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An Efficient Multiversion Access Structure
Peter J. Varman and Rakesh M. Verma

Abstract —An efficient multiversion access structure for a transaction-time database is presented. Our method requires optimal
storage and query times for several important queries and logarithmic update times. Three version operations}inserts, updates,
and deletes}are allowed on the current database, while queries are allowed on any version, present or past. The following query
operations are performed in optimal query time: key range search, key history search, and time range view. The key-range query
retrieves all records having keys in a specified key range at a specified time; the key history query retrieves all records with a given
key in a specified time range; and the time range view query retrieves all records that were current during a specified time interval.
Special cases of these queries include the key search query, which retrieves a particular version of a record, and the snapshot
query which reconstructs the database at some past time. To the best of our knowledge no previous multiversion access structure
simultaneously supports all these query and version operations within these time and space bounds. The bounds on query
operations are worst case per operation, while those for storage space and version operations are (worst-case) amortized over a
sequence of version operations. Simulation results show that good storage utilization and query performance is obtained.

Index Terms —Transaction-time database, multidimensional data, access methods, data structures, indexing, I/O complexity.

——————————   ✦   ——————————

1 INTRODUCTION

EVERAL applications in commercial and manufacturing en-
terprises need access to past versions of data. In many

conventional databases (called snapshot databases in [9])
only the most current version of the data is stored. As rec-
ords are updated or deleted, previous versions of the rec-
ords are lost from the database. In several applications,
however, it is necessary to retain and maintain access to the
old versions of these records, so that queries about the past
states of the database can be answered. A transaction-time
database [22] provides automatic storage and management
of old (versioned) data. For definitions and concepts related
to temporal databases see [3], [9], [17], [19], [21], [23].

As an illustrative example consider a bank database
tracking the transactions associated with different accounts.
Fig. 1a shows a hypothetical snapshot relation in this
database; only the most recent balance for an account is
stored in the relation. In contrast, in a transaction-time da-
tabase a new version of a record is created with each up-
date as shown in Fig. 1c, following the transactions noted in
Fig. 1b. Notice that each record is now timestamped with
the time at which the update took place. This is also as-
sumed to be the time at which the new data values take
effect and the old ones become obsolete. As a consequence,
several queries that were not possible in the snapshot data-
base can now be made. For instance, one can ask for the
balance in account No. 2321000 on May 3, 1993, or for the
balance history of account No. 2321000 between January
and May 1993. A global query may ask for the balance in all

accounts with account numbers between 2321000 and 2323000
at some time in the past, or to report all accounts with bal-
ances between $1,000 and $2,000 on May 1, 1993. It is neces-
sary to organize the data so that queries such as these can
be answered efficiently, while allowing for database-
modifying operations (also referred to as version opera-
tions) that insert new records into the database, and update
or delete current records. Such a structure is referred to as a
multiversion access structure or MVAS.

We present an efficient multiversion access structure for
transaction-time databases [23] in this paper. Version op-
erations LQVHUW, XSGDWH, and GHOHWH are permitted on
the current data, and a rich variety of query operations are
supported. The storage, as well as the time complexities for
the query operations are asymptotically optimal. The time
complexity for version operations is optimal for a method
that simultaneously supports all these query operations
optimally. We use the phrase simultaneously optimal for a set
of queries to mean that the storage is optimal, the query
times are optimal for the given set of queries, and the time
for version operations matches the lower bound on update
time for at least one of the queries in this set.

A brief comparison with related work is provided be-
low. More detailed comparisons are provided in Section 8.
First, most multiversion access structures (exceptions are
noted and discussed in Section 8) do not explicitly handle
the GHOHWH operation. Among designs handling deletes,
the worst-case storage bounds of our design significantly
improves (by about 85 percent) the best previously re-
ported bound [2]. This is achieved by a combination of
using more storage-conservative overflow and underflow
policies, and coming up with a tighter (and nontrivial)
analysis. Second, we present a new design for handling
the key-history query, that retrieves all versions of a speci-
fied key in a specified time-interval. Most previous meth-
ods (see [18]) are inefficient for this query. Access lists [1]
and the ST-tree [7] achieve optimal query time for the key-
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history query, but have much larger worst-case storage
requirements.

Finally, like the related design of [2], our structure is si-
multaneously optimal for key-range queries that retrieve a
range of keys at a given time, and time-range queries that
retrieve all keys current in a time range.

The rest of the paper is organized as follows. Section 2
gives the definitions used in the paper, and states the worst-
case time bounds for different operations. In Section 3, we
describe the access structure and the version operations;
and query operations are discussed in Section 4. The analy-
sis of the storage requirements is presented in Section 5;
and in Section 6, we describe simulation results to measure
average storage utilization and query performance. In
Section 7, we describe augmenting the structure with modi-
fied access lists to handle key-history queries. In Section 8,
we discuss previous work on the design of multiversion
access structures and compare it to the method described
in this paper. The paper concludes with a summary in
Section 9.

2 DEFINITIONS

A record is the basic unit of information. The records may
contain the actual data or may be pointers to the objects of

interest. In either case we refer to these as data records. Two
types of operations may be performed on the database: ver-
sion operations, which are operations that modify the data-
base; and query operations that retrieve selected data records.
The version operations are insert, update, and delete. The term
version number is used to keep track of the total number of
version operations performed on the database [4]; every ver-
sion operation increases the version number by one.

Each version operation has a timestamp associated with
it. The timestamps of successive version operations must
form a monotonically increasing sequence, but otherwise
there is no restriction on them. Version operations can be
performed on only the latest version of records, i.e., on the
current database. However, queries may be posed about
objects present at any time, past, or current. Such a model is
referred to as a transaction-time database [9], [23]. Note that
timestamps are not necessarily consecutive integers, and
there is no direct relationship between version numbers
and timestamps except that events with later version num-
bers have higher timestamps than events with earlier ver-
sion numbers. Finally, as expected for transaction-time
data, we assume step-wise constant behavior, i.e., the value
of a record with a given key remains unchanged between
successive updates to the record with that key.

Fig. 1. Example snapshot and transaction-time database relation.
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Each record has a unique NH\ and a pair of timestamps
VWDUW and HQG. The lifespan of the record is from VWDUW
to HQG. The special timestamp value $ is used to indicate
the present time. A record is created at some time t0 using
an LQVHUW operation and its lifespan is from t0 to $. The
record remains current (or live) until the time at which it is
either XSGDWHG or GHOHWHG. If the record is updated at
time t1, a new version of the record is created that is live
from t1 to $, and the HQG timestamp of the previous version
becomes t1. If the record is deleted at time t1, then no fur-
ther version of the record is created. A record is said to be
current (or live) at time i if i is greater than or equal to its
VWDUW timestamp and less than its HQG timestamp. A pres-
ent version record is one which is current at the present
time, time $.

Fig. 2 shows these definitions graphically. Records with
keys A, B, D, and C are inserted at times 1, 2, 3, and 4, re-
spectively. At time 5, A gets updated and its new version
(denoted as (A, 2)) remains current until time 8, when an-
other update is made to it. Similarly, B gets updated at
times 7 and 12; and D at times 6 and 10. C gets deleted at
time 9 and no new version of it is therefore created. The
current entries at time 3 are (A, 1), (B, 1), and (D, 1). If the
current time is 13, then the present version entries are
(A, 4), (B, 3), and (D, 3).

Several of the most important and frequent query op-
erations discussed in the literature, can be performed using
the proposed access structure. For this set of queries our
structure is simultaneously optimal. In the following, let B
denote the size of a block (in records), N denote the current
version number, Nt the number of records that are current
at time t, R the number of records in the output of a query,
and w the minimum number of records current at time t
that are present in every block along a search path. We will
show later that w is at least as large as B/5, even for a
worst-case sequence of operations. We denote the number
of block accesses needed for the query by T. The constants
in the Q expressions given below are all very small (more
precise expressions are derived in Section 4):

x� .H\�6HDUFK: Retrieves the record with key . current
at time W. T = Q (logw(N/B)).

x� .H\�5DQJH�6HDUFK: Retrieves the records with keys
in the range [K1 …, K2] at time W. T = Q(logw(N/B) +
R/B).

x� .H\�+LVWRU\� 6HDUFK: Retrieves the records with
key . current in the time range [t1 …, t2]. This opera-
tion retrieves the history of the object with key .
during a time span from t1 to t2. Using the &-list de-
scribed in Section 7, we obtain T = Q(logw(N/B) +
R/B).

x� 6QDSVKRW: Retrieves all records that were current at
time t1. This is an important special case of the Key-
Range Search operation.

x� 7LPH�5DQJH� 9LHZ: Retrieves all records that were
current in the time interval [t1 …, t2]. This is a gener-
alization of a Snapshot Query to all time points in an
interval. T = Q(logw(N/B) + R/B). (Applying the
Snapshot operation successively to all time points in
the range is much less efficient in general.)

The amortized time required for any of the insert, update
and delete operations at time t is Q(logw(Nt)). This is suffi-
cient to update all the different structures that are maintained
to handle all the above query operations with the stated time
bounds. For convenience, in the rest of the paper the time for
version operations is to be understood as amortized time. We
end this section by summarizing known bounds for these
operations. Using the lower-bound results in [18] an I/O-
optimal method for the Key-Range search problem requires
O(N/B) space, O(logBN + R/B) query time, and logarithmic
update processing. Our structure matches the bounds on
space, update, and query times for this problem. For the
Snapshot problem, the best known lower bounds [18] are
O(N/B) space, O(logBN + R/B) query time, and O(1) updat-
ing. Our method matches the bounds on space and query
time, but uses logarithmic update time. Note that any single
structure that supports both Key-Range and Snapshot que-
ries, must require logarithmic update time, as is achieved by
our method. We are unaware of any deterministic solution to

Fig. 2. Illustrating the model.
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the Snapshot problem (when considered in isolation) that
matches the lower bounds stated above. Recently, Tsotras
and Kangelaris [25] presented a randomized optimal solution
to this problem. They use a randomized update algorithm
based on hashing, which achieves O(1) expected amortized
update time, and deterministically optimal query time and
space. For the key-history query, a lower bound for query-
time [18] is W(logBN + R/B), which is matched by our struc-
ture. The lower-bound on update time for the key-history
query is open. We conjecture that logarithmic update time is
needed by any deterministic algorithm.

Note that query times depend on N the total number of
version operations, while times for version operations
(since they only need to access the current database) de-
pend on Nt, the number of records that are live at the cur-
rent time. This is achieved by keeping a pointer to the root
of the current database. Using this pointer the current data-
base can be accessed directly. Whenever the root of the cur-
rent database changes, the pointer is updated.

3 MULTIVERSION ACCESS STRUCTURE

In this section, we describe the structure of the multiversion
access structure (MVAS) and explain the fundamental ver-
sion operations: insert, update, and delete. The time com-
plexity of the version operations is analyzed in Section 3.2.
The MVAS is made up of a modified multiversion B+-tree
(7

�
). The leaves of 7 are data nodes and contain the data rec-

ords. The interior nodes of 7 are index nodes and contain
index records. Fig. 3 shows a hypothetical MVAS with four
data nodes, and one index node. For convenience we as-
sume that index nodes and data nodes hold the same num-
ber of records. This a pessimistic assumption so if it does
not hold our performance will improve.

A data record has the fields [NH\��VWDUW��HQG��LQIR]
with obvious semantics. An index record has the fields [NH\�
VWDUW��HQG��SWU]; SWU is a pointer to a node at the next
level in 7; the node pointed to will contain keys which are
no smaller than NH\, VWDUW is the time at which the refer-
enced node was created and HQG is the time at which the
referenced node died (see Section 3.1). For simplicity, in
Fig. 3 a data record is indicated by only its NH\ and VWDUW
time. Thus, node U contains four data records: NH\�$ cre-
ated at time 1 (�$����), NH\�% created at time 2 (�%����) and
updated at time 4 (�%���), and NH\�' created at time 3

(�'����). Similarly, the index records in the index block are
represented only by the NH\, VWDUW� and SWU fields. For
instance, the index entry �$���� points to block V, that was
created at time 5, and whose keys are no smaller than $.

A data record is said to be live if its HQG timestamp is $,
i.e., it has not been updated, deleted, or copied to another
node. A block containing some live records is a live block;
else it is dead. An index record is live if it points to a live
block at the next level and dead otherwise. In Fig. 3, blocks
U and V are dead, while X and Y are live. Of the records in
V, �$����, �%����� and �$���� died because they were up-
dated (by �$����, �%����� and �$����� respectively), while
�%���� died when it was copied into block Y. In block X,
record �'���� is dead, but the other two records are live.

3.1 Version Operations of MVAS
In this section, we describe the insert, update� and delete oper-
ations on the MVAS. Assume, for simplicity, that both data
and index blocks hold B records. Two parameters}TH and
TL}are used to control the block occupancy, where B ³ TH ³
4TL (the reasons for these constraints are clarified below).

To insert a new record or update an existing record, the
MVAS is searched starting from the current root to locate
the appropriate data block into which the record must be
added. (Details of the search procedure are provided in
Section 4.) If there is space in the block, the record is simply
added to it. If not, an RYHUIORZ occurs, and new blocks are
created according to the following rules (let LA be the num-
ber of live records in an overflowing block, say A, including
the record being inserted):

x� &DVH��� LA > TH: Create two new blocks & and '.
Copy all the live records from $ into & and ' based on
key range, with each of & and ' getting an equal (or
differing by one) number of keys.

x� &DVH� �� 2TL £ LA £ TH: Create one new block &.
Copy all live records from $ to &.

x� &DVH��� TL < LA < 2TL: Identify a live sibling block, %
(i.e., a live block with adjacent key range). If no such sib-
ling exists, then handle the overflow as in Case 2 above.
Otherwise, let LB be the number of live records in %.
$�If LB < 3TL: If (LA + LB > TH), copy all the live rec-

ords from $ and % into two new blocks as in &DVH
�; else copy these combined records into one new
block as in &DVH��. Mark % as GHDG.

Fig. 3. The Multiversion Access Structure.
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%�If LB ³ 3TL : Copy the LA live records from $ and
(2TL - LA) records from % with adjacent key values
into one new block. Mark these records in $ and %
as copied.

In each case, $ is marked as GHDG in its parent, and its
HQG timestamp updated to the current version number.
Note that % is marked dead only in &DVH��$ when all its
live records are copied to another node; in &DVH��% only a
few (at most TL - 1) live records will be copied from %,
which will still retain at least 2TL + 1 live records after that.
In &DVH��%, the range of keys in % may change if its lowest
key is copied. Then, a new index entry for % with the new
lowest key and current VWDUW timestamp is inserted in its
parent; the old index entry for % has its HQG timestamp set
to the current version number. This ensures that subsequent
searches for the copied records lead to the new block rather
than to %. Index records for the newly created block(s) are
inserted into $’s parent. Note that adding index records
may in turn cause an overflow of the index block. This is
handled in the same manner as the overflow of a data block
just described. Note that &DVH�� above does not arise in a
WOBT [5] or TSBT [13], since these designs do not treat de-
letes. Also note that our overflow policy substantially dif-
fers from that of [2]. The only time when a sibling block can-
not be found is in the rare event that the current database
consists of only a single block (the overflowing block). In this
case, the live records are copied into a new block as in Case 2.

Fig. 4 shows an example of &DVHV�� and � for a data
block overflow assuming B = 5 and (just for illustration)

TH = 3. Initially, at time 5 there are three live records (A, 1),
(C, 4), and (B, 5). At time 6, the record D is inserted in the
data block, causing an overflow. Since the total number of
live entries (including the one being inserted) is 4, two new
blocks are created, and the live records split equally by key
range. Two new entries are added to the index node; note
that both of these have start time 6, indicating the creation
time of the data blocks to which they point. The first index
record now points to a dead data block. The second exam-
ple shows the insertion of a record with key B at time 6.
Since there is already a record with key B, this is an update
and the total number of live entries on overflow is 3. All
these three are copied to a new data block.

'HOHWLQJ a record at time i changes the HQG field of
that record to i. The record is now dead. If the delete causes
the number of live entries in the block to fall to TL , the block
is said to XQGHUIORZ. To avoid fragmenting the live entries
over too many blocks, the underflowing block $ is merged
with a live sibling block %, should one exist, according to
the following rules (as noted before, the only time such a
sibling cannot be found is in the (pathological) case that the
current database consists of only one block (the one which
has just underflowed); in this case, no action is taken on an
underflow; in the general case, let the sibling % contain LB
live entries, and NT total entries):

x� &DVH��� LB ³ 3TL : Create a new block &. Copy the TL
live entries of $ into &. Mark $ as dead. Copy TL live
entries with adjacent key values from % into &, and
mark these records in % as copied.

Fig. 4. Illustrating inserts and updates (end times are not shown).
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x� &DVH��� LB < 3TL and NT > (TH + 1): Create a new
block &. Copy the TL live entries of $ into &. Mark $ as
dead. Copy all live records from % to &, and mark % as
dead.

x� &DVH��� LB < 3TL and NT £ (TH + 1): Copy the TL live
entries of $ into %, and mark $ as dead.

The index entry for $ (and in &DVH�� for % also) is up-
dated to indicate that it is pointing to a dead block. In
&DVHV� � and �, an index entry for the new block & is
added to $’s parent. In &DVHV�� and �, if the lowest key of
% is changed, a new index entry for % with the new lowest
key and current VWDUW timestamp is inserted in the parent
of %; the old index entry for % has its HQG timestamp set to
the current version number.

Inserts or deletes of index records are handled in a
manner similar to data records. A delete of an index rec-
ord occurs when the block it points to dies. Note that this
is accompanied in &DVHV�� and � by the insertion of a
new in-dex entry, corresponding to a newly created block.
The num-ber of live index entries in a block decreases in
&DVH�� when two blocks die and only one new block is
created, and in &DVH�� when one block dies and no new
block is created.

A special case arises when the smallest key of a block is
deleted, and this was the smallest search key at the next
(and possibly more) higher index levels. When such a block
is split, the smallest key of the newly created block will be
larger than its old value. The new index record pointing to
the new block must be given a NH\ value, the same as the
originally deleted smallest key, rather than the new larger
one. Otherwise, all index blocks for which the original key is
the smallest live key in that block would need to be up-
dated. By retaining the original key value in the index rec-
ord, we avoid the space and time overhead of updating all
such index levels. Note that if all levels were not updated,
then insertion of keys with values between the deleted
value and new smallest value would not proceed correctly.
Insisting that the smallest key value in an index record is
not changed by insertion of new index records, provides a
simple method that permits correct operation without the
overhead.

Overflow and underflow for index blocks are defined as
for data blocks, and are handled in the same way. The root
of the current database (current root) is tracked separately.
When a version operation causes the current root to die,
then if one new block is created, this block becomes the cur-
rent root. If two new blocks are created, then the current
root is the parent of the new nodes. If due to block consoli-
dations the current root is left with only one live child, then
the child node becomes the current root.

Note that although the MVAS structure is a directed acy-
clic multigraph, there is always a unique search path from
the root for any key K at any time i. Hence, we use the tree
notation such as parent, sibling, etc., in the descriptions. Note
that other MVAS designs like the WOBT [5], the TSBT [13],
and the design in [2], all result in a DAG, rather than the
multigraph of our design. In other words, creation of a new
index entry is always accompanied by the creation of a new
block. In our design, a new index entry can point to the same
physical block with possibly modified range. This reuse of

blocks provides for more efficient storage usage in our design.
We end this section by stating formally a set of invari-

ants maintained by the nodes (both data and index) of
the MVAS. The parameters TH and TL are chosen to sat-
isfy the following invariants for any sequence of inserts,
updates, and deletes. In addition, in &DVH�� of GHOHWH we
need to ensure that there is enough space in % to copy in
the TL live entries of block $. By choosing TH = 4B/5 and
TL = B/5 - 1 this condition, and those implied by the in-
variants below, are satisfied. We assume that the total
number of live records in the MVAS will never fall below
2TL . Note that otherwise, there is only one live block in the
MVAS. Rather than treat this situation (which will rarely, if
ever, arise in practice) as a special case, we assume the ex-
istence of at least 2TL live records in the database, if neces-
sary, by inserting 2TL dummy records that can never be
deleted at the start.

,QYDULDQWV�

1) When a block is created it has at least 2TL live records,
and no more than TH live records. This can be seen as
follows. When two new blocks are created by &DVH��
of LQVHUW, the number of records in each block is at
most é(B+1)/2ù, which is less than TH for all B ³ 5.
When two new blocks are created by &DVH��$ of
LQVHUW, the number of records in each block is less
than (2TL + 3TL )/2 < B/2 < TH, for all B ³ 5. When one
new block is created by an insert, it has at most TH re-
cords in &DVH�� and &DVH��$. In &DVH��%, the new
block is created with exactly 2TL records. When a new
block is created by a GHOHWH, it will have exactly 2TL
records in &DVH��, and LB + TL records in &DVH��.
Since TL < LB < 3TL , this is at least 2TL and no more
than 4TL < TH.

2) Every live block has at least TL + 1 live records. This
follows because a block is created with at least 2TL
live records. When the number of live records falls to
TL , the block dies.

3) When a block underflows, at least TL version opera-
tions must have been done on it (including the delete
triggering the underflow). (See Lemma 5.2 in Section 5.)
When a block underflows, at most one new block is
created.

4) When a block overflows, at least B - TH + 1 ³ TL op-
erations must be done on it (including the operation
triggering the overflow). (See Lemma 5.4 in Section 5.)
When a block overflows, at most two new blocks are
created.

3.2 Time Complexity of Version Operations
In this section, we analyze the number of block accesses
required for the version operations. The worst-case analysis
of space is in Section 5. The (i + 1)th version operation
(insert, update, or delete) performs a search in version i and
then modifies at least one data block of 7, say A. If A over-
flows or underflows, then up to two other data blocks in 7
have to be created or modified. On an overflow or an un-
derflow, up to two new entries will be sent up to the parent
of A, say PA. This may trigger an overflow or underflow of
PA, and again up to two other blocks may have to be created



VARMAN AND VERMA: AN EFFICIENT MULTIVERSION ACCESS STRUCTURE 397

or modified at this level. In the worst case, these changes can
propagate up to the root of 7. At each index level, up to
three blocks may need to be modified or created.

Note that overflows or underflows at the data level can
occur only after at least TL version operations. Since each
underflow or overflow can send at most two index records
up to the next level; therefore, underflows or overflows can
occur at index level l after at least (TL )

l/2l-1 version opera-
tions (here data blocks are at level 1). Therefore, the amor-
tized cost for structural changes on 7 for the (i + 1)th ver-
sion operation is at most

3 1 2 2
1

1

/ ( / )
log

TL
i

i

Nw

=

+

å ,

where N is the total number of version operations so far.
Since B is larger than 20, 2/TL < 1, and hence this is at most
a constant c < 3/2.

4 QUERY OPERATIONS

In this section, we describe the procedures for the query
operations and analyze their time complexity.

To VHDUFK for a key K that is valid at time t, we begin at
the root block. Ignore the records with VWDUW timestamps
larger than t and the records with HQG timestamps smaller
than t. From the remaining records choose the one with the
largest key value less than or equal to K; if there are several
such records, choose the one with the largest VWDUW time-
stamp. Follow the pointer to the next level and then apply
the same procedure at this level. Note that this process
leads to a unique path down the MVAS to a data block. The
record will be found in the data block if it exists; otherwise,
there was no record with key K valid at time t. The number
of block accesses required is élogwNù, where N is the total
number of version operations until the time of this search
operation. Note that w ³ B/5.

To VHDUFK for a key range [K1, …, K2] that is valid at
time t, we begin at the root block as before. For every key
K in the range, we follow the same procedure as described
above for a single key. This will result in a number of
pointers that need to be followed to the next level of the
index. Follow this procedure at every level of the index.
For efficiency, duplicate elimination may be employed to
prevent redundant accesses to the same block (these occur
because of overlap between index blocks). By Invariant 2
in Section 3.1, the number of block accesses required is
élogwNù + O(R/B), where R is the number of records in the
output of this query. This is because the keys that are
valid at time t are clustered by key range into blocks, each
block having a minimum occupancy (at least B/5 for our
method) of keys valid at time t.

The snapshot query is answered optimally since it is the
special case of the key range query, where the key range is
the entire range.

The time-range query between [t1, …, t2] retrieves all re-
cords that were valid in the time range t1 through t2. To do
this efficiently, data blocks at the leaf level of the MVAS are
linked in time-sequence order, i.e., in the order in which

they were created.1 Logically, the time-range query can be
considered to be composed of two subqueries: retrieval of
all records valid at time t1 (a snapshot query at t1) and re-
trieval of all records created between times t1 and t2. The
first subquery has been discussed above. For the second,
notice that all records created between t1 and t2 will either
have been placed in a block that is live at t1 (and hence re-
trieved by the first subquery), or in a block created between
t1 and t2. These latter blocks are linked together in the time
order of their creation. Hence, after locating the first block
created after t1, we follow the link pointers until we en-
counter a block with start time greater than t2. The first
block created after t1 can be found by examining the blocks
retrieved by the snapshot subquery; the block with the
smallest HQG timestamp will be the first block to die
after t1, and the block(s) created on its death, will be the
first block(s) created after t1. The number of block ac-
cesses required is élogwNù + O(R/B), where R is the num-
ber of records in the output of this query.

For the key-history search query, we need to retrieve all
records with key K that were valid between times t1 and t2.
The simplest method (in the absence of deletes) is to main-
tain backward pointers in every data block to the block
whose split (overflow or underflow) created it [13]. In this
scheme, first locate the record with key K that is valid at t2;
then follow the backward pointers until a record with key K
and HQG time less than t1 is found. If key-history queries are
relatively infrequent, then the simplicity of this scheme
makes it attractive to implement. However, worst-case per-
formance can be poor in this scheme, since each qualifying
record could require a separate block access, resulting in a
complexity of élogwNù + O(R) block accesses rather than the
optimal élogwNù + O(R/B), if all qualifying records were
clustered together. An additional problem with this scheme
arises when deletes are allowed; the record with key K may
have been deleted before t2, but could have several versions
between t1 and t2. Some other mechanism is needed to ac-
cess the last version of K before its deletion. In Section 7, we
describe an optimal solution for the key history query
based on access lists integrated into the MVAS. However,
since the trade-off is slightly increased times for version
operations (although still O(logwNt)), this proposal should
be evaluated within the context of a given application,
based on the frequency of the key-history query.

5 ANALYSIS OF SPACE

In this section, we prove an upper bound on the worst-case
space requirements of the MVAS for any sequence of ver-
sion operations. We perform an amortized analysis of the
space. We first show that if the version number is N, the
number of data blocks is no more than 5N/(B - 5) + 1.

The idea of the proof is as follows. Every time a version
operation is performed on a block we charge a space of
1/TL blocks for that operation. This accumulated space is
held in reserve until the block dies, and we need to create a
new block or pair of blocks. We will show that we will al-
ways have accumulated enough storage to pay for the

1. If two blocks are created at the same time, the tie may be broken
arbitrarily.
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blocks we need to create. This will show that for N version
operations no more than N/TL blocks are needed.

A new block is created only due to either the overflow or
the underflow of another block. We model a block as a
node of a rooted, directed binary tree. The root of the tree is
the initial block. Every time an overflowing block is copied
to two new blocks, we add two child nodes to it. Each node
of such a pair is referred to as a two-node. Every time an
overflowing or underflowing block is copied to one new
block, add one node as the child; such a singleton child is
called a one-node. The number of nodes in this tree is the num-
ber of data blocks. The sum of the number of version oper-
ations done to each block is the current version number.

Note that in certain cases like in &DVH�� of GHOHWH and
&DVH��$ of LQVHUW two blocks die (the overflowing or un-
derflowing block and a sibling block which is killed) during
the creation of a new block or pair of blocks. In these cases,
only the overflowing or underflowing node becomes the par-
ent of the new node(s) created in the tree. The node corre-
sponding to the killed sibling block is not affected; that node
will permanently remain a leaf in the tree as it is now dead,
and cannot overflow or underflow in future. Similarly, in
cases such as &DVH�� of GHOHWH and &DVH��% of LQVHUW
one blocks dies, and the newly created block becomes the
child node of the node which dies. The sibling block from
which some records are copied is not affected. Finally, note
that when records are simply copied into a sibling block, as
in &DVH�� of GHOHWH, we do not add any children to the tree.

We will assume that the total number of live records in
the MVAS will never fall below 2TL , so that the Invariants of
Section 3.1 are satisfied. In particular, for purposes of sim-
plifying the proof, it will be assumed that the first data
block is created with 2TL live records, which are never de-
leted. This allows us to handle the first node like every
other node; otherwise, this node would need to be treated
separately, causing an unwarranted complexity in the
proof. Recall that the thresholds are TL = B/5 - 1 and TH =
4B/5. We begin with the main theorem that provides the
structure of the proof. Individual results used in the theo-
rem are then proved in subsequent lemmas.

THEOREM 5.1. The number of blocks required by data nodes of 7
in the worst case is less than 5N/(B - 5) + 1, after any
sequence of N version operations.

PROOF. Every version operation brings in a charge of 1/TL
blocks. We show that between the time that a node is
created and the time it dies, sufficient charge will
have been accumulated to pay for the new block(s)
that need to be created. The first node is created with-
out any version operations having been performed;
from the statement of the theorem, when N = 0 there
is one data node. By our assumption, this node like all
nodes that are subsequently created will satisfy the
Invariants of Section 3.1.

Let a
   

be a node that dies. If a
  
dies on a GHOHWH, at

most one new block is created. From Lemma 5.2, a

can always pay for its child.
If dies on an LQVHUW, either one or two new blocks

may be created. In the first case, Corollary 5.5 shows
that a can pay for the single block it creates. If a

  
cre-

ates two blocks, we consider several cases individu-
ally. If a was created by a GHOHWH, Lemmas 5.7 and 5.8
show that there is sufficient accumulated charge to
pay for two new blocks.

If a
   

was created by an LQVHUW, we consider the two
cases when a

   
is a two-node or a one-node separately. If

a
  
is a two-node, Lemma 5.6 shows that it can pay for

the two new blocks. Finally, Lemma 5.9 shows that if
a

  
is a one-node, there is sufficient accumulated

charge to pay for the two new blocks. �

LEMMA 5.2. Let n be a node that dies due to a GHOHWH. When n
dies it must have accumulated a charge of at least one block.

PROOF. Let n be created with N records; note N ³ 2TL . Since
n dies on a GHOHWH, it must have only TL live entries
when it dies. Hence, at least (N - TL ) records in n

must have died since its creation. These records must
have died because of either (i) a delete operation on a
record in n, or (ii) because some of n ‘s records were
copied to another node while leaving n alive (i.e., the
other node performs &DVH�� of GHOHWH or &DVH��%
of LQVHUW). Now,  (ii) can occur only if n has at least
3TL live records, and at most TL records are copied at
any time. Consequently, at least 2TL - TL = TL records
in n must have died due to Case (i); i.e., there must be
at least TL deletes (version operations) done on n be-
fore it dies. Since, each version operation brings in a
charge of 1/TL block, n will accumulate a total charge
of at least one block before it dies. �

LEMMA 5.3. Let n be a node that dies by &DVH�� of procedure
GHOHWH. Then, each record copied to the sibling block will
bring in a charge of at least 1/TL blocks.

PROOF. By definition, n will dump its TL live records to a
sibling block when it dies. From Lemma 5.2, n will
have accumulated a total charge of at least one block
before it dies. Since, it does not need to buy any new
blocks, this entire accumulated charge can be trans-
ferred to the sibling block. Thus, the sibling receives
TL records, and a transferred charge of at least one
block. Hence, each record dumped brings in a charge
of at least 1/TL blocks. �

Note that the transfer of charge to another block when re-
cords are copied, as implied by the above Lemma, occurs
only in certain situations. In particular, the block which
transfers the charge always dies. This simplifies the book-
keeping required in the proof, since a live block from which
records have been copied (as in &DVH�� of GHOHWH for ex-
ample) does not transfer any of its charge. Secondly, the
charge is transferred only to a block which is already alive
(as in &DVH�� of GHOHWH). If a new block is being created
(as in &DVH��% of LQVHUW), then we never transfer accu-
mulated charge of the copied records to the new block.
Note &DVH�� of GHOHWH is the only time when we transfer
charge to another block by copying records to it.

LEMMA 5.4. Let n be a node that dies due to an LQVHUW. If n was
created with N records, then on its death it must have ac-
cumulated a charge of at least 5 - (N - 6)/TL blocks.
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PROOF. Since n dies on an LQVHUW operation, at least (B - N +
1) records must have been added to n before its death.
The number of records in a node n increases only due
to either (i) an insert or update operation into n, or (ii)
because records are dumped to it by a sibling block
(i.e., the sibling block does &DVH�� of GHOHWH). From
Lemma 5.3, every record dumped into n by (ii) brings
in a charge of at least 1/TL block. Also, each version
operation brings in a charge of 1/TL block. Hence, n
will accumulate a total charge of at least (B - N + 1)/TL
= 5 - (N - 6)/TL blocks before it dies. �

COROLLARY 5.5. A node that dies on an LQVHUW must have ac-
cumulated a charge of at least one block on its death.

PROOF. Every node is created with no more than TH = 4TL + 4
records (Invariant 1, Section 3.1). Hence, in Lemma
5.4, since N £ 4TL + 4, the charge accumulated by the
node is at least 5 - (4TL + 4 - 6)/TL = 1 + 2/TL > 1
block. �

LEMMA 5.6. Let n be a two-node that is created by an LQVHUW
and dies on an LQVHUW. When n dies it must have accu-
mulated a charge of at least two blocks.

PROOF. Since n is a two-node, there are two cases to con-
sider: either n   was created by &DVH�� or by &DVH�� of
procedure LQVHUW. Let N be the number of records
with which n was created. If n is created by &DVH��,
then N £ (B/2 + 1). From Lemma 5.4, n   will accumulate
a total charge of at least 5 - (B/2 - 5)/TL = 5/2 +
5/2TL > 2 blocks by the time it dies.

If n is created by &DVH��$ of LQVHUW, we argue as
follows. The total number of records contributed by
the parent of n is less than 2TL . Let the number of rec-
ords contributed by the sibling block involved in the
merge (call it m) be x. These (2TL + x) records are split
evenly into two blocks. Hence, N < (2TL + x)/2 + 1 =
(TL + x/2 + 1) records. From Lemma 5.4, when n dies
it will have accumulated a total charge of at least
5 - (TL + x/2 - 5)/TL = 4 - (x - 10)/2TL blocks.

If x £ TH = 4TL + 4, then the accumulated charge is
at least 4 - (4TL - 6)/2TL = 2 + 3/TL blocks. If x > TH,
let x = TH + y, y > 0. Then, the charge accumulated
by n will be 2 + 3/TL - y/(2TL ) blocks. Since no node
is created with more than TH total entries, at least y
insert or update operations (or record dumps) must
have been done to m before it is merged. Hence,
the charge equivalent to y/2 version operations
can be inherited by each of the two nodes created
by the merge. Therefore, when n is created it in-
herits a charge of at least y/(2TL ) from the sibling
block that is killed. The total charge brought in by
version operations to n plus the inherited charge is
therefore 2 + 3/TL - y/(2TL ) + y/(2TL ) > 2 blocks. �

LEMMA 5.7. Let n be a one-node that is created by &DVH�� of
GHOHWH and dies due an LQVHUW. When n dies, it must
have accumulated a charge of at least two blocks.

PROOF. Since n is created by &DVH�� of a GHOHWH opera-
tion, n is created with exactly 2TL records. From

Lemma 5.4, since N = 2TL , when n dies, it must have
accumulated a total charge of 5 - (2TL - 6)/TL = 3 +
6/TL > 2 blocks. �

LEMMA 5.8. Let n be a one-node that is created by &DVH�� of
procedure GHOHWH, and dies due to an LQVHUW. When n
dies, it must have accumulated a charge of at least two
blocks.

PROOF. From Corollary 5.5, n will accumulate a charge of
one block between its creation and death. We show
below that n will inherit one block of charge from the
sibling block that was killed when n was created, for a
total of two blocks. Let b be the parent of n, and let a
be the sibling block that was killed. We show that a
can transfer one block of charge to n. The proof is by
induction on the number of sibling blocks that are
killed on deletes (i.e., by &DVH��).

%DVLV� Let a  be the first sibling block to be killed
by &DVH�� of a delete operation. By the definition of
&DVH��, the total number of records in a  exceeds
(TH + 1). There are two cases to consider, depending
on whether a   is a two-node or a one-node.

Case 1: a  is a two-node. Since a  is the first sibling
block to be killed by &DVH�� of GHOHWH, a   itself must
have been created by an LQVHUW or by &DVH� � of
GHOHWH. Therefore, when a  is created it has no more
than B/2 + 1 records (Invariant 1 in Section 3.1). Since,
when it is killed it has more than TH + 1 records, at
least TH + 1 - (B/2 + 1) + 1 = (TH - B/2 + 1) records
must be added to it. These records will be made up of
either version operations (inserts and updates) or re-
sult from some other node dumping its records to a . In
either case, each record brings in a charge of at least
1/TL blocks to a . Hence, when a  dies, it must have
accumulated a total charge of

       T B
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=
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       3 / 2 +  5 / 2
>  1 block .  
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Case  2: a  is a one-node. In this case, consider the
path of one-nodes from a  up the tree to the first two-
node, d, in the path.2 If d is created and dies due to an
LQVHUW, then by Lemma 5.6 (and the fact that d
died into a one-node), it has an excess capacity of one
block, which n can inherit from a . Since the death of a
terminates the chain of nodes starting from d, there will
never be any further requests for charge from any
nodes on this path.

If d is created on an LQVHUW and dies on a GHOHWH,
then either all nodes in the path from d to a  are
created by deletes, or at least one node in this path is
created on an insert. In the first case, note that all of
these nodes (including a ) must be created by &DVH��
of GHOHWH (n is the first node created by &DVH�� of
GHOHWH), and hence are created with 2TL records.
When a  is killed by n due to Case 2 of GHOHWH, it

2. If a node corresponds to a sibling block, then it must have an ancestor
in the tree that is a two-node.
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must have more than TH + 1 total records. Hence, at
least TH + 1 - 2TL + 1 records must be added to it, in-
curring a charge of

       
T T

T
T

T
H L

L

L

L

--  2 +  2
=  

2 +  6
>  2 blocks.

In the second case, there will be a node that was
created on a GHOHWH and that dies on an LQVHUW, in
the path from d to a

 
. Consider the first such node in

the path. This node must also have been created by
&DVH� � of GHOHWH. By Lemma 5.7, this node will
have an excess capacity of one block (since it died into
a one-node), which can be inherited from a

   
by n.

In either case, one block of accumulated charge can
be inherited by n   when a

   
is killed.

,QGXFWLYH�6WHS� Assume the lemma is true for
first n sibling blocks that are killed on a delete. We
will show it is true for the (n + 1)th such sibling block,
say a

 
. Once again, let d denote the first two-node en-

countered in the path from a
   
up the tree.

If a
   

is a two-node or if a
   

is a one-node such that
none of the nodes in the chain from d to a

  
was created

by &DVH�� of GHOHWH, then the arguments of the base
case can be used to show that the lemma holds for a

 
.

If not, find the lowest node in this path (closest to
a) between d and a

  
that was created by &DVH�� of the

GHOHWH operation. From the induction hypothesis,
this node has an excess charge of one block
(inherited by it from the sibling block that was killed
when it was created). This charge would not have
been used for anything until now (by Lemma 5.2 and
Corollary 5.5, every node along a chain of one-nodes
generates enough charge to always pay for its one
child, without using any inherited charges) and can
be inherited from a

  
by n. �

LEMMA 5.9. Let n be a one-node created by an LQVHUW and dies
due to an LQVHUW. When n dies, it must have accumulated
a charge of at least two blocks.

PROOF. Let n
   be the one-node created by an LQVHUW that

must create two new blocks on its death. By Corollary
5.5, n can pay for one child using the charge brought
in by version operations done (or records copied) to
it. For the second child, n will utilize unused charge
accumulated by one of its ancestor nodes. The proof is
similar in spirit to that of Lemma 5.8.

Consider the path of one-nodes from n up the tree
until the first two-node, d

 
. If d was created and died due

to an LQVHUW, it has an excess unused charge of one
block (see Lemma 5.6), which can be used by n. (The
only time a two-node will not be found is in the degen-
erate case where all splits from the start have created
only one-nodes; in this case, the excess reserve of the
root node can be used; note that this can happen only
once, since this operation is creating a two-node.) If not,
then d must have died due to a GHOHWH, and there must
be at least one node on the path between d and n that
was created on a GHOHWH and died on an LQVHUW. By
Lemmas 5.7 and 5.8, such a node has a reserve charge of
one block, sufficient to cover n ‘s deficiency. �

THEOREM 5.10. The number of blocks required by the index nodes
of 7 in the worst case is less than 50 N/(B - 5)(B - 15),
after any sequence of N version operations.

PROOF. The space analysis for the index levels is similar. Let
B¢ = B - 5. Consider the first level of index blocks,
immediately above the data blocks. For every data
block created, one new index record is created (call it
a type 1 record). Furthermore, an index record is cre-
ated to point to an already existing block (call it a type
2 record), whenever the smallest key of a data block is
copied in &DVH��% of LQVHUW, and &DVHV�� and �
of GHOHWH. The number of type 1 index records cre-
ated is 5N/B¢. To bound the number of type 2 index
records, one new record can be sent up on every block
underflow, and on every block overflow that satisfies
the conditions of &DVH��% of LQVHUW. Now, assume
that N1 of the N version operations were to blocks that
underflowed, and the remaining N - N1 to blocks that
overflowed by &DVH� �% of LQVHUW. Since under-
flows can occur only after TL delete operations, at
most N1 / (TL ) type 2 index records can be created by
underflows. For a type 2 index record to be created by
&DVH��% of LQVHUW, there must have been at least
B - TH + 1 inserts, i.e., again at least TL version opera-
tions. Hence, at most (N - N1)/TL such type 2 records
are created. The total number of type 2 records cre-
ated is N1/TL +(N - N1)/TL = N/TL . Hence, the total
number of type 1 and type 2 index records created at
the first index level is at most 5N/B¢ + 5N/B¢ =
10N/B¢. The analysis for data blocks above then
shows that the index blocks at this level will be at
most 5/B¢(10N/B¢).

A similar situation holds at every index level. At
level l ³ 1, the number of type 1 index records equals
the number of blocks at the next lower index level,
l - 1. The number of type 2 index records will, by an
argument similar to that above, be no more than this
quantity. Thus, the number of blocks at index level l
equals 5/B¢ * 2 * [blocks required at level l - 1], which
is [blocks required at level l - 1] * (10/B¢) (level 0 cor-
responds to data blocks). Therefore, the total index
space in blocks is at most

5
1

N B B N B B

B

i

i

log Nw

logwN
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¢ ¢

=
å2 7 2 710 / = 5 / * (10 / ) *

 [(1 -- (10 / ) ) / (1 -- (10 / B ))].

Assuming B¢ > 10, we get a bound of 50N/B¢(B¢ - 10). �

6 SIMULATION RESULTS

A simulation program was developed to compare the stor-
age utilization in the average case against the worst-case
analysis presented in Section 5 and to determine the per-
formance of typical queries. As is usual in such studies, we
make the assumption that the keys are uniformly distrib-
uted, and that on an update or a delete operation each rec-
ord with a unique key is equally likely to be chosen [14].

The following parameters were used in the simulation: p,
q, and r, which are the probabilities of an insert, an update,
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and a delete operation, respectively, and the block size B.
The block size was fixed at 25 records for the results re-
ported here. We varied the block size and noticed that in
general smaller blocks performed better than larger ones.
Beyond a block size of 25, the performance did not change
significantly. Hence, 25 was chosen since we were able to
obtain stable results with reasonable running times for the
simulations. Insert, delete and update probabilities were
varied between 0 and 1 subject to the constraints p + q + r = 1
and p ³ r. Note that p must be greater than r for the system
to reach a steady state; otherwise, the number of live blocks
will ultimately fall to one. The database was initialized with
1,000 records; this was followed by 50,000 version opera-
tions, i.e., inserts, deletes, or updates with probabilities p, q,
and r, respectively, as mentioned above. Note that the ini-
tial records will occupy about 55 blocks.

We report the utilizations of the data blocks of 7, which
require the most storage in the MVAS. In particular, we
report the Single Version Current Utilization (SVU) and the
Total Version Utilization (TVU) defined below (SVU meas-
ures the average number of live records in a data block, i.e.,
the occupancy of the current database; TVU measures the
average space cost incurred by each version operation):

x� 698 = (Number of Inserts – Number of Deletes)/(B *
Number of live blocks)

x� 798 = Version Operation Number/(B * Total number
of blocks)

Fig. 5 is a plot of the Single Version Utilization for differ-
ent values of p, q, and r. For r = 0 (i.e., no deletes), the SVU
is the same as that of a Write Once B-Tree [5]. The rising
trend of SVU with decreasing numbers of deletes is to be
expected, since a delete reduces the number of live records
in a data node, without freeing up any storage. Updates do
not change the number of live records but do increase the
number of live blocks, thereby explaining the rising trend
of SVU with decreasing numbers of updates. In fact, using
the analysis of [14] for 100 percent updates the utilization
should be 4/5 * ln2 = 0.56, which agrees with the experi-
mental value. At 100 percent inserts, the live nodes form a
B+-tree whose average utilization is ln2 = 0.693, which
matches our experimental result.

Fig. 6 shows TVU for different ranges of p, q, and r. Note
that for r = 0, the utilization is roughly 0.4 and increases to
0.75 as the percentage of deletes increases. This is to be
compared with the worst-case utilization of 0.2 derived in
Section 5 showing that the worst-case bound is very pessi-
mistic and supports the practicality of this method.

Direct comparison with related multiversion access
structures proposed in [2], [5], [14] for the average case is
difficult, since the methods in [5], [14] do not handle deletes
and no experimental results are presented in [2].

For query performance, we make the same uniformity
assumptions that we made when measuring storage utiliza-
tion, and the same initialization procedure. We evaluated the
query performance at two extreme situations: (i) insert prob-
ability 0.1 and update probability 0.8 (high updates), and (ii)
insert probability 0.8 and update probability 0.1 (high inserts).
From Fig. 6, the first situation has better storage utilization.

The experimental procedure was as follows. For the

snapshot query a time t is chosen uniformly between 1 and
the version number and a snapshot at time t is found. This
process is repeated 100 times for each version number, and
the averages are reported. For the time-range query, the
lower time t1 is chosen as in the snapshot query and the
higher time t2 = t1 + range. Note that t2 can exceed the cur-
rent version number but it does so rarely (especially for the
lower ranges).3 As a consequence, the true time range of the
query is smaller than the nominal value (t2 - t1), and the
number of blocks actually accessed will be less than that
suggested by the nominal time range. This process is also
repeated 100 times and the averages are reported. For the
key-range query, the lower key is chosen uniformly be-
tween 1 and 106 (this is the entire range of keys), and a time
is chosen uniformly between 1 and the version number. The
higher key equals the lower key plus range. Again the
higher key can exceed the highest key in the database and
does so fairly often at the higher ranges. As in the time-
range query, the actual key range (and number of accessed
blocks) will be less than the nominal key range specified in
the query. The keys are chosen 1,000 times for each version
number and, for each choice of keys, the time is chosen 10
times, and the averages are reported.

Figs. 7 to 11 show the simulation results of different que-
ries. For the key-range query, the number of blocks ac-
cessed depends on the range, reaching a maximum of about
50 blocks for the low insert situation when the query range
encompasses the entire key range. For the high insert situa-
tion (Fig. 8), the number of blocks increases monotonically
with the version number as expected, and the slope in-
creases with increasing key range. For the time-range query
when the size of the database is steady (i.e., probability of
insertion equals probability of deletion), the query time is
relatively insensitive to the version number as expected.
Note that for the time range of 10,000 at 10,000 version op-
erations, the true range will be smaller than the nominal
range almost all of the time. This explains the low number
of block access for this time range in Fig. 9. This effect de-
creases with increasing version number.

The apparent large difference between the performance
of the key range and time range queries for a given num-
ber of version operations is a direct consequence of the
fact that the key space (between 1 and 106) is much larger
than the maximum time range (1 ... 50,000). Thus, a time
range query of a given interval (say 5,000) will translate
into retrieving far more records than a key range query
with the same interval. When ranges are adjusted so that
both types of queries have the same output size, then both
queries are comparable. Note that the database is initial-
ized with 1,000 records before version simulation begins.
Hence, at least 1,000/(25 * 0.5) = 80 block accesses are re-
quired just for these records alone. Moreover, the imple-
mentation of the time range query in our simulation
studies can be optimized further. We chose a simple im-
plementation in which the time range query for the inter-
val [t1, t2] is implemented by (i) a snapshot at t1, and (ii)
then a search for the lowest key at t1 is done followed by

3. We allow this to happen because, in practice, one does not generally
know how many operations have been done on the database or even the
range of keys that are present.
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accessing the chain of data buckets until a bucket with
timestamp higher than t2 is reached. There is a significant
overlap between the bucket accesses of (i) and (ii), which
can be eliminated by accessing the chain of data buckets
starting from the highest timestamp data bucket accessed
by the snapshot query at t1.

Finally, the performance of the snapshot query is rela-
tively stable for a steady-state database, and increases with
time for a growing database (insert probability greater than
delete probability), as shown in Fig. 11. Theoretically, the
block accesses for the snapshot query (which is just the key

range query with the entire range of keys at a certain time)
and the key range query for the largest range should be
almost the same. The reason for the difference between
Figs. 8 and 11 is that the true key range for a key-range
query is less than the nominal range, due to the random
choice of the initial key value}as described earlier. Hence,
the accesses are higher for the snapshot query and lower for
the key-range query. The snapshot query performance is as
expected in the case of a growing database, since the num-
ber of live records at time t increases linearly with time.

Fig. 5. Single version current utilization.

Fig. 6. Total version utilization.
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7 INTEGRATING ACCESS LISTS INTO MVAS
In this section, we describe the augmentation of the MVAS with
access lists to improve the performance of key-history queries.
The trade-off is a small increase in the amortized time for ver-
sion operations necessary to maintain the associated structures,
although it is still logarithmic in the size of the current database.

The access list (denoted by &-list) is made up of a collec-
tion of blocks that contain data records clustered by the key
attribute. The data nodes of the MVAS and the blocks of &-
list are linked together by two-way pointers as discussed

below. The pointers from the MVAS are used as entry points
into &-list; the backpointers from &-list are used to locate
records in the data nodes of MVAS that must be updated
when the address of a &-list block changes. Fig. 12 shows the
organization of the data nodes of MVAS and &-list. In the
example, there are three MVAS data nodes (numbered 1, 2,
and 3) and two &-list blocks. Each data node and &-list block
can hold five records. Each record in Fig. 12 is represented by
three fields: a key, the start time, and a pointer. The record
with key $ and start time �, for instance, is shown as (A, 2).

Fig. 7. Results for the Key Range Query (insert prob. 0.1, update 0.8).

Fig. 8. Results for the Key Range Query (insert prob. 0.8, update 0.1).
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The blocks of the &-list are chained together in reverse
order (i.e, later versions are toward the head of the list) as
a singly linked list, so that the list is ordered by key and
successive versions of a record with a given key are clus-
tered together. In Fig. 12, for instance, the first block con-
tains the various versions of the records with key A ((A, 2)
and (A, 7)), and key B ((B, 5)). The second block contains
the different versions of keys C and D. This is similar to
access lists proposed in [1]. Two major differences are that
here the access points into &-list are from the data nodes of
MVAS, and secondly, the maintenance of the &-list is com-
plicated, since nodes of the MVAS will split and merge as
they overflow and underflow.

A record in a data node of MVAS points to either a
block in &-list directly, or indirectly through another
MVAS data node. For instance, record (A, 2) in node 1
points to the block in &-list that contains a copy of the
record (A, 2). However, record (A, 2) in node 2 (which is
a copy of the record in node 1) does not point directly to
the &-list, but rather to node 1 of MVAS whose (A, 2)
record, in turn, points to the &-list block containing (A,
2). This level of indirection means that if a record in &-
list is moved to another block, only one entry in MVAS
needs to be updated with the new location. To locate the
entries in MVAS that need updating, each record in &-
list has a backpointer to the data node in MVAS that

Fig. 9. Results for the Time Range Query (insert prob. 0.1, update 0.8).

Fig. 10. Results for the Time Range Query (Insert prob. 0.8, update 0.1).
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contains the record pointing to it. For instance, (A, 2) in
&-list points to block 1 of MVAS, (A, 7) to block 2, and
(B, 5) to block 1.

When a record with key K is created at time i, the tuple
áK, i ñ must be inserted into the appropriate block in &-list,
besides being inserted into the appropriate MVAS data
node. A FSWU field is introduced in the record that is in-
serted in MVAS and this field is updated with the &-list
block address (a marker indicating that it points directly to
the &-list is also made). Similarly, the entry in the &-list has
its FSWU set to point back to the MVAS node where áK, i ñ
was inserted. As the MVAS nodes overflow and underflow,

the record áK, iñ may be copied several times. Rather than
copying the FSWU value that is stored in the first copy of
áK, i ñ, a pointer to the data block containing the first áK, iñ is
stored in the FSWU field for the copies. When a block in the
&-list becomes full, it is split in a manner similar to the split
of data blocks in regular B+-trees; i.e., a new block is cre-
ated and half the keys with the lower key values are moved
to it (note that half the space in the old block is now avail-
able). The new block containing the lower subrange of keys
is linked into the &-list immediately following the over-
flowing block. The images in MVAS of these records that
are moved must have their FSWU fields updated to point to

Fig. 11. Results for the Snapshot Query.

Fig. 12. The C-list (end times are not shown).
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the new block; these records in MVAS can be identified
using the backpointers stored with each key in &-list. Note
that although this update using the backpointers may re-
quire up to B/2 node accesses in the worst case, this can
happen only after every B/2 updates or inserts, for an am-
ortized cost of one block access per update or insertion.
Since the minimum occupancy of each block in &-list is at
least B/2, so the &-list will require at most 2N/B blocks to
store N versions.

With the use of the &-list the NH\�KLVWRU\ search pro-
cedure is modified as follows. To VHDUFK for all versions of
a key K between times i and j, we first perform a key search
for K at time j in MVAS. If K is found in the MVAS data
block, we use the FSWU field to access that record in &-list,
either directly or indirectly, with an additional access of the
MVAS data node that points to the &-list block. Scan rec-
ords in &-list sequentially, in reverse time order from this
point until the version of key K with end time less than i is
found. The records obtained in this scan is the history of K
between times i and j.

The procedure above is sufficient to find all the versions
of a key K between times i and j in the absence of deletes. If
K is not found in the data block of the MVAS at j, we can
conclude that it was not created before j, and hence has no
existence in the interval i to j. However, in the presence of
deletes, the record may have been deleted before j, but may
have had several versions between i and j.

To handle this situation a sparse index similar to a
B+-tree index is built on top of the data blocks that make
up the &-list. There is an index entry for every distinct key
that is also the lowest key of a block of &-list. If a key has
several versions then the index record (if any) for that key
points to the latest version of that key. After a record has
been deleted its last version can be found by searching this
sparse B+-tree index. This index will be used for a key-
history search in the interval [i, j] only in the case that no
record with that key is live at time j; i.e., no matching rec-
ord is found in the MVAS data node. Otherwise, as noted
earlier, the FSWU field will be used to access the appropriate
&-list block. The search of the index on &-list will result in
either finding no record with that key in the &-list, or will
lead to the last version of the key before it was deleted. If
the search fails or if the last-version found has an end time
less than i, then the query output is null; otherwise, the ver-
sions with end time less than i are output by scanning the
&-list blocks.

We now derive the number of block accesses required
for the key-history query. For a key which was not current
at any time between i and j, the number of block accesses is
bounded by élogwNù + élogB/2Nù. The first term is for
searching the MVAS at time j, and the second is for
searching the sparse B+-tree index on &-list. Note that the
number of distinct keys in &-list can be anywhere between
Q(1) and Q(N), depending on the relative frequencies of
inserts and updates. For a key which was current at time j,
the number of accesses is bounded by élogwNù + 2 +
O(R/B), where R is the number of records in the output;
and for a key, which was deleted at some time between i
and j, the number of accesses is bounded by élogwNù +
élogB/2Nù + O(R/B).

The index on the &-list needs to be carefully designed
to keep the costs of version operations small. The index
must allow access to all distinct keys created from the
start up to the present time; in general, there may be Q(N)
such keys. If the index is traversed every time that a &-list
block is accessed, then the cost for version operations will
be Q(logN). For simultaneous optimality, the cost of these
operations must also be kept proportional to logNt (the
number of live records at time t). This is achieved by us-
ing two-way pointers to link the parent and child levels of
the B+-tree index. The index can be ascended from leaf to
root by following these back pointers. Back pointers are
useful here due to the differences in the insertion proce-
dures into a usual B+-tree and into this index. In a usual
B+-tree, the location of a new key is determined solely by
following the pointers from the root to the leaf of the tree.
In contrast, the location of a record that is being inserted
into &-list (the leaf level of our index) is determined di-
rectly by following pointers from the data blocks of
MVAS. There is no need to traverse the B+-tree to find the
location for the new record in &-list.

We now describe how LQVHUW, XSGDWH, and GHOHWH
operations affect the &-list and its associated index. For all
three operations, the appropriate data node in MVAS is
first accessed, and the FSWU field followed to the appropri-
ate block of &-list. A GHOHWH merely changes the end time
of the record in &-list to the present time. An LQVHUW and
XSGDWH require a new record to be inserted into the &-list.
If there is space in the block for the new record, no further
action is necessary. If not, the block overflows: A new block
is created, half the records with lower key subrange are
copied into it, the backpointer of the new block is set to
point to the parent of the overflowing block, and the new
block is linked into the &-list after the overflowing block.
Next, the nodes of the index on the &-list are updated as
follows. The parent node of the overflowing block is ac-
cessed using the backpointer. An index entry for the new
block is added if necessary, and the index entry for the
overflowing block is changed (if necessary) to reflect the
(possibly) new smallest key in that block. Overflow of the
index block is handled in a similar manner, using its
backpointers to access its parent. When an index node over-
flows and splits, the backpointers in its children must also
be updated.

Note that there must be at least B/2 LQVHUW or XSGDWH
operations for a block of &-list to overflow. An index block
at level i, i ³ 1, overflows only after (B/2)i+1 operations.
Each overflow of a block of &-list causes two additional
block accesses. An overflow of an index block causes at
most B/2 + 2 additional block accesses (one for the new
index block, one for the parent, and up to B/2 for the the
children whose parent has changed). The amortized cost of
these additional accesses is at most a constant, say c ¢ < 1, as
in the analysis in Section 3.2. Note that c ¢ is smaller than the
constant c of Section 3.2.

Finally, we determine the number of accesses required
for version operations. The cost will consist of several com-
ponents: to search the MVAS ((logwNt)), for structural
changes to the MVAS (a constant c £ 2 amortized cost per
version operation as shown in Section 3.2), to access the
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&-list (2), for making structural changes to the &-list (a con-
stant c ¢ £ c amortized cost per version operation as argued
above), and for updating the FSWU fields in MVAS when a
block in &-list overflows (amortized cost one per version
operation).

An insert or update may trigger an overflow in the &-list.
In this case, the total amortized cost is bounded by élogwNtù
+ c + 2 + c ¢ + 1 £ 6 + élogwNtù. In practice, the cost will be
even smaller because every block accessed for updating
FSWU field of records is likely to contain many records that
need to be updated. Finally, since deletes do not alter the
B+-tree index, the amortized cost for deletes is bounded
by c + élogwNtù + 2 £ 4 + élogwNtù.

8 PREVIOUS WORK

Many previous proposals in recent years have considered
the design of multiversion access structures [1], [2], [5], [6],
[7], [10], [11], [12], [13], [14], [15], [24]. We review them
briefly below. For a comprehensive comparison between
the different methods proposed for access methods for
time-evolving data, readers are referred to [18].

Ahn and Snodgrass [1] proposed the use of access lists
that permit efficient retrieval of the history of any key. They
also discuss various alternative clustering methods associ-
ated with this approach. The method provides good storage
efficiency and good time complexity for key-history que-
ries. Improved analysis of the time for AND queries on
such systems by traversing multiple chains was provided
by Manolopoulos [16]. However, snapshot queries that ask
for the state of the database at some time in the past, and
key range queries that ask for information about a range of
keys at a particular time, could require a large number of
block accesses.

The Write-Once B-Tree (WOBT) of Easton [5] has been
the basis of several multiversion access structures [2], [13].
The main emphasis of the WOBT is to implement an access
structure on write-once storage such as optical disks. The
Time-Split B-Tree of Lomet and Salzberg [13], [14] is a
clever adaptation of WOBT that uses an additional type of
block split based on time, with a view to clustering records
having the same version. This results in good space effi-
ciency as well as good time efficiency for certain queries.
The only version operations explicitly supported are LQ�
VHUW and XSGDWH, i.e., deletes are treated as a special case
of update. This can result in the present-version records
being fragmented over several blocks leading to degraded
query performance for range queries. As noted by [2], even
in the absence of delete operations, key-range search que-
ries may have poor performance, since records close in key
space at some version may not be clustered in blocks. It
may require up to Q(logBN + R) block accesses to retrieve R
records, instead of the optimal Q(logwN + R/B) achieved by
our method and that of [2]. For key-history queries, [13]
proposed using backpointers to chain together different
versions of a key. This can result in the same performance
difference (Q(R) versus Q(R/B)) in comparison with our
key-history query performance.

Recently, Becker et al. [2] proposed a data structure for
multiversion data that can handle deletes as well. This was

the first multiversion access structure that handled deletes
in a quantifiable manner, and achieved simultaneously op-
timal performance in storage, time for version operations
and times for key-range and time-range view queries. We sig-
nificantly improve the worst-case storage bound for the data
level nodes of about 10N/B reported in [2] to 5N/(B - 5).
This is achieved by a combination of using more storage-
conservative overflow and underflow policies, and coming
up with a tighter (and nontrivial) analysis. These policies
attempt to reduce storage, when possible, in two ways: by
partial copying of (copying only some) records from a
block, and by using available space in an existing block
rather than creating a new one. These new policies result in
the MVAS having the structure of a directed, acyclic
multigraph (parallel edges between nodes) rather than a
DAG as in the designs in [2], [13]. Note that [2] did not con-
sider the key-history query explicitly.

Our method is simultaneously optimal for the key-
history query as well. The time for key-history search que-
ries is Q(logwN + R/B); in contrast without the &-list the
time required would be Q(logwN + R), using the back-
pointer method of [13]. Furthermore, the time for version
operations required to maintain the additional structures is
only O(logw(Nt/B)). The designs in [1], [7] obtain optimal
query times for the key history query, but require O(N)
rather than O(N/B) storage. Our design for key-history
queries can also be incorporated into other designs, like the
Time-Split B-tree of Lomet and Salzberg [13], or the Multi-
version B-Tree of Becker et al. [2], to improve the time com-
plexity of key-history queries. However, neither of these
papers had suggested any approach to obtain optimal per-
formance for key-history queries.

Note that in our design, the time for version operations
at time t is O(logw(Nt/B)), where Nt is the number of live
records at time t. The time for query operations depends on
N, the total number of version operations. Different as-
sumptions have been made in the literature (see [18]) in this
context.

A common proposal has been to use an additional struc-
ture, root*, which is an index on the roots of the multiversion
access structure at different times. If timestamps are re-
stricted to be consecutive integers then root* can be imple-
mented as an array accessible in O(1) time, and both version
and query operations can be made to depend on Nt rather
than N. However, in this work, timestamps can be arbitrary
monotonically increasing numbers, not necessarily consecu-
tive integers. Alternatively, root* may be implemented as a B-
tree index on the roots at different times. In [2], it is assumed
that this index is stored in main memory, and no I/O is
needed to access it. With this assumption, the times for both
query and version operations are made dependent on Nt
rather than N. We do not make this strong assumption that
part of the structure is stored in memory in our paper.

A more general model allowing updates in past versions
of objects (full persistence rather than partial persistence in
the terminology of [4]) was proposed in [12]. As has been
observed previously, the structure requires Q(N) storage
(rather than optimal Q(N/B)) even when specialized for
partial persistence, and query performance is no better than
our method.
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The Monotonic B+-Tree [6] and the methods (AP, ST,
and AT trees) in [7] are an alternative approach to de-
signing multiversion access structures, based on keeping
the time and key dimensions separate. An advantage of
this approach is that insertion and update may require
only a constant number of block accesses, rather than
logarithmic required by methods which also need to trav-
erse the key space. In these methods, key-range or key-
history or time-range view queries are inefficient due to
lack of clustering along both dimensions. Two recent
methods in this class (albeit without the constant update
time) have been proposed in [20], [27]. Both improve upon
the storage requirements of [6], and [27] also improves the
query times.

Multiversion access structures for main memory data-
bases have been discussed by Tsotras and Gopinath [26].
Since these models do not consider the pagination prob-
lems associated with secondary storage, the results are not
comparable with our method.

Multiversion access structures in the innovative Postgres
system [24] and the schemes in [10], [11] are based on
two-dimensional R-trees [8]. Kolovson and Stonebraker
[10] proposed combined-media R-tree indexes (improving
the cost/performance characteristics of single-media de-
signs [5], [28]). These designs perform best for problems
exhibiting clustering in multiple dimensions (spatial struc-
tures), in contrast to a temporal application where key
value and time are usually unrelated. The SR-tree [11] ad-
dresses this problem at the expense of an increase in space
from linear to O(NlogN). While this structure also handles
deletes using a search-delete-reinsert operation, it can have
poor worst-case performance due to the search. The over-
lapping B+-tree of Manolopoulos and Kapetanakis (see the
description in [18]) performs the key and time range que-
ries optimally, but requires O(NlogN) space. The worst-case
performance of key history searches can be degraded as
blocks that do not contain the key may be accessed. In our
design, we achieve asymptotically optimal (with small as-
sociated constants) query time for all these queries, and use
only O(N/B) storage. Note that combined key-range/time-
range queries have been explicitly addressed in [11],
though not in [2] or in this paper.

9 SUMMARY

We have presented an efficient multiversion access struc-
ture for a transaction-time database, for several important
queries. Our method requires optimal storage and query
times and logarithmic update times. We permit version
operations insert, update and delete on the current data-
base. Queries to both past and present versions are permit-
ted. The following queries can be answered in optimal
query time: key range search, key history search and time
range view. The key-range query retrieves all records hav-
ing keys in a specified key range at a specified time, the key
history query retrieves all records with a given key in a
specified time range, and the time range view query re-
trieves all records that were current during a specified time
interval. Special cases of these queries include the key
search query which retrieves a particular version of a rec-

ord, and the snapshot query which reconstructs the data-
base at some past time.

The design consists of two components: an MVAS, and a
&-list with a sparse B-tree index. MVAS is a structure that
clusters together keys that are current at a given time by
their key value. &-list is a structure that clusters all versions
of a key. The two-way-linked sparse B-tree index on &-list
enables efficient processing of key-history queries. The
MVAS can be used to answer key range and time-range
view queries in optimal query time, while the MVAS in
conjunction with &-list and the sparse index are used to
obtain optimal query performance for the key-history
query. The time required to update all the components for
all three version operations is logarithmic (amortized) in
the size of the current database, matching the lower bound
for the key-range query.

The closest design to ours previously was the multiver-
sion B-tree of Becker et al. [2]. The MVAS of this paper
improves significantly upon the storage requirements of
their design. This is obtained by using new storage-
conserving policies for block overflows and underflows.
The new policies attempt partial copying of a block (saving
on the number of new copies created) and using space in an
existing block (rather that creating a new block). We pro-
vide a nontrivial analysis of the storage required using
these policies, and are able to obtain a worst-case storage
bound of 5N/(B � 5) data blocks to hold N versions. For
comparison, the earliest design of this category due to
Easton [5] had a worst-case storage of about 4N/B, but did
not handle deletes. The bound in [2] is about 10N/B.

The second contribution of this paper is to design a
structure to handle the key-history query in optimal query
time, and logarithmic update. Previous designs [1], [7]
achieved optimal query times but required significantly
more storage (O(N) versus O(N/B)). Our design can also be
incorporated in the Time-Split-B-Tree [13] as well as Multi-
version B-tree [2] to improve the performance of key-
history queries. Finally, simulation results indicate that the
MVAS design achieves good performance in practice.
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