
Brief Contributions__

An Efficient NAND Flash File System for
Flash Memory Storage

Seung-Ho Lim, Student Member, IEEE, and
Kyu-Ho Park, Member, IEEE

Abstract—In this paper, we present an efficient flash file system for flash memory

storage. Flash memory, especially NAND flash memory, has become a major

method for data storage. Currently, a block level translation interface is required

between an existing file system and flash memory chips due to its physical

characteristics. However, the approach of existing file systems on top of the

emulating block interface has many restrictions and is, thus, inefficient because

existing file systems are designed for disk-based storage systems. The flash file

system proposed in this paper is designed for NAND flash memory storage while

considering the existing file system characteristics. Our target performance

metrics are the system booting time and garbage collection overheads, which are

important issues in flash memory. In our experiments, the proposed flash file

system outperformed other flash file systems both in booting time and garbage

collection overheads.

Index Terms—Flash file system, NAND flash memory, flash translation layer,

scan, garbage collection.

Ç

1 INTRODUCTION

FLASH memory has become an increasingly important component
in nonvolatile storage media because of its small size, shock
resistance, and low power consumption [1]. In nonvolatile
memory, NOR flash memory provides a fast random access speed,
but it has a high cost and low density compared with NAND flash
memory. In contrast to NOR flash memory, NAND flash memory
has the advantages of a large storage capacity and relatively high
performance for large read/write requests. Recently, the capacity
of a NAND flash memory chip became 2GB and this size will
increase quickly. Based on the NAND flash chip, a solid state disk
has been developed and this can be used as a storage system in
laptop computers [2]. Therefore, NAND flash is used widely as
data storage in embedded systems and will also be used for PC-
based systems in the near future.

NAND flash memory chips are arranged into blocks; each block

has a fixed number of pages, which are the units of read/write. A

page is further divided into a data region for storing data and a spare

region for storing the status of the data region. In first generation

NAND flash memory, the typical page size was 512 bytes, the

additional spare regionwas 16 bytes, the block sizewas 16 KB, and it

was composed of 32 pages. As its capacity grew, the page size of the

next generation became 2KBwith an additional 64 bytes in the spare

region and the block size became 128 KB. Due to flash memory

characteristics in the form of Electrically Erasable Read Only

Memory (EEPROM), in-place updates are not allowed. This means

that, when data is modified, the new data must be written to an

available page in another position and this page is then considered a

live page. Consequently, the page that contained the old data is

considered a dead page. As time passes, a large portion of flash
memory is composed of dead pages and the system should
reclaim the dead pages for writing operations. The erase
operation makes dead pages become available again. However,
because the unit of an erase operation is a block, which is much
larger than a write unit, this mismatch results in an additional
copying of live pages to another location when erasing a block.
This process is called garbage collection.

To address these problems, a flash translation layer has been
introduced between the existing file system and flash memory [3].
This block level layer redirects the location of the updated data
from one page to another and manages the current physical
location of each data in the mapping table. The mapping between
the logical location and the physical location can be maintained
either at the page level (FTL) [4] or the block level (NFTL) [5]. The
main differences between these two mapping methods are the
mapping table size and redirecting constraints; the FTL has a larger
table size, but is more flexible and efficient than the NFTL. The
advantage of these methods is that the existing file systems, such
as Ext2 and FAT, can be used directly on the flash translation layer.
However, the direct use of an existing file system has many
performance restrictions and is, thus, inefficient because the
existing file systems are designed for disk-based storage systems.
For example, the different characteristics between metadata and
data, file access patterns, and file size distributions affect the
performance of storage systems and these characteristics are
crucial for file system designs.

A more efficient use of flash memory as storage would be
possible by using a file system designed specifically for use on
such devices, without the extra translation layer. One such design
is the Journaling Flash File System 2 (JFFS2) [6]. The JFFS2 is a log-
structured file system that sequentially stores the nodes containing
data and metadata in every free region in the flash chip. However,
in the design of the JFFS2, the NAND flash memory characteristics,
such as the spare regions and read/write units, were not fully
considered and utilized. Therefore, the performance of the JFFS2
with NAND flash memory storage is reduced, especially for the
mount time and RAM footprint. The JFFS2 creates a new node
containing both the inode and data for the file when the write
operation is performed and the corresponding inode’s version is
increased by one. Therefore, the JFFS2 should scan the entire flash
memory media at the mounting time in order to find the inode
with the latest version number. Furthermore, many in-memory
footprints are required to maintain all the node information.

Another more efficient approach to using flash memory as
storage is the Yet Another Flash File System (YAFFS) [7], which is
designed specifically for NAND flash memory chips. In YAFFS,
each page is marked with a file ID and chunk number. The file ID
denotes the file inode number and the chunk number is
determined by dividing the file position by the page size. These
numbers are stored in the spare region of the NAND flash
memory. Therefore, the boot scanning time to build file structures
should only require reading of the spare region; thus, the
mounting time is faster than that of the JFFS2. However, it also
requires full flash scanning to find out the flash usage, so the boot
scanning time increases linearly along with the flash memory size.
The overall flash memory-based file system architecture is shown
in Fig. 1.

These two designs, JFFS2 and YAFFS, are effective for
considering the characteristics of flash memory and yield better
performance than the flash translation methods because the
translation layer between the file system and flash memory chip
is not present. However, in designing a flash file system, these two

906 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

. The authors are with the Computer Engineering Research Laboratory,
Department of Electrical Engineering and Computer Science, Korea
Advanced Institute of Science and Technology, Daejeon Korea.
E-mail: shlim@core.kaist.ac.kr, kpark@ee.kaist.ac.kr.

Manuscript received 21 Jan. 2005; revised 22 Aug. 2005; accepted 26 Jan.
2006; published online 22 May 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0017-0105.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

file systems hardly consider the file system characteristics, such as

the different characteristics between metadata and data and the file

usage patterns according to the file sizes. These characteristics

greatly affect the flash memory performance.
In this paper, we present an efficient NAND flash-based file

system that addresses both the file system issue and flash memory

issue. In the proposed flash file system, we first tried to store the

entire data index entries in each inode to reduce the flash scan

time. For this, each inode occupied an entire flash page to preserve

sufficient indexing space. In addition, we provide two inode

classes: direct indexing and indirect indexing. Second, we allocated

separate flash blocks for the metadata and data regions which

leads to a pseudo-hot-cold separation because metadata are hotter

than data. The hot-cold separation can reduce the garbage

collection overheads. The remainder of the paper is organized as

follows: Section 2 addresses the overall file system architecture and

specific design issues. In Section 3, we describe the flash file system

analysis in terms of a scan operation and garbage collection.

Section 4 presents the performance evaluations and experimental

results. Finally, we conclude in Section 5.

2 FLASH FILE SYSTEM

2.1 File System Design

The design goals of the flash file system, which is called the Core

Flash File System (CFFS), are determined by the different access

patterns between the metadata and data and the file usage patterns

according to the file sizes. The fundamental file system structure of

the CFFS has followed that of YAFFS [7]. In the CFFS, each inode

occupies an entire page, like YAFFS. Each inode includes its

attributes, such as its i-number, uid, gid, ctime, atime, mtime, and

so on. In addition to this, the inode stores its file name and parent

inode pointer; thus, the CFFS does not have distinct dentries in the

media. This can reduce additional flash page updates because a

dentry update is not required. For fast lookup in the directory, the

CFFS constructs the dentry in the RAM when the system is booted.

File data is stored as a chunk whose size is the same as a flash

page. Each data chunk is marked with an inode number and a

chunk number in the spare region; the chunk number represents

the file offset, so it is determined by dividing the file position by

the page size. If an inode occupied one page, it would require a

high storage capacity compared with other Unix-like file systems,

such as Ext2; however, one page per file is not a significant

overhead compared to the large data region. Rather, if several

inodes share one flash page, as in the Ext2 file system, the update

frequency of that page will increase by the number of inodes stored

on that page, thus resulting in many flash pages being consumed

because some modifications of flash pages require whole page

updates. Therefore, the effect of a one page occupation per inode

can have a similar effect to the sharing of several inodes on one
flash page.

The main feature of the CFFS is the data index entries in the
inode structure. Since an entire flash page is used for one inode,
numerous indexing entries can be allocated to point to the data

regions. For example, if we use a flash memory with a 512 byte
page size, 64 four-byte index entries can exist; if we use a flash
memory with a 2 KB page size, 448 four-byte index entries can
exist. The four-byte digit number is sufficient to point to an
individual flash page. Using these index entries, the CFFS classifies
the inode into two classes: i� class1 maintains direct indexing for
all index entries except the final one and i� class2 maintains

indirect indexing for all index entries except the final one, as
shown in Fig. 2. The final index entry is indirectly indexed for
i� class1 and double indirectly indexed for i� class2. The entry
size and related data size range is summarized in Table 1.

The reason the CFFS classifies inodes into two types is the

relationship between the file size and usage patterns. Recent
studies [14], [16] confirm that most files are small and most write
accesses are too small files; however, most storage is consumed by
large files that are usually only accessed for reading. In a Unix-like
file system, such as Ext2, a fixed inode index strategy is applied to
all files and it causes a large portion of index entries in Ext2 to be
dedicated to indirect or higher level indexing and only a few index

entries are dedicated to direct indexing. For instance, Ext2 allocates
only 12 entries for direct indexing, which represents 2.4 percent of
the entire space when the file size is 1MB, and the general
threshold of the file size between a small file and a large file is
1 MB [16]. Therefore, the probability that the file uses indirect or
higher level indexing entries is much higher, even if the file is
small. Under those circumstances, writing data will result in
additional flash page consumption because every data should be

written to a new flash page and it leads to the update of the index
information in the inode. Additional page consumption refers to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006 907

Fig. 1. Flash memory-based file system architecture.

Fig. 2. The different Inode Index Modes between i� class1 and i� class2 in

CFFS.

TABLE 1
Inode Index Mode and File Size Range

the pages consumed due to updating the inode. We note that the
number of additional flash pages consumed due to updating the
inode index information is proportional to the degree of the
indexing level. This phenomenon is similar in the case of FAT, in
which additional file allocation table and dentry updates are
required. When a small file is accessed in the CFFS, the additional
flash page consumption is only the inode page itself because most
small files are in i� class1 and have direct indexing entries.
However, each writing of a large file consumes two additional
pages because large files are in i� class2. For i� class2, writing
any entry in the indirect indexing entries causes additional page
consumption due to updating the indexed page, which contains
the real pointers of data. According to recent research results [14],
[16], most files are included in i� class1 and most write accesses
are concentrated in i� class1 files in the CFFS. Most operations for
large files are read operations and inode updates are rarely
performed, so the overheads for indirect indexing in i� class2 files
are insignificant in the CFFS.

In allocating flash memory blocks, the CFFS writes metadata
and data in separate flash blocks with no mixture of the two in a
single flash block. The flash blocks are classified into inode-stored
blocks, data blocks, and free blocks. By doing this, we can construct
the file structures by scanning only the inode-stored blocks when
the system boots because the inode has its data index information.
The only information required is where the inodes are stored in the
flash blocks. To find this, we keep the inode-stored block list in the
first flash memory block, called the InodeMapBlock. As shown in
Fig. 3, the InodeMapBlock consists of an unmount flag (UF), a total
number of inode-stored blocks (NIB), the required number of
pages to store the inode-stored block list (NP), and the actual
inode-stored block list information. The UF, NIB, and NP are
stored in the spare region of the InodeMapBlock. For integrity,
these are repeated through all the pages. The unmount flag
indicates that the file system was unmounted cleanly at last
unmounting, so the InodeMapBlock contains valid information.
The NIB and NP identify how many flash blocks are used for
inodes and determine how many pages in the InodeMapBlock

should be read. The data region of each page stores the actual
inode-stored block list information. We allocated two bytes of
space for the block numbers. A two-byte digit number is sufficient
to represent the block number. Because a two-byte offset is strictly
increased, one page is entirely consumed when (page size)/2
blocks are allocated for the inode. If the entire data region is
consumed to store the list information, the next page can be
allocated to store the remaining information. The maximum
number of blocks that InodeMapBlock can point is (# of pages) x
((page size)/2), which is sufficient to cover all blocks because,
currently, most high capacity flash memory contains a maximum
of 32,768 blocks. In fact, the inode-stored blocks are much less
than the maximum because fewer blocks are used for inodes
and most blocks are allocated to store real data. In the main

memory, the InodeBlockHash structure is maintained to
identify the inode-stored blocks. It is constructed at mounting
by reading the InodeMapBlock and continues until the file
system is unmounted. The hash key is a simple module
number of the InodeBlockHash structure. The management of
this is a simple: insertion for a newly allocated block and
deletion for a block reclaimed for garbage collection. That is, if
a new allocation is required for an inode write, one block is
removed from the free block list and inserted into the
InodeBlockHash structure or, when garbage collection is
performed and the reclaimed block is an inode-stored block,
deletion from the InodeBlockHash structure occurs.

At unmounting, the InodeBlockHash should be written to the
InodeMapBlock using the UF for a fast scan at the next mount. For
that, the InodeMapBlock is erased immediately after the end of
mounting. Because the InodeMapBlock is erased once per
mounting, it is rarely erased compared with other blocks. There-
fore, the InodeMapBlock does not wear out and this ensures the
wear-leveling property. However, if the file system is not
unmounted cleanly, the InodeMapBlock has useless information
and cannot be used. Even if the information is useless, the CFFS
mount is faster than others because it can only read the inode-
stored blocks by scanning all flash medium.

2.2 Scan Operation at Mounting

While mounting the flash file system, a flash memory scan is
required to obtain the flash usage and, accordingly, the file system
usage. In the CFFS, scanning involves a two stage operation. First,
an InodeMapBlock scan is performed in which the first flash block
is checked. If the UF in the InodeMapBlock is set, which means the
file system was cleanly unmounted last time, the InodeMapBlock

contains valid inode-stored block list information. Otherwise, the
file system may have crashed due to an abrupt power failure or
system failure at the previous unmounting time, so the
InodeMapBlock should not be used in mounting because the last
version of the InodeMapBlock is always written immediately before
the file system is cleanly unmounted. This checking is repeated
while the pages containing the partial inode-stored block list are
read. After the InodeMapBlock scan is complete, a second stage is
performed. During the second stage, the BlockInfomation and
PageBitmap structures are used tomaintain information about each
block state and each page usage within a block, respectively. If the
InodeMapBlock is valid and the InodeBlockHash is constructed
during the first stage, the inode-stored blocks are scanned through
the InodeBlockHash. For each page within an inode-stored block,
we identify whether the page contains valid inode or not by
reading the spare region. If it contains valid inode, we read the
page with the CRC check and allocate an inode cache structure in
the main memory to construct a directory relation. The allocated
inode cache structures are connected to each other to make
directory structures using their parent, sibling, and children
pointers. After checking the attributes, the data pages are checked.
For the i� class1 inodes, we check the data pages directly using
direct index entries and mark them to the BlockInfomation and
PageBitmap data structures. For the i� class2 inodes, we check
the data pages with the traverse indexed pages through the
indirect index entries, which requires more page scans. Each
indexed page is checked and the BlockInfomation and
PageBitmap are updated accordingly.

If the InodeMapBlock is not valid, which means the file system
was not cleanly unmounted the last time, we must check every
block to find whether it stores inodes or not to find the inode-
stored blocks. If the block being checked is an inode-stored block,
the same operation as described above is applied. If it is not, the
block does not need to be scanned. Because block checking is
performed only by the reading spare region of the first page for

908 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

Fig. 3. The InodeMapBlock management.

each block, the scanning operation is much faster than that of other
flash file systems.

2.3 Operation

During the scan operation, we are able to categorize the blocks into
three types: inode-stored blocks, data blocks, and free blocks. In
addition, we can check which pages have valid inodes in the
inode-stored blocks and which pages have valid data in the data
blocks. This is sufficient to make a normal file operation because
the CFFS is based on the principle of a journaling mechanism for
each block write. This means that if some blocks are not checked in
the BlockInfomation structure, they are not allocated to be either
an inode-stored block or a data block: Thus, these blocks are
considered free blocks. Similarly, if one or more pages are not
checked in the PageBitmap, they are considered invalid pages, i.e.,
dead pages. The remaining task is to make the starting block
pointer and page pointer for the first write operation after the
system boots.

For each file, because the inode has information on the location
of its own position and its data positions in the flash memory, the
CFFS does not need to maintain all data pointers for every file in
memory, unlike other flash file systems. This can reduce memory
footprints; however, additional inode page reads should precede
the data read/write operations, which affect the user latency. To
compensate for this, the CFFS manages a cache list for files that are
frequently accessed. The files which are in the cache maintain their
data index information in the main memory. By doing this, the
CFFS can locate the data region without additional page readings
for inode if the file is in the cache list. The cache size and
management is a performance configuration parameter for the
trade-off between the memory footprint and read/write latency.

File operation according to the inode classification is as follows:
When a file is created, the file is first set to i� class1 and it is
maintained until all index entries are allocated for the file data. As
the file size grows, the inode class is altered from i� class1 to
i� class2 when there is no indexing pointer in i� class1. This
alteration can be performed naturally during runtime with little
cost because every inode update should be written to another clean
region in the flash memory. The only thing that remains to be done
is the reorganization of the indexing entries from direct to indirect
indexing.

2.4 Garbage Collection

Unlike the disk-based file system, a flash memory-based file
system is free from seek latency and is expected to show
comparable performance for both sequential and random read
operations. The write performance, on the other hand, is affected
by additional page consumption and garbage collection. A flash
memory storage system cannot be efficient without the support of
a good garbage collection operation. Garbage collection should
occur when a block contains only dead pages or there are
insufficient free blocks available. During this process, any live
pages in the reclaimed block must be copied to an available space.

Previous research has focused on the hot-cold aware garbage
collection policies [9], [13]. Hot data represents data that has a
higher probability for updates in the near future than cold data.
Pages that store hot data usually have a higher chance of becoming
dead pages in the near future. From the file system’s viewpoint, it
is a well-known fact that metadata, i.e., inodes, are much hotter
than regular data. Anytime and anywhere, a write operation of a
file results in its inode being updated to maintain file system
integrity. Even when there is no writing of data, the inode
sometimes should be modified for several reasons: file movement,
renaming operations, file attribute modifications, and so on. In a
sense, the CFFS already uses a pseudo-hot-cold separation by
allocating different flash blocks for metadata and data with no

mixture between these two in a single block and with low
maintenance overheads. Therefore, we can perform efficient
garbage collection by separating the metadata and data in different
flash blocks. The relatively “hot” inode pages are stored in the
same block so that the amount of copying of hot-live pages can be
minimized. Garbage collection is also different according to the
type of reclaimed block. If a reclaimed block is an inode-stored
block, the live inode pages in the block will be copied to other
available inode-stored blocks; if the reclaimed block is a data block,
the live data pages will be copied to other available data blocks.

According to our proposed flash block separation and garbage
collection policy, selecting an inode-stored block for reclamation
seems to be more frequent; thus, there seems to be too much erasing
of inode-stored blocks comparedwith data blocks and this may lead
to a wear-leveling problem. To avoid this problem, we set a weight
value for each block when the block is selected to be erased. If the
block is allocated as an inode-stored block one time, it will be
allocated as a data block the next time by using the weight value.

3 SYSTEM ANALYSIS

In this section, we present the results obtained from our flash file
system analysis. First, we describe the scan operation. We assume
that the file system has a total of n files and each file occupies
S pages on average. For each page, the read time of the data region
and spare region is denoted by Td and Ts, respectively. Also, let p
denote the page size in bytes. From the above, the total allocation
of the file system in flash memory is approximately nS pages. For a
comparison, we analyze the scan time of YAFFS. Let us denote the
scan time of YAFFS by Ty. YAFFS requires scanning of both the
metadata and data pages upon mounting. During scanning, the
inode pages are read in both the data region and spare region of
the page, while the data pages are read only in the spare region of
the page. Therefore, the time taken for nS pages to be scanned can
be expressed as:

Ty ¼ nðTd þ TsÞ þ nSTs: ð1Þ

In the CFFS, file size distribution is an important parameter
because the inode is classified by its file size. For simplicity, we
assume that i� class1 files occupy S1 flash pages on average and
the portion of i� class1 files is �. Also, i� class2 files occupy S2

flash pages on average and the portion of i� class2 files is 1-�. For
i� class1 files, only the inode page scans are required. For i�
class2 files, each indirect indexed page should be scanned because
they have the real data page pointers. The amount of data
allocation per indirect indexed page is p=4 when each page is
indexed by a 4-byte pointer. The CFFS only scans the inode-stored
blocks, so the scan time of the CFFS, Tc, can be expressed as:

Tc ¼ n � þ ð1� �Þ
4S2

p

� �

ðTd þ TsÞ; ð2Þ

where

S ¼ �S1 þ ð1� �ÞS2: ð3Þ

In (2), the scan time is dependent on the file number and
fraction of i� class2 files. Since most files are small and dedicated
to i� class1, � is close to 1. In general, � is about 0.8 or above.
Therefore, the second term of (2) will be small even though S2

implies many flash page reads. It is obvious that the time Tc is
shorter than Ty in most cases.

Next, we describe garbage collection. In the CFFS, we denote
the inode block by BI and the data block by BD. Accordingly, let PI

denote the inode page and PD denote the data page. The
probability of each data page being invalid for a file can be
denoted by P ðPD;kÞ, where 1 � k � S. Since every data write leads

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006 909

to an update of the inode, we can assume that the probability of
each inode page being invalid, P ðPIÞ, is higher than the P ðPDÞ for
each write operation. In each inode-stored block, let us assume that
each page has the same probability for updates. Although the
assumption that each page has the same probability is unreal, it is
meaningful that the inode-stored block has a much higher
probability to be reclaimed than the data block for garbage
collection. On the other hand, if the reclaimed block has valid
pages, the pages should be copied to an available flash memory
region. Therefore, the overhead of the garbage collection is the
number of valid pages in the reclaimed block and is conversely
proportional to the reclamation probability.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the CFFS flash file
system. We compared the CFFS with JFFS2, YAFFS, and other flash
memory-based storage systems, including FTL and NFTL. Ext2
and FAT are built on the FTL and NFTL block level device drivers
because they cannot operate by themselves. We implemented the
CFFS in a Linux OS with kernel version 2.4.18. The experimental
platform consists of an embedded Linux system platform with a
200 MHz ARM processor and 64 MB of main memory. The NAND
flash memory used in this experiment is K9S1208VOM [2] SMC
NAND flash memory. The NAND flash memory system environ-
ment for experiments is described in Table 2.

At first, we compared the scan time. In the scanning operation,
flash file systems are required to obtain the file system level
information, so scan time varies with the file system usage. We
filled the file system with various data whose distribution was
from several bytes to several MB. Many files were copied to a flash
medium to fill the storage. The distribution was followed by the
general computing environment. Most files were small and, thus,
required many metadata and most storage was consumed by a few
large files. Table 3 describes the scan time for each flash-based
storage system. The first two systems are FTL and NFTL; because
these two systems are not required to obtain file system level
information, the scan time is fixed with a flash memory size. For
64 MB flash memory, the scan times are estimated to be 1.06 s and
808 ms for FTL and NFTL, respectively. The later three systems are
concerned with the flash file systems. To maintain equality
between all systems, we estimated the scan time for a file system
usage with 64 MB. As shown in Table 3, the CFFS showed much
faster scan operations than other systems. This is because the CFFS
only scans the inode-stored blocks, the small region of the flash
medium, as described in Section 2.

Next, we evaluated the garbage collection (GC) performance.
As explained in Section 2, the read operation does not cause
needless flash page consumption. Therefore, the read is not the
target performance metric. Write performance is affected by
garbage collection; therefore, the proper benchmark for evaluating
GC should have many write and create/delete transactions, which
will cause many validations and invalidations of pages and lead to
a GC operation. We used the PostMark [15] benchmark program,
which is a well-known benchmark for evaluating file systems and

is a proper benchmark for evaluating GC. PostMark creates a set of
files with random sizes within a range set. The files are then
subjected to transactions consisting of pairing of file creations or
deletions with file reading or writing. Each pair of transactions is
chosen randomly and can be biased via the parameter settings. We
ran our experiments using the configuration of 100-500 files with a
file size range of 512 bytes to 60 KB. One run of this configuration
performs approximately 1,000 transactions with equal probability
of create/delete and read/write operations. The ratio between
number of files and the number of transactions varies between
1:10, 1:3, and 1:2 for every run and the results are collected
according to the ratio. Since the purpose of our experiments is not
the comparison of the caching of the buffer cache or page cache, we
avoided the cache effect by minimizing the bdfush time.

Fig. 4 shows the write frequency distribution for each file
system test. For all figures, the x-axis shows the logical block
address with a range of 0 to 2,000 for each file system and the
y-axis represents the write counts with different ranges. One
logical block address matches one flash page and the logical
addressmeans the file system viewpoint. From the figures, Ext2 and
FAT show a high update frequency in the small narrow region; this
hot region is related to the metadata. As the file transaction ratio
becomes higher, the update frequency is higher and the region
becomes smaller. However, YAFFS and the CFFS show that the
update frequency is spread throughout the entire region of the
logical block address. The reason behind Ext2 and FAT having
higher update counts in the small region than YAFFS and the CFFS
is that several inodes or dentry lists in Ext2 or FAT share the same
flash page, that is, the density of page sharing of inodes.

From the above, we identify that, from the perspective of
NAND flash memory, the small inode size has little meaning
because the updates of other inodes in a shared page will result in
the invalidation of that page. In the cases of CFFS and YAFFS,
many update of metadata in the CFFS and YAFFS still exist in spite
of the spreading metadata update region. This is the nature of
metadata and data as we analyzed in Section 3. Therefore, our
metadata and data separation is still worthwhile for flash block
allocation. Table 4 describes the number of extra page writes per
garbage collection. As shown in Table 4, the flash file system
approaches outperform the existing general file system approaches
because the flash file system has the garbage collection algorithm
based on flash usage while considering the file system information.
In addition, the inode-data block separation method gives better
performance than YAFFS, by approximately 9 percent to 20 per-
cent, in garbage collection overheads.

Finally, we summarized the performance comparison of the
JFFS2, YAFFS, and CFFS; Table 5 presents the summary. The
results are from the experiments using PostMark with a transaction
ratio 1:2. The first item shows that the CFFS has a much faster scan
time than other systems. Second, the PostMark transaction rate
indicates the number of transactions per second performed by
PostMark, which implies the read/write throughput. In the results,
YAFFS and the CFFS give a slightly better performance than JFFS2.
This is because JFFS2 writes nodes containing both the inode and
data which cause some overheads in inode buildup and file storing.
Also, JFFS2 writes data by compression. The JFFS2 complex
operation for storing/retrieving data to/from flash memory gives
poor I/O performance. In the cases of YAFFS and CFFS, the

910 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

TABLE 2
Flash Memory System Environment for Experiments

TABLE 3
Experimental Results for Scan Operation: Comparision between FTL,

NFTL, JFFS2, YAFFS, and CFFS

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006 911

Fig. 4. Write access patterns for postmark benchmark; file transaction ratio with 1:10, 1:3, 1:2, respectively. For each ratio, Ext2 over FTL, FAT over FTL, YAFFS, and

CFFS perform postmark benchmark. (a) Ext2 over FTL for 1:10. (b) Ext2 over FTL for 1:3. (c) Ext2 over FTL for 1:2. (d) FAT over FTL for 1:10. (e) FAT over FTL for 1:3.

(f) FAT over FTL for 1:2. (g) YAFFS for 1:10. (h) YAFFS for 1:3. (i) YAFFS for 1:2. (j) CFFS for 1:10. (k) CFFS for 1:3. (l) CFFS for 1:2.

TABLE 4
Performance Comparison of Garbage Collection

for NFTL, FTL, YAFFS and CFFS TABLE 5
Comparison of Flash File Systems: JFFS2, YAFFS, and CFFS

postmark transaction rate is slightly better than JFFS2. However, the
I/O performance should be an improved performance factor in
comparison with an FTL-based system. The third represents the
total number of written pages while performing the benchmark.
When comparing betweenCFFS andYAFFS, CFFS has a largerwrite
operation than YAFFS, which is related to the writing of indirect
indexed pages for large files. This is the weak point of CFFS and this
overhead increases as the portion of large files is increased. Finally,
the extra write operation per GC is reduced by about 9 percent to
20 percent in garbage collection overhead of YAFFS.

5 CONCLUSION

In this paper, we presented a flash file system designed for NAND
flash memory storage. Unlike the disk-based file system, flash
memory-based storage is free from seek latency and is expected to
show comparable performance for both sequential and random
read operations. The write performance of flash memory is
affected by garbage collection because all written data should be
redirected to a clean page and this leads to the erase operations for
dirty blocks. The proposed flash file system, called the CFFS, uses a
pseudo-hot-cold separation by allocating the different flash blocks
for metadata and data. The metadata and data separation method
improves garbage collection performance more than in other
methods. In addition, we classified the inodes using indexing
entries: i� class1 for direct indexing entries and i� class2 for
indirect indexing entries. The CFFS allocates one page per inode,
which yields numerous indexing entries to allocate all the data
page pointers for small files, although large files are required to
use the indirect indexing method with i� class2. This inode
indexing method and metadata-data block separation results in a
fast scan time when the file system is mounted and garbage
collection is efficient.

ACKNOWLEDGMENTS

The authors would like to thank Joo-Young Hwang for support of
the design and implementation of the scheme. This work was
supported by Samsung Electronics.

REFERENCES

[1] F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J.A. Tauber,
“Storage Alternatives for Mobile Computers,” Proc. First Symp. Operating
Systems Design and Implementation (OSDI), pp. 25-37, 1994.

[2] Sansung Electronics Co., “NAND Flash Memory & SmartMedia Data
Book,” 2002, http://www.samsung.com/.

[3] “Memory Technology Device (MTD) Subsystem for Linux,” http://www.
linux-mtd.infradead.org, 2004.

[4] Intel Corp., “Understanding the Flash Translation Layer (FTL) Specifica-
tion,” http://developer.intel.com/, 1998.

[5] A. Ban, “Flash File System,” US Patent, no. 5,404,485, Apr. 1995.
[6] D. Woodhouse, “JFFS: The Journalling Flash File System,” Proc. Ottawa

Linux Symp., 2001.
[7] Aleph One Ltd, Embedded Debian, “Yaffs: A NAND-Flash Filesystem,”

http://www.aleph1.co.uk/yaffs/, 2002.
[8] R. Card, T. Ts’o, and S. Tweedie, “Design and Implementation of the

Second Extended Filesystem,” The HyperNews Linux KHG Discussion,
http://www.linuxdoc.org, 1999.

[9] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory Based File
System,” Proc. Usenix Technical Conf., 1995.

[10] M. Rosenblum and J.K. Ousterhout, “The Design and Implementation of a
Log-Structured File System,” ACM Trans. Computer Systems, vol. 10, no. 1,
1992.

[11] D. Kabushiki, “Flash Memory Card with Block Memory Address
Arrangement,” US Patent no. 5,905,993, 2001.

[12] L.P. Chang and T.-W. Kuo, “An Efficient Management Scheme for Large-
Scale Flash-Memory Storage Systems,” Proc. ACM Symp. Applied Computing,
Mar. 2004.

[13] L.P. Chang and T.W. Kuo, “A Real-Time Garbage Collection Mechanism
for Flash Memory Storage System in Embedded Systems,” Proc. Eighth Int’l
Conf. Real-Time Computing Systems and Applications, 2002.

[14] D. Roselli, J.R. Lorch, and T.E. Anderson, “A Comparison of File System
Workloads,” Proc. 2000 USENIX Ann. Technical Conf., June 2000.

[15] J. Katcher, “PostMark: A New File System Benchmark,” Technical Report
TR3022, Network Applicance Inc., Oct. 1997.

[16] A.-I.A. Wang et al., “Conquest: Better Performance through a Disk/
Persistent-RAM Hybrid File System,” Proc. 2002 USENIX Ann. Technical
Conf., June 2002.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

912 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

