition, computa-

tional cost is a critical issue in real time or demanding ap-

plications so efficient algorithms are often needed.

In this context several proposals have been made to cir-

cumvent the conventional linear frequency and constant

resolution of the DFT. The constant-Q transform (CQT) [3]

is based on a direct evaluation of the DFT but the chan-

nel bandwidth ∆fk varies proportionally to its center fre-

quency fk, in order to keep constant its quality factor Q =

fk/∆fk (as in Wavelets). Center frequencies are distributed

geometrically, to follow the equal tempered scale used in

Western music, in such a way that there are two frequency
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components for each musical note (although higher values

of Q provide a resolution beyond the semitone). Direct

evaluation of the CQT is very time consuming, but fortu-

nately an approximation can be computed efficiently tak-

ing advantage of the Fast Fourier Transform (FFT) [1].

Various approximations to a constant-Q spectral repre-

sentation have also been proposed. The bounded-Q trans-

form (BQT) [4] combines the FFT with a multirate filter-

bank. Octaves are distributed geometrically, but within

each octave, channels are equally spaced, hence the log

representation is approximated but with a different num-

ber of channels per octave. Note that the quartertone fre-

quency distribution, in spite of being in accordance with

Western tuning, can be too scattered if instruments are not

perfectly tuned, exhibit inharmonicity or are able to vary

their pitch continuously (e.g. glissando or vibrato). Re-

cently a new version of the BQT with improved channel

selectivity was proposed in [5] by applying the FFT struc-

ture but with longer kernel filters, a technique called Fast

Filter Bank. An approach similar to the BQT is followed

in [6] as a front-end to detect melody and bass line in real

recordings. Also in the context of extracting the melody

of polyphonic audio, different time-frequency resolutions

are obtained in [2] by calculating the FFT with different

window lengths. This is implemented by a very efficient

algorithm, named the Multi-Resolution FFT (MR FFT),

that combines elementary transforms into a hierarchical

scheme.

In this paper we focus on multi-resolution spectral anal-

ysis algorithms for music signals based on the FFT. Two

previously devised efficient algorithms that exhibit differ-

ent characteristics are reviewed, namely, the efficient CQT

[1] and the MR FFT [2]. The former is more flexible re-

garding Q design criteria and frequency channel distribu-

tion while the latter is more efficient at the expense of de-

sign constrains. These algorithms are compared with a new

proposal based on the Infinite Impulse Response (IIR) fil-

tering of the FFT (IIR CQT), that in addition to its simplic-

ity shows to be a good compromise between design flexi-

bility and reduced computational effort.

2. FIR Q TRANSFORM IMPLEMENTATIONS

2.1 Efficient constant Q transform

As stated in [3] a CQT can be calculated straightforwardly

based on the evaluation of the DFT for the desired compo-
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nents. Consider the kth spectral component of the DFT:

X[k] =
N−1
∑

n=0

w[n]x[n]e−j2πkn/N

where w[n] is the temporal window function and x[n] is

the discrete time signal. In this case the quality factor for

a certain frequency fk equals k, since Qk = fk/∆f =
fkN/fs = k. This corresponds to the number of peri-

ods in the time frame for that frequency. The digital fre-

quency is 2πk/N and the period in samples is N/k. In the

CQT the length of the window function varies inversely

with frequency (but the shape remains the same), so that N
becomes N [k] and w[n] becomes w[n, k]. For a given fre-

quency fk, N [k] = fs/∆fk = fsQk/fk. The digital fre-

quency of the kth component is then given by 2πQ/N [k],
the period in samples is N [k]/Q and always Q cycles for

each frequency are analyzed. The expression for the kth

spectral component of the CQT is then 1 ,

Xcq[k] =
1

N [k]

N [k]−1
∑

n=0

w[n, k]x[n]e−j2πQn/N [k]. (1)

Direct evaluation of equation (1) is time consuming, so

an efficient algorithm for its computation has been pro-

posed in [1]. The CQT can be expressed as a matrix multi-

plication, Xcq = x ·T ∗, where x is the signal row vector of

length N (N ≥ N [k] ∀k) and T ∗ is the complex conjugate

of the temporal kernel matrix T whose elements T [n, k]
are,

T [n, k] =

{ 1
N [k]w[n, k]e−j2πQn/N [k] if n < N [k]

0 otherwise

Computational effort can be improved if the matrix multi-

plication is carried out in the spectral domain. Using Par-

seval’s relation for the DFT, the CQT can be expressed as,

Xcq[k] =
N−1
∑

n=0

x[n]T ∗[n, k] =
1

N

N−1
∑

k′=0

X[k′]K∗[k′, k] (2)

where X[k′] and K[k′, ·] are the DFT of x[n] and T [n, ·]
respectively. Spectral kernels are computed only once tak-

ing full advantage of the FFT. In the case of conjugate

symmetric temporal kernels, the spectral kernels are real

and near zero over most of the spectrum. For this rea-

son, if only the spectral kernel values greater than a certain

threshold are retained, there are few products involved in

the evaluation of the CQT (almost negligible compared to

the computation of the FFT of x[n]).

It is important to notice that although the original deriva-

tion of the CQT implies a geometrical distribution of fre-

quency bins, it can be formulated using other spacing, for

instance a constant separation. In the following, linear

spacing is used to put all the compared algorithms under

an unified framework.

1 A normalization factor 1/N [k] must be introduced since the number
of terms varies with k.

2.2 Multi-resolution FFT

A simple way to obtain multiple time-frequency resolu-

tions is through the explicit calculation of the DFT us-

ing different frame lengths. In [2], an efficient technique

is proposed where the DFT using several frame lengths

is computed by means of the combination of the DFT of

small number of samples, called elementary transforms.

The idea arises from the observation that a transform of

frame length N can be split into partial sums of L terms

(assuming N/L ∈ N),

X[k] =

N−1
∑

n=0

x[n]e−
j2πkn

N =

N
L
−1

∑

c=0

(c+1)L−1
∑

n=cL

x[n]e−
j2πkn

N . (3)

Each inner sum in equation 3 corresponds to the DFT of

length N of a sequence xc[n], where xc[n] is an L samples

chunk of x[n], time-shifted and zero padded,

xc[n] =

{

x[n], cL ≤ n < (c + 1)L
0, otherwise.

So, it is possible to obtain a DFT of a frame of size N from

N/L elementary transforms of frame size L, defined as

Xl[k] =

L−1
∑

n=0

x[n + lL]e−j2πkn/N , l = 0, ...,
N

L
− 1.

To that end, it is enough to add the elementary transforms

modified with a linear phase shift to include the time shift

of xc[n], as stated by the shifting theorem of the DFT,

X[k] =

N
L
−1

∑

l=0

Xl[k]e−j2πkl/N . (4)

This procedure can be generalized to compute the DFT of

any frame of length M = rL by adding r elementary trans-

forms (r = 1, ..., N/L) in the equation 4, which results in

N/L possibles spectral representations with frequency res-

olutions of fs/(rL).
The computation of the multi-resolution spectrum from

a combination of elementary transforms requires the win-

dowing process to be done by means of convolution prod-

uct in the frequency domain. Temporal windows of the

form

w[n] =

M
2

∑

m=0

(−1)mam cos

(

2π

M
mn

)

(5)

are suitable for this purpose because its spectrum has only

few non-zero samples. Due to the fact that windowing is

applied over zero-padded transforms, it is convenient to

consider a periodic time window of the same length of the

DFT to avoid the appearance of new non-zero samples of

the window spectrum. In this case, the spectrum of a win-

dow of the form of equation 5 results in

W [k] =

M
2

∑

m=0

(−1)m am

2

(

δ

[

k − m
N

M

]

+ δ

[

k + m
N

M

])
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Figure 1. Zero-Pole diagram and IIR filters responses for

three different input sinusoids of frequencies f1 = 0.11,

f2 = 0.30 and f3 = 0.86 radians.

For example, in Hann and Hamming windows only a0 and

a1 are not zero and so its DFT contains solely three non-

zero samples. As a counterpart, the restriction that N/M =
N/(rL) ∈ N must be imposed, reducing the possible num-

ber of resolutions to log
2
(N/L) + 1.

3. IIR Q TRANSFORM

3.1 FIR/IIR Filterbank

The proposed methods define a Finite Impulse Response

(FIR) filterbank with different impulse responses for differ-

ent frequencies. The result of applying one of these filters

can be regarded as multiplying the frame with a time win-

dow, which defines the time/frequency resolution. Variable

windowing in time can also be achieved applying an IIR

filterbank in the frequency domain. Let us define the kth

filter as a first order IIR filter with a pole pk, and a zero zk,

as,

Yk[n] = X[n] − zkX[n − 1] + pkYk[n − 1] (6)

Its Z transform is given by,

Hfk
(z) =

z − zk

z − pk

.

Here, Hfk
(z) evaluated in the unit circle z = ejτ repre-

sents its time response, with τ ∈ (−π, π] being the nor-

malized time within the frame. A different time window

for each frequency bin is obtained by selecting the value of

the kth bin as the output of the kth filter.

The design of these filters involves finding the zero and

pole for each k such that wk(τ) = |Hfk
(ejτ )|, where

τ ∈ (−π, π] and wk(τ) is the desired window for the bin k.

When a frame is analyzed, it is desirable to avoid disconti-

nuities at its ends. This can be achieved by placing the zero

in τ = π, that is zk = −1. If we are interested in a sym-

metric window, wk(τ) = wk(−τ), the pole must be real.

Considering a causal realization of the filter, pk must be

inside the unit circle to assure stability, thus pk ∈ (−1, 1).
Figure 1 shows the frequency and time responses for the

poles depicted in the zero-pole diagram.

This IIR filtering in frequency will also distort the phase,

so a forward-backward filtering should be used to obtain a

zero-phase filter response. Then, the set of possible win-

dows that can be represented with these values of pk is,

wk(τ) =
(1−pk)2

4

[

A(τ)

B(τ)

]2

=
(1 − pk)2(1 + cos τ)

2(1 + p2

k − 2pk cos τ)
(7)

where A(τ) and B(τ) are the distances to the zero and the

pole, as shown in Figure 1, and gk = (1 − pk)2/4 is a

normalization factor 2 to have 0 dB gain at time τ = 0,

that is, wk(0) = 1.

While this filter is linear and time invariant (in fact fre-

quency invariant 3 ) a different time window is desired for

each frequency component. Computing the response of the

whole bank of filters for the entire spectrum sequence and

then choosing the response for only one bin is computa-

tionally inefficient. For this reason, a Linear Time Variant

(LTV) system, that consists in a Time Varying (TV) IIR

filter, is proposed as a way to approximate the filterbank

response at the frequency bins of interest. It will no longer

be possible to define the filter impulse response, as this

could only be done if the filters were invariant to frequency

shifts.

3.2 LTV IIR System

Selecting a different filter response of the filterbank for

each frequency bin can be considered as applying an LTV

system to the DFT of a frame. The desired response of the

LTV for a given frequency bin is the impulse response of

the correspondent filter.

Any LTV system can be expressed in the matrix form,

Y = K.X where K is the linear transformation matrix

(also referred as Greens matrix) and, in this case, X is the

DFT of the signal frame. A straightforward way to con-

struct K for any LTV system is to set its ith column as the

response to a shifted delta δ[n− i], which is named Steady

State Response (SSR).

The approach followed in this work consists in approxi-

mating the LTV system by a single TV IIR filter, assuming

that the LTV system has a slow time varying behavior and

that its SSR can be implemented by an IIR filterbank. Then

it is verified that the approximation is sufficiently good for

our purposes. In the case of variable windowing to ob-

tain a constant Q, these assumptions hold, as time windows

for two consecutive frequency bins are intended to be very

similar, and the LTV system can be implemented by an IIR

filterbank as seen before.

A direct way of approximating the IIR filterbank is by

a first order IIR of the form of equation 6, but in which the

pole varies with frequency (p = p[n]),

Y [n] = X[n] + X[n − 1] + p[n]Y [n − 1]. (8)

With an appropriate design, it reasonably matches the de-

sired LTV IIR filterbank response, and its implementation

has low computational complexity.

2 This normalization factor can be calculated from the impulse re-
sponse evaluated at n = 0, or by the integral of the time window function.

3 Note that we will use the usual time domain filtering terminology in
spite of the fact that filtering is performed in the frequency domain.
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3.3 Time Varying IIR filter design

A question that arises is how to design the TV IIR filter

in order to have a close response to that of the LTV IIR

filterbank. Several design criteria have been proposed in

the literature [7], that may depend on the problem itself.

The TV IIR can also be represented by a matrix Kv in

a similar way as the LTV filterbank, so the design can be

done as in [7], by minimizing the normalized mean square

error, E = ||K − Kv||2/||K||2. In this work, the adopted

design criteria is to impose the windows behavior in time

in order to obtain the desired constant Q. Then, the error is

regarded as the difference between the desired Q and the

effective obtained value. It becomes necessary to define

an objective measure of Q. Usually the quality factor of a

passband filter is defined as the ratio between the center

frequency and the bandwidth at 3 dB gain drop. In our

case the filtering is done in the frequency domain, so it is

reasonable to measure Q in the time domain. Given that Q

represents the number of cycles of an analyzed frequency

component in the frame, it makes sense to define Q as the

number of cycles within the window width at a certain gain

drop, for example 3 dB. If τ ′

k
is the time at this drop for

frequency fk, wk(τ ′

k
) = 10−

3

20 w(0) , w′

k
, then τ ′

k
=

Q/(2fk). This definition allows the comparison of Q for

methods with different window shapes. Note however, that

a similar measure of Q can be formulated in the frequency

domain.

In the proposed approach the first step is to design an

IIR filterbank that accomplishes the constant Q behavior.

Then, a TV IIR filter is devised based on the poles of the

filterbank. Finally a fine tuning is performed to improve

the steadiness of the Q value for the TV IIR filter. In the

following section, this procedure is described in detail.

3.3.1 Proposed design

Following the definition of Q in time, the poles of the IIR

filterbank can be calculated from equation 7 as the solution

of a second order polynomial: (2w′

k
− cos(τ ′

k
) − 1)p2

k
+

(2+2 cos(τ ′

k
)−4w′

k
cos(τ ′

k
))pk +2w′

k
−cos(τ ′

k
)−1 = 0.

Then, a simple and effective design of the TV IIR fil-

ter consists in choosing for each frequency bin the corre-

sponding pole of the IIR filterbank, that is p[n] = pk, with

k = n. The Q factors obtained with this approach are close

to the desired constant value but with a slight linear drift.

This result shows that the slow variation of the LTV system

allows an approximation by a single TV IIR with a little de-

viation that can be easily compensated by adding the same

slope to the desired Q value at each bin. Figure 3 shows

the Q curve for the original and compensated designs.

Another design consideration is that for low frequencies

a constant Q would imply a longer window support than

the frame time. It becomes necessary to limit the time τ ′

k
to

a maximum time τmax, such that 2 τmax is smaller than the

frame time. This limitation of τ ′

k
to a maximum value must

be done in a smooth way. Let τ̄ ′

k
be a new variable that

represents the result of saturating τ ′

k
. The transition can

be implemented with a hyperbola whose asymptotes are

τ̄ ′

k
= τ ′

k
and τ̄ ′

k
= τmax, so that (τ̄ ′

k
− τmax)(τ̄ ′

k
− τ ′

k
) = δ,
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Figure 2. Detail of poles design. Pole locations for the

ideal and saturated design. Impulse responses at low fre-

quencies for the TV IIR and the Steady State, along with

corresponding TV IIR time windows.

where δ is a constant that determines the smoothness of the

transition.

The selection of τmax, affects the behavior of the trans-

form in low frequencies. Choosing a small τmax compared

to the frame time gives poor frequency resolution. On the

contrary, if τmax is set to a value close to the frame time, a

better resolution is expected, but some distortion appears.

This is because the time windows get close to a rectan-

gular window for low frequencies. The spectrum of these

windows has big side lobes, introducing Gibbs oscillations

in the representation. Additionally, as a time window for

low frequency approaches to a rectangular shape, its re-

sponse to an impulse vanishes more slowly, so it becomes

necessary to calculate the response for some negative fre-

quency bins, adding extra complexity. In practice it is

reasonable to choose an intermediate value of τmax, e.g.

τmax ≈ 0.7π, such that only for very low frequencies the

transform exhibits non constant Q. Figure 2 shows details

of the described poles design.

3.3.2 TV IIR filtering and zero-padding in time

It is common practice to work with a higher sampling fre-

quency of the spectrum, typically obtained by zero-padding

in time. In this case the TV IIR filter design changes, as the

signal support becomes (−τ1, τ1] with 0 < τ1 < π. Then,

the discontinuity to be avoided at the ends of the frame ap-
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p = design_poles (NFFT ,Q ) ;

X = f f t ( f f t s h i f t (s ) ) ;

Y ' ( 1 ) = X ( 1 ) ;

f o r i = 2 :NFFT / 2

Y ' ( n ) = X (n−1) + X (n ) + p (n )Y ' ( n−1) ;

end

Y (n ) = Y ' ( NFFT / 2 ) ;

f o r i = NFFT/2−1:−1:1

Y (n ) = Y ' ( n+1) + Y ' ( n ) + p (n )Y (n+1) ;

end

Table 1. Pseudocode of the TV IIR filter. First, the poles

and normalization factor are designed given the number of

bins (NFFT) and the Q value. Then the FFT of the signal

frame s is computed after centering the signal at time 0. Fi-

nally the forward-backward TV IIR filtering is performed

for that frame.

pears at ±τ1, so a couple of zeros at ±τ1 have to be placed

instead of the zero at π. Window properties outside this

support are irrelevant, as windowed data values are zero.

The design of poles has to take into account the new zeroes

and the time re-scaling, but windows with similar proper-

ties are obtained.

3.3.3 Implementation

The method implementation 4 is rather simple, as can be

seen in the pseudocode of Table 1. A function to design the

poles is called only once and then the forward-backward

TV IIR filtering is applied to the DFT of each signal frame.

The proposed IIR filtering applies a window centered at

time 0, so the signal frame has to be centered before the

transform. To avoid transients at the ends, the filtering

should be done circularly using a few extra values of the

spectrum as prefix and postfix. Their lengths can be cho-

sen so as truncation error lies below a certain threshold, for

instance 60 dB.

4. METHODS COMPARISON

4.1 Frequency scale

Depending on the context of the music analysis application

different frequency grids may be preferred. To this respect,

the efficient CQT method can be designed for any arbitrary

frequency spacing. On the contrary, the MR FFT and the

IIR CQT are constrained to a linear frequency scale be-

cause they rely on the DFT. This spacing typically implies

an oversampling at high frequencies to conform with the

minimum spacing at low frequencies.

4.2 Effective quality factor

The analyzed methods have different flexibility to define

an arbitrary Q at each frequency. The efficient CQT offers

the freedom to set any possible Q for every bin. The MR

FFT allows choosing the resolution for every bin from a

reduced set not enabling an arbitrary Q. On the other hand,

4 The complete code is available at http://iie.fing.edu.uy/

˜pcancela/iir-cqt.

Figure 3. Comparison of the effective Q for a target value

of 12.9 given the definition of 3.3. This value gives 34

cycles within the window, as commonly used in the CQT.

Figure 4. Windows comparison at frequencies f1, f2 and

f3 for the different methods. At f1 and f3 the three meth-

ods have the same Q, while at f2 the MR FFT can not

achieve the desired Q. For this reason, the two nearest MR

FFT windows are considered at f2. CQT and MR FFT are

computed using a Hamming and Hann windows respec-

tively.

the TV IIR filter allows any Q value for any frequency but

with the constraint that it evolves slowly with frequency.

This holds particularly well in the case of a constant Q

transform, so the IIR CQT can give any constant Q with

a fairly simple design. Figure 3 shows the obtained Q with

the different methods. It can be observed that the MR FFT

has a bounded Q due to the resolution quantization.

4.3 Windows properties

The spectral and temporal characteristics of windows at

three different frequencies are shown in Figure 4 for each

method. At frequency f1, IIR CQT time window behaves

like a Hann window. For lower frequencies it exhibits a

flatter shape to extend the range of constant Q (see Figure

2). For higher frequencies, the main lobe of the obtained

windows has a steeper drop up to -50 dB compared to a

conventional Hann or Hamming window. As a counter-

part, time resolution is slightly diminished. Note that the

selected drop value in the definition of Q sets the location

in this compromise.
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4.4 Computational complexity

The three algorithms are compared based on the number of

real floating point operations performed in mean for each

frequency bin. All of them compute the DFT of a non win-

dowed frame, so these operations are not considered.

The number of operations in the efficient CQT depends

on the length of the frequency kernels. This length varies

with Q and is different for different frequency bins. For

the Q and threshold values used in Figures 3 and 4 (QCQT

= 34, Q = 12.9, th = 0.0054), NFFT = 2048 and fs = 44100

Hz, the frequency kernel length varies from 1 to 57 coef-

ficients, which implies a mean number of 27 real multi-

plications and 27 real additions. This result depends on

the threshold and inversely on Q. The MR FFT takes ad-

vantage of the hierarchical implementation of the FFT to

compute the transform, so the windowing in the frequency

domain needs only 3 complex sums and 2 multiplications

for each bin. The total number of real floating point oper-

ations is then, 4 multiplications and 6 additions. The IIR

CQT involves a forward and backward IIR filtering with a

variable real pole and a zero, followed by a real normaliza-

tion (see Table 1 for a pseudocode). As the frequency com-

ponents are complex values, the necessary number of real

operations to compute each bin is 6 multiplications and 8

additions (plus a negligible number of extra operations due

to the circularly filtering approximation).

5. APPLICATIONS AND RESULTS

Finally, two different examples of the spectral analysis of

polyphonic music using the proposed IIR CQT method

are shown in Figure 5 together with conventional spectro-

grams. As it is expected in a constant Q transform, it can

be noticed that singing voice partials with high frequency

slope tend to blur in the spectrogram but are sharper in

the IIR CQT. This improved time resolution in high fre-

quencies also contributes to define more precisely the note

onsets, as can be seen in the second example (e.g. the

bass note at the beginning). Moreover, in the low fre-

quency band, where there is a higher density of compo-

nents, the IIR CQT achieves a better discrimination, due to

the fact that its time windows are flatter than typically used

windows. At the same time, frequency resolution for the

higher partials of notes with a steady pitch is deteriorated.

The proposed IIR CQT method was used as part of the

spectral analysis front-end of a melody extraction algo-

rithm submitted to the MIREX Audio Melody Extraction

Contest 2008, performing best on Overall Accuracy 5 . Al-

though the constant Q behavior of the spectral representa-

tion is just a small component of the algorithm, the results

may indicate that the usage of the IIR CQT is appropriate.

6. CONCLUSIONS

In this work a novel method for computing a constant Q

spectral transform is proposed and compared with two ex-

5 The MIREX 2008 evaluation procedure and results are available
at http://www.music-ir.org/mirex/2008/index.php/

Audio_Melody_Extraction.

Figure 5. STFT and IIR CQT for two audio excerpts, one

with a leading singing voice and the other, instrumental

music.

isting techniques. It shows to be a good compromise be-

tween the flexibility of the efficient CQT and the low com-

putational cost of the MR FFT. Taking into account that it

was used in the spectral analysis of music with encourag-

ing results and that its implementation is rather simple, it

seems to be a good spectral representation tool for audio

signal analysis algorithms.
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