
An E�cient Neuromorphic Analog
Network for Motion Estimation

Antonio B. Torralba and Jeanny H�erault

Abstract|Optical ow estimation is a critical mechanism
for autonomous mobile robots as it provides a range of use-
ful information. As real-time processing is mandatory in
this case, an e�cient solution is the use of speci�c VLSI

analog circuits. This paper presents a simple and regular
architecture based on analog circuits which implements the
entire processing line from photoreceptor to accurate and
reliable optical ow estimation. The algorithm we propose,
is an energy-based method using a novel wideband velocity-

tuned �lter which proves to be an e�cient alternative to the
well known Gabor �lters. Our approach shows that a high
level of accuracy can be obtained from a small number of
loosely tuned �lters. It exhibits similar or improved perfor-
mance to that of other existing algorithms, but with a much

lower complexity.

Keywords| Optical ow estimation, neuromorphic sys-
tems, velocity-tuned �lters, aperture problem, VLSI motion
chips

I. Introduction

Motion estimation refers to the computation of velocity
vectors (optical ow) at each pixel. In a mobile robot, mo-
tion perception can provide a range of useful information,
such as egomotion, time to collision, detection of moving
objects, 3D structure of the enviroment, ... However, in
order to be adequately estimated, these items may require
accurate measurements of optical ow.
A powerful solution for real-time processing is the real-

ization of speci�c VLSI circuits. Motion estimation algo-
rithms on silicon require a compromise between the num-
ber of pixels in the input image and the complexity of each
processing unit. Up to now, only simple motion algorithms
have been implemented using analog circuits, see [18] for a
review.
Energy-based algorithms [1], [27], [8] are known to be

robust in the face of noise and aliasing, they give reliable
measurements of velocity and they allow an easy treatment
of the aperture problem. However, due to the complexity
of implementing a battery of spatiotemporal �lters, current
VLSI motion chips use gradient-based algorithms [24], [6]
or correlation-based algorithms [12], [7], [9] as they can be
implemented within very compact circuits.
In this paper we present a new energy-based algorithm

that signi�cantly minimizes the complexity of these kinds
of methods. The reduction of complexity is due to: 1) the
use of a new wideband velocity-tuned �lter (VTF) simpler
than the narrow band spatiotemporal Gabor �lters usually
used in energy-based algorithms. 2) A simple circuit for
energy and velocity estimation. This paper focuses on the
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theorical aspects of the approach in order to give the basis
for low complexity energy-based algorithms.
The paper is organized as follows: section II presents the

model of motion and the basic theory of VTF's. Section
III introduces a simple analog network that implements a
wideband VTF using four neighbor interactions. Section
IV describes how this network is used for motion estima-
tion, highlighting the aperture problem and providing a
complete scheme for motion estimation, well tailored for
CNN analog circuits. Finally, section V shows that the re-
sults compare favourably to those of other more complex
energy-based algorithms.

II. Translational motion and the theory of

velocity-tuned filters

A basic model of motion assumes that the brightness
signal translates with constant velocity and direction. In
such a case we can write: e(x; t) = e(x�v t), where e is the
brightness function, x = (x; y)T are the spatial variables
and t the temporal variable, v = (vx; vy)T is the velocity
vector and T means transpose. By successively applying
the Fourier transform to the spatial and temporal variables,
we obtain:

E(fs; ft) = E(fs) �(ft + v
T
fs) (1)

where fs = (fx; fy)
T represents the spatial frequency vec-

tor, ft the temporal frequency, E(fs) the spatial Fourier
transform of the static brightness pattern e(x) and �(:) is
the Dirac delta distribution. The power of the signal lies on
a plane passing through the origin [27] with the equation
ft + v

T
fs = 0.

Energy-based methods use a set of �lters sampling the
frequency domain in order to detect the orientation of the
energy plane. Di�erent �lter types have been proposed in
the literature: a) spatiotemporal frequency tuned �lters
such as Gabor �lters [8], [20], [23], b) velocity-tuned �lters
[5], [26], c) space-velocity separable �lters [22], [21]. In
this paper, we will focus on the velocity-tuned �lters since
they can yield simpler architectures than the other two
approaches.
The output of a spatiotemporal �lter H(fs; ft) to a mov-

ing pattern can be writen as:

S(fs; ft) = H(fs;�vT fs)E(fs) �(ft + v
T
fs) (2)

meaning that the input is �ltered by an equivalent spatial
�lter with transfer function H(fs;�vT fs).
In order to estimate the local mean power of the �lter

output, we consider that the integration window is su�-
ciently wide the that local mean power approximates to
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Fig. 1. -3dB section of the spatiotemporal frequency magnitude of:
a) velocity-tuned �lter, the grid indicates the orientation of the
energy plane matched to the velocity-tuned �lter; b) frequency
tuned �lter, several planes maximises of the output energy.

the total mean power. For a window of in�nite size, the
output power is:

P =

Z
s(x; t) dx =

Z
�e(fs)

��H(fs;�vT fs)
��2 dfs (3)

where �e and �s are the spatial power density spectrum of
the input and output signals. Total mean power P does not
depend on time because temporal and spatial frequencies
are linked through motion.
This output power is a function of input velocity: P (v).

We de�ne a velocity-tuned �lter (VTF) for velocity vo as a
�lter with mean ouput power P (v) having a unique maxi-
mum for some input velocity v = vo, independently of the
spectral content of the input signal. Thus, the magnitude
of a VTF Hvo

(fs; ft) must have a unique maximum at
ft = �vTo fs, for any spatial frequency fs.
The transfer function of a VTF for velocity vo may be

written as:

Hvo
(fs; ft) = H0(fs; ft + v

T
o fs) (4)

where H0(fs; ft) is a VTF for to null velocity. This is a
direct consequence of the de�nition of VTF and equation
(3). Separable Gabor �lters do not verify this property as
they are frequency-tuned and not velocity-tuned. Figure
1 shows the di�erence between a wideband VTF and a
narrow band frequency-tuned Gabor �lter.

III. Velocity-tuned analog network

We are interested in �lters that can be easily imple-
mented as analog circuits. Therefore, the �lter must be
of low order to reduce connectivity. This is the case for the
analog RC network of �gure 2.a, often used in vision chips
[13], [17].
The RC network is a low-pass spatiotemporal �lter. As

shown in �gure 2.a, each output node is connected to the
input via a resistor r, to its four neighbors via resistors R
and to the ground via a capacitor C. Nodes are indexed
by the discrete spatial variables n and m. By applying the
Kircho� currents' law at the output node (n;m), we obtain:

en;m(t) = sn;m(t) + [4 sn;m(t)� sn�1;m(t)�
sn+1;m(t) � sn;m�1(t) � sn;m+1(t)] + � dsn;m(t)=dt (5)
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Fig. 2. a) RC network. b) Velocity-tuned analog network. Asym-
metrical interactions are responsible for the velocity tuning.

where  = r=R and � = rC. Equation (5) is discrete in
space but continuous in time. It can be considered as an
approximation of the continuous equation:

e(x; y; t) = s(x; y; t)�  �s(x; y; t) + � @s(x; y; t)=@t (6)

where � is the spatial Laplacian operator. Applying the
Fourier transform to equation (6) gives the transfer func-
tion of the analog network (valid for low spatial frequen-
cies):

H0(fs; ft) =
1

1 + 4�2 jfsj2 + j2��ft
(7)

Due to its low-pass spatiotemporal characteristic, the out-
put energy will be at a maximum for static inputs. This
�lter veri�es the de�nition of a �lter tuned to null velocity.
By applying equation (4), it is then possible to steer it to
an arbitrary velocity vo:

Hvo
(fs; ft) =

1

1 + 4�2 jfsj2 + j2�� (ft + vTo fs)
(8)

This low-pass function (�g. 1.a) is oriented in the spa-
tiotemporal frequency space. From the inverse Fourier
transform of equation (8), we derive the following di�er-
ential equation:

e(x; y; t) = s(x; y; t)�  �s(x; y; t) + (9)

�
�
v
T
o rs(x; y; t) + @s(x; y; t)=@t

�
where r is the spatial gradient operator. Implementation
of this �lter as an analog network demands that we re-
turn to a discrete approximation of the spatial derivatives,
the temporal derivative being implemented by means of
the capacitor. For the spatial derivatives, we use the fol-
lowing approximations: @s=@x ' [sn+1;m � sn�1;m]=2 and
@2s=@x2 ' sn+1;m � 2 sn;m + sn�1;m, and the same for
@s=@y and @2s=@y2. The distance between samples is one
spatial unit. Replacing the approximations of derivatives
into equation (10) and grouping the terms with the same
indices, we obtain:

en;m(t) = sn;m(t) + [4sn;m(t)� axsn�1;m(t) �
bxsn+1;m(t)� aysn;m�1(t)� bysn;m+1(t)] +

�dsn;m(t)=dt (10)

where:

ax = 1+
vxo�

2
; ay = 1+

vyo�

2
; ax+bx = ay+by = 2 (11)
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Fig. 3. a) Magnitude of the spatiotemporal transfer function of the
VTF (fy = 0). b) Contour diagram at -3dB and -6dB for the
transfer function obtained with the �rst order (solid lines) and
second order (broken lines) approximation of the spatial deriva-
tive.

Equation (10) is implemented by the network of �gure 2.b,
with only four neighbor interactions. The VTF is speci�ed
by 4 parameters:  = spatial scale, � = temporal scale and
v
T
o = (vxo ; vyo) = tuning velocity which are a function of

the circuit parameters; r, R, C, ax, bx, ay and by.
Due to the discrete nature of the spatial derivative in

equation (10), there is some distortion of the transfer func-
tion of the analog network with respect to equation (8). By
applying the Fourier transform to equation (10) we obtain
the transfer function:

H(fs; ft) =
1

P (fs) + jQ(fs; ft)
(12)

where j =
p�1, P and Q being the following real func-

tions:

P (fs) = 1 + [4� (ax + bx)cos(2�fx) (13)

�(ay + by)cos(2�fy)]

Q(fs; ft) = 2��ft + (ax � bx)sin(2�fx)

+(ay � by)sin(2�fy)

The spatial frequencies fx and fy are given in cycles/pixel
and the temporal frequency ft in cycles/second. The
function Q is responsible for the velocity tuning of the
�lter. For low spatial frequencies we can approximate
Q(fs; ft)=(2�� ) ' ft + v

T
o fs with vxo = (ax � bx)=� and

vyo = (ay � by)=� , which are the two components of the
tuning velocity. Using more points than in equation (10)
to approximate the spatial derivatives would increase the
range of spatial frequencies for which this aproximation is
valid. This would also increase the complexity of the �lter,
each node being connected to more than four neighbors.
When Q(fs; ft) = 0, the function P (fs) determines the

spatial frequency form of the transfer function (12). For
H being a low-pass �lter, ax, bx, ay and by verify that
ax+bx > 0 and ay+by > 0. Figure 3.a shows the magnitude
of the transfer function (12).
Figure 3.b shows the results obtained by approximat-

ing the spatial derivative with two and four points: if
the �lter is not very narrow around the plane equation
ft + v

T
o fs = 0 (low velocity selectivity), the two approxi-

mations are almost equivalent for spatial frequencies below
0.2 cycles/pixel.

x

t

x

t

Fig. 4. Spatiotemporal impulse responses of two �lters with low
velocity selectivity, left, and anotherwith high velocity selectivity,
right.

A. Stability

As B. Shi [21] has shown in a more general framework,
the network is stable if, for each spatial frequency fs, the
�lter exhibits temporal stability. That is, if in equation
(12), we replace j2�ft by s (the Laplace complex variable),
stability requires that the roots of the denominator P (fs)+
jQ(fs; s=(j2�)) = 0 for s 2 C, all lie on the open left-half
side of the complex plane. This requires P (fs) > 0, that is:
jax + bxj + jay + byj < 4 + 1=. This condition is already
satis�ed since ax + bx = ay + by = 2 as given in (11).

B. Spatiotemporal impulse response

An approximation of the spatiotemporal impulse re-
sponse of the velocity-tuned analog network can easily be
calculated by applying the inverse Fourier transform to the
transfer function (8), the low spatial frequency approxima-
tion. The result is:

hvo
(x; t) ' A(t)e�jx�votj

2=�2(t)U (t) (14)

where: A(t) = e�t=�= (4�  t), �2(t) = 4  t=� and U (t) is
the Heaviside step. The approximation is valid for a �lter
with low velocity selectivity and with a spatial bandwidth
lower than 0.2 cycles/pixel. The impulse response is a spa-
tial Gaussian signal which varies causally with time and
propagates in space with the tuning velocity of the �lter.
The amplitude of the Gaussian, A(t), decreases with time
at a rate controlled by the time constant � . The spatial
width of the Gaussian, �2(t), increases linearly with time.
At t = 0 the impulse response is a Dirac delta distribution.
Velocity selectivity refers to the sensitivity of the �lter

output to di�erences in the input velocity. High veloc-
ity selectivity requires a narrow shape around the plane
ft + v

T
o fs = 0 and is obtained by increasing the value of �

while keeping constant the other �lter parameters,  and
vo. But this increases the duration of the impulse response
and when the �lter is very selective, the �rst order approx-
imation of the spatial derivative introduces a distorsion,
giving some low energy oscillations (see �gure 4). Fur-
thermore, a longer impulse response duration would damp
short duration motions.

C. Moving input: velocity-tuned �lter

As shown in equation (2), the spatial response of a spa-
tiotemporal �lter to an input with constant velocity v

can be calculated by �ltering the input image with an
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Fig. 5. Output of a velocity-tuned analog network for an input
composed of several dots moving with di�erent velocities. a)
input image. b) Output of a �lter tuned to velocity vox = 1 and
voy = 0. Each dot presents motion blur, except that moving at
the tuned velocity of the �lter. The blurring has been exagerated
for visibility by making the �lter very selective (large value of �).
c) Squared output.

equivalent spatial �lter. The VTF in the presence of a
moving input corresponds to the spatial �lter G�(fs) =
Hvo(fs; �vT fs). If we use the low spatial frequency ap-
proximation given in equation (8) we obtain:

G�(fs) =
1

1 + 4�2 jfsj2 + j2���v
T
fs

(15)

where �v = vo � v = j�vj (cos �; sin �)T is the di�erence
between the tuning velocity and the input velocity. This is
an oriented spatial �lter in the direction of�v. For j�vj =
0 the �lter has a symmetrical response. As j�vj increases,
the spatial �lter reduces its spatial frequency bandwidth in
the direction given by the angle �. Therefore, the output
will be blurred in the direction �.
The mean output power is:

P (�v) =

Z
�e(fs) jG�(fs)j2 dfs (16)

It will be at a maximum when the �lter's transfer func-
tion G�(fs) has its greatest spatial bandwidth, i.e., when
j�vj=0. The maximum�3dB spatial bandwidth is �B =
(9:6�2 )�1=2. The mean output power will also be max-
imized if �v

T
fs = 0 on the support of the input power

spectrum �e(fs), that is, if the input spatial pattern e(x)
depends only on one spatial direction. This leads to the
aperture problem, see next section.

IV. Motion estimation

Based on biological architecture where accuracy can be
obtained by a small number of loosely tuned �lters, we have
developped a simple method based on wide-band tuning,
formerly presented in [25]. As it is shown in �gure 8, the al-
gorithm is composed of four stages: a) the retinal pre�lter-
ing, b) velocity-tuned �lters, c) local mean output power
estimation for each �lter and d) velocity estimation.

A. Pre�ltering

As shown in equation (16), the output power depends
on the spectral content of the input pattern. Atick and
Redlich [2] show that natural images have a spectrum of
the form 1= jfsj� and that retinal �ltering compensates for
this characteristic, by whittening the spectrum.

a) b) c)

Fig. 6. Retinal pre�ltering: a) input image, b) output of bipolar cells
and c) temporal derivative.

We use a model of the retina based on analog circuits
as a preprocessing stage [4], [10] (see �gure 8.a) consist-
ing of two layers. The �rst, the receptor layer, computes
a low-pass spatiotemporal �lter, primarily to improve the
signal to noise ratio. The second layer, the horizontal cells
layer, computes a spatiotemporal average of the receptor
output. The di�erence ampli�ers model the bipolar cells
(they compute the di�erence between the outputs of the
receptor layer and of the horizontal cells layer). Therefore,
overall the retina behaves as a spatiotemporal band-pass
�lter (see �gure 6.b). Thus, for low frequencies, the �lter-
ing will compensate for the 1= jfsj� spectrum of the images.
For high frequencies, the �ltering will reduce noise.
As the proposed VTF responds to low spatiotemporal

frequencies, band-pass pre�ltering enhances the contrast
between responses of di�erent VTFs by cancelling the com-
mon part of the spatiotemporal transfer functions. In order
that the low frequency approximation of the VTF be valid,
the pre�ltering must have a spatial bandwidth of �B < 0:2
cycles/pixel which is the maximum allowed spatial band-
width of the VTFs.
As manyVLSI circuit implementations of the retina have

already been proposed [14], [15], the same technologies ap-
ply to our VTF.

B. Local mean output power estimation

We are interested in local velocity estimation in order to
deal with variations of the velocity �eld of the image. This
requires an estimation of the local output power for each
VTF by a local integration over a domain su�ciently wide
to avoid the aperture problem. The integration window
represents the "aperture" through which we look at the
moving pattern. By reducing the window's size, we increase
the possibility of losing pertinent information in order to
estimate the full motion vector. By increasing it, we obtain
smoothed velocity �elds and can cancel the motion of small
objects.
This spatial integration is performed by a resistive analog

network (without capacitor) applied to the squared output
of the VTF (�gure 8.c). Local output power estimation at
each pixel is given by the voltage at the corresponding node
in the resistive network. The resistive network implements
a low-pass spatial �lter. The ratio i = ri=Ri controls the
size of the integration region. The -3dB frequency band-
width of the integration network is �B = (9:6�2 i)

�1=2.
Increasing i increases the size of the integration region. In
order to ensure that the integration region is larger than the
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impulse response of the VTF, it is necessary that i � 
( is a parameter of the VTF de�ned in section III). The
exact value of i depends on the prominence of the aper-
ture problem in the input images. For our simulations,
i = 100 .

C. Component velocity estimation from two VTFs

In this section we propose a simple mechanism for es-
timating the components of the input velocity vector by
combining the output powers of two loosely tuned VTFs.
We consider that after retinal pre�ltering the input signal

has a at spectrum, �e(fs) = � constant. For a loosely
tuned VTF, the integral of (16) can be approximated by
the following expression:

Pvo
= P (v � vo) ' �

�
p
8

1q
1 + jv � voj2 =�v2o

(17)

being v = (vx; vy)T the input velocity and vo the velocity
of tuning of the VTF. It can be veri�ed numerically that the
error remains within �5%. Pvo

is a function of v with its
maximum at v = vo. The velocity selectivity of the �lter
is �v2o = 8=�2 and controls the shape of the function Pvo

.
Small values of �vo give a sharp maximum.
We use two �lters tuned to velocities vo =

jvoj (cos �; sin �)T and �vo. Velocity component in the di-
rection � is estimated using a voltage divider (shunting in-
hibition mechanism [16]) where each conductance is con-
trolled by the output power of a VTF (�gure 7.a). The
upper conductance G+ is the "excitatory" connection and
is proportional to the output power of the �lter tuned to
vo. The lower conductance G� is the "inhibitory" connec-
tion and is proportionnal to the output power of the �lter
tuned to �vo. The voltage at the output node is:

Vout =
G+ �G�
G+ +G�

Vcc =
Pvo

� P�vo

Pvo
+ P�vo

Vcc (18)

where Vcc is a constant voltage and Vout is the output volt-
age. The numerator is strongly dependant on velocity. The
denominator acts as a normalization term. For low veloci-
ties we can approximate Vout as:

Vout =
v
T
vo

�v2o + jvoj2 + O(jvj2)Vcc (19)

For velocities in the range jvj < jvoj, the voltage Vout has
a linear dependence on v

T
vo= jvoj = jvj cos(� � �) = v�,
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and�vo, c) local energy integrationby squaring�lter outputs and
�lteringwith a resistive analog network and d) velocity estimation
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the component of input velocity for the direction �. For
di�erent values of �, estimated velocities are distributed
on a circle (�gure 9.a). For velocities larger than jvoj, Vout
decreases to zero due to the term O(jvj2) in the denomi-
nator which represents terms depending on high powers of
v. Figure 7.b shows the Vout characteristic with respect to
v. The non-linear characteristic will introduce some errors
for velocities jvj � jvoj.
Estimating two components of velocity in two orthogo-

nal directions will be su�cient to give the input velocity
vector. This can be achieved with four �lters tuned to
velocities jvoj (cos �; sin �)T with � = 0; �=2; � and 3�=4,
providing a simple architecture for VLSI implementations.
Figure 8 shows the complete diagram of the analog circuit
for velocity estimation in one spatial dimension. Simula-
tion results on real images (see section V) show that this
method gives accurate results despite its simplicity.

In some situations, this simple method will fail to pro-
duce the correct motion vector. The at spectrum hypothe-
sis of the input patterns is unlikely for some natural images,
even after whittening pre�ltering. An extreme case is an
input pattern with a spatial structure oriented in only one
direction, that is e(x) ) e(xTn), where n = (cos �; sin �)T ,
� being the direction of variation. In such a case, the
pattern has a one dimensional spatial structure and the
aperture problem will be present for all scales of analysis.
Such a pattern has a spatial power spectrum of the form



�e(f
T
s n) �(f

T
s n?), where n? = (sin �;� cos �)T . If we sup-

pose that the brightness pattern has a at spectrum in the
direction of variation, that is �e(f

T
s n) = �, as it will be the

case after pre�ltering, then, output power can be exactly
calculated as:

P (v� vo) =
��2

p
p

2

1p
1 + (vn � vTo n)

2=�v2o
(20)

where vn = v
T
n (normal velocity) is the component of ve-

locity in the direction of variation of the pattern, �. Output
power does not depend on the velocity component orthog-
onal to the normal velocity. By a Taylor developement in
vn we can approximate Vout by:

Vout =
jvoj vn cos (� � �)

�v2o + jvoj2 cos (� � �)2 +O(v2n)
Vcc (21)

where � is the direction of tuning of the �lters and � is the
apparent direction of motion (i.e. the direction of variation
of the spatial input pattern), vn is the component of the
input velocity in the direction �, O(v2n) represents the high
order terms that can be ignored for low values of vn. For
di�erent values of �, we will obtain estimates distributed
on an ellipse in polar coordinates passing through the ori-
gin and centered at vn=2 (cos(�); sin(�)). When computing
the velocity, it would be necessary to integrate over large
regions in order to minimize the aperture problem.
When the input consists in a pure translationnal sinu-

soid, it can be shown that Vout depends on the spatial fre-
quency. This is an undesirable behavior as we are only
interested in the velocity dependence. However, this is not
a common input pattern when dealing with real images.

D. Component velocity estimation from three VTFs

Some of the limitations of the estimation performed with
two �lters can be overcome by using a third �lter tuned to
null velocity. The use of three �lters allows to obtain a
better linearity on the estimation, a simpler treatement
of the aperture problem and eliminate the dependency on
the input frequency for sine waves. Although this yields
to a more complex combination of output powers of the
VTFs, there is a signi�cant improvement on accuracy, see
section V. No analog circuit is proposed here. Velocity
computation could be calculated by an external processor.
We propose the next expression in order to estimate ve-

locity:

ev� = jvoj
2

P 2
vo
� P 2

�vo

P 2
vo

+ P 2
�vo

� 2P 2
vo

P 2
�vo

=P 2
0

(22)

ev� is an estimation of the velocity component of the input
velocity v

T = jvj (cos�; sin�) onto the direction �. P�vo

are as already de�ned, P0 is the output power of a VTF
tuned to null velocity. The range of validity of equation
(22) is limited by input noise and by the approximation
seen in equation (17), which is more biased when input
velocity v di�ers greatly from vo. As input velocity jvj >
jvoj, the mean output powers of the three �lters decrease
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Fig. 9. Distribution of estimated components for 4 orientations (ev�,
for � = 0; 45; 90 and 135 degrees). The four components lie (a)
on a circle for a at spectrum, (b) on a line for a 1D pattern, (c)
on an ellipse for an oriented texture.

and measurements are a�ected by noise and approximation
errors.
In the case of a at power spectrum input (17) we obtain:

ev� ' v
T
vo

jvoj = jvj cos (� � �) (23)

with � the direction of input motion. If we calculate ev� for
di�erent directions we see that they are distributed on a
circle (�gure 9.a). This result is similar to that obtained
with two �lters, equation (19), but here the denominator
has desappear giving a better linearity. We use 2n+1 �lters
to estimate velocity components at n orientations.
For the one dimensional pattern (20) we obtain:

ev� = vn= cos (� � �) (24)

where � is the apparent direction of motion. This expres-
sion is the equation of a line in polar coordinates (�gure
9.b).
An intermediate situation can be represented by an in-

put pattern consisting in a plaid resulting from the addition
of vertical and horizontal sine waves with di�erent ampli-
tudes: e(x; y) = sin(2�fox) + Asin(2�foy). In the case
where A = 1, the input pattern has no orientation and
motion is perceived without ambiguity. In this case, the
velocity estimations for di�erent directions are distributed
on a circle, equation (23). In the case where A = 0, only
one sine wave is present, the pattern has a one-dimensional
structure and motion is ambiguous. Velocity estimations
will be distributed on a line, equation (24). In the case
where A = 0:5, motion can also be perceived without am-
biguity. As this pattern is slightly oriented, there is no rea-
son for velocity estimations to be distributed on a circle.
In fact, we found that they are distributed on an ellipse.
For a moving pattern of two sine waves, the output mean
power of a VTF, vo, is:

Pvo
=

1

(1 + 4�2f2o )
2 + 4�2�2(vx � vocos(�))2f2o

+ (25)

A2

(1 + 4�2f2o )
2 + 4�2�2(vy � vosin(�))2f2o

where vx and vy are the components of the input motion
vector. We use equation (22) in order to estimate the com-
ponent of motion in the direction �. If we consider that the
plaids have a frequency lower than the spatial bandwidth



Fig. 10. Polar plots of velocity components estimatedat each pixel for
a moving circle. Both correct and estimated velocity are super-
imposed. Local mean power is estimated on a small integration
region (right) and a large integration region (left).

of the �lters (fo < �B), we can approximate equation (22)
by a Taylor developpement in fo=�B. We obtain:

ev� = cos(�)vx + A2sin(�)vy
(1�A2)cos(�)2 + A2

+ O(f2o =�B2) (26)

where O(:) represents the higher order terms that, for low
spatial frequencies, can be ignored. The approximation is
correct for a loosely tuned VTF (jvoj ' �vo). Expression
(26) is the equation of an ellipse in polar coordinates with
center (vx=2, vy=2) passing through the origin (�gure 9.c).
It must be noted that this expression does not depend on
the input spatial frequency fo. For A = 1, we obtain the
equation of a circle, and for A = 0, this is the equation
of a line. As an ellipse passing through the origin is de-
scribed by four parameters, it will be necessary to estimate
motion over at least four directions. This will require 9
VTFs (2 opposed velocities for each direction and one for
null velocity). In �gure 10, we show the estimated veloc-
ity �eld for a circle moving to the right. At each pixel we
show a polar plot with the components estimated in each
direction and the velocity vector obtained by estimating
the center of the ellipse. Figure 10.a shows the results for
a small integration region. We can see that ellipses have
their major axis parallel to the contour at each location.
In those pixels where velocity is parallel to the contour,
the aperture problem is more prominent, giving some er-
rors in the estimation. The eccentricity of the ellipse gives
an indication of the signi�cance of the aperture problem.
Figure 10.b shows the results for a larger integration area.
In this case, the aperture problem has been reduced as the
curvature of the circle clearly appears, velocity estimations
are distributed on circles.

E. Dealing with motion boundaries

The algorithm presented in this paper supposes that,
at least in the integration region and during the time-
size of the impulse response of the VTFs, the image has
a unique constant translational motion. This means that
the input energy lies on a unique plane in the frequency
space. However, as at object boundaries, two di�erent mo-
tions can co-exist, the power is distributed onto two planes:
ft + v

T
1 fs = 0 and ft + v

T
2 fs = 0; v1 and v2 being two ve-

Fig. 11. Left) Translating tree (TT), right) diverging tree (DT).

locity vectors. Therefore, the algorithm will fail to produce
good estimates.
As proposed by Koch et al. [11] it is possible to open

switches in the integration resistive network ("line pro-
cesses") in order to adapt the power integration window to
the object boundaries, avoiding interactions between dif-
ferent objects. Though it is an interesting principle, this
solution increases the complexity of the implementation.
In static camera applications, most of motion boundaries

are due to the occlusion of a static background by the mov-
ing objects. Around the boundaries, power will lie on the
planes: ft + v

T
1 fs = 0 (object) and ft = 0 (background);

v1 being the velocity of the moving object. A simple so-
lution will consist of adding a temporal derivative in the
pre�ltering (see �gure 6.c) so as to cancel the power plane
ft = 0. Mean local power will be due only to the moving
object and the algorithm will produce the correct estimate.
As temporal derivative provides a high-pass �ltering, it

also compensates for the 1= jfsj� spectrum decrease of in-
put images (due to coupling between spatial and temporal
frequencies in the presence of motion). Therefore, for eco-
nomic VLSI implementations, the retinal �ltering can be
avoided. However, the �rst layer of the retina can improve
performance since low-pass �ltering reduces sensitivity to
noise and aliasing.

V. Results

This section describes performances obtained with the
simple architecture described in this paper. They are as
accurate as results provided by more complex architectures
in the framework of energy-based methods [3], [8], [22].
Table I compares the results obtained with the algo-

rithms of Heeger [8] and Shi et al. [22] with three versions
of our algorithm using two arti�cial sequences, "Translat-
ing tree" (TT) and "Diverging tree" (DT) [3], Figure 11.
The error at each pixel is measured in degrees using the
angular measure given by Barron et al. [3]. This measure
combines amplitude and direction of the di�erence between
real and estimated velocity vectors. Table I gives the mean
value (m) and the standard deviation (�) of the error, the
number of �lters used by each algorithm and the complex-
ity for implementation of each �lter with analog circuits
(the number of layers corresponds to the number of nodes
per pixel and r is the radius of the neighborhood to which



TABLE I

Comparision of performances.

TT DT Filters Complexity

VTF(i) m = 8:58� 9:62� 4 1 layer

� = 3:24� 6:37� r=1

VTF(ii) m = 4:71� 6:47� 9 1 layer

� = 1:69� 2:56� r=1

VTF(iii) m = 2:16� 3:09� 9 1 layer

� = 1:26� 1:68� r=2

Heeger m = 4:52� 4:49� 36 2 layers

� = 2:41� 3:10� r=1

Shi m = 1:93� 2:77� 28 2 layers

et al. � = 1:52� 4:55� r=10

Fig. 12. Estimated optical ows with four VTFs and the shunting
inhibitionmechanism. Left) car running toward the camera, and
right) "Hamburg taxi" sequence. Vector velocities are shown
only where motion is detected.

each node is connected).

Heeger [8] uses a large set of narrow band Gabor �lters.
An e�cient approximation to the quadrature pair of Ga-
bor �lters may be obtained using analog circuits [20]. This
circuit has two layers (two ouput nodes) and connection
radius of r = 1. The algorithm proposed by Shi et al. [22]
uses a set of space-velocity separable �lters. This yields a
complex implementation with analog circuits (2 indepen-
dent layers for implementing the quadrature pair and a con-
nection radius of r = 10). Furthermore, these two methods
require a complex architecture to combine the �lter outputs
for optical ow computation. The �rst version, VTF(i),
of our algorithm has 4 �lters and the shunting inhibition
mechanism. The second version, VTF(ii) has 9 �lters (4
directions), with three �lters for estimating each velocity
component. It shows the same performances as Heeger's
algorithm. The third version, VTF(iii) has 9 �lters, where
spatial derivatives of equation (12) are approximated with
four points (r = 2) and it exhibits performances similar to
the algorithm of Shi et al.

All these algorithms are limited to velocities inferior to
3 pixels/frame. This limitation comes from the time dis-
cretization required for numerical simulations. However,
for an analog circuit with continuous time, such a con-
straint is relaxed.

When using four �lters, VTF(i), the major source of er-
rors occurs in oriented textures regions and in regions with
velocities around jvoj because of the non linear character-
istic of the shunting inhibition. However, estimated optical

x

t

x

t

Fig. 13. Simulation of the analog system for optical ow estima-
tion on a real sequence obtained by a linear camera of a mobile
robot (each line represents a time step). The algorithm uses two
velocity-tuned �lters and the shunting mechanism for velocity
estimation. Left: input sequence, right: velocity �eld.

ow allows the detection of moving objects, the estimation
of time to contact and the classi�cation of patterns of mo-
tion due to self-motion (translation, rotation). Figure 12
shows results obtained with four VTFs using the shunting
inhibition mechanism. The �rst sequence contains a car
moving toward the camera on a static background. Esti-
mated velocity vectors are shown only where the output of
the temporal derivative is larger than a prede�ned thresh-
old. The second sequence is the "Hamburg taxi", with
three vehicles moving in di�erent directions. For all the
sequences, the �lter parameters jvoj and �vo are set to 3
pixels/frame. Figure 13 shows the results obtained by sim-
ulation of the circuit of Figure 8 on a real sequence taken by
the on-board linear camera of a mobile robot (KHEPERA
c). The robot is moving towards a wall painted with a
regular pattern. At the same time, a moving object crosses
perpendicularly to the trajectory of the robot, from left to
right. The object is correctly detected and, as the robot
approaches the wall, the pattern of the divergent optical
ow is easily identi�ed.

VI. Discussion

To summarize, the main advantages which make our ap-
proach e�cient and reliable are as follows:

We use a retinal pre�ltering that reduces high frequency
noise, "whittens" the 1= jfsj� spectrum of natural images
and enhances the contrast between the responses of di�er-
ent VTFs.

We use a temporal derivative that cancels the power con-
tained in the plane ft = 0. This improves the results be-
cause energy integration will not be biased at the motion
boundaries between moving objects and the static back-
ground. These boundaries can be recovered by detecting
the presence of motion directly from the output of the tem-
poral derivative.

We use wideband velocity-tuned �lters as motion detec-
tors. They are loosely tuned to di�erent velocities and
provide accurate estimations. A shunting inhibition mech-
anism between the outputs of two �lters tuned to opposite
velocities allows a very economical means for motion esti-



mation.
The overall structure of the proposed algorithm is well

suited for VLSI implementations: based on a neuromorphic
approach, it is simple and robust and exhibits su�cient ac-
curacy for applications involving mobile robots (estimation
of patterns of optical ow, detection of moving objects,
tracking, estimations of time to collision, etc.).
On going work consists on the implementation of the

proposed architecture on VLSI, with emphasis on robust-
ness and noise sensitivity. Most of the components can be
build with circuits already proposed in the literature [5],
[14], [15], [19]. The choice of the velocity vo will depend on
the application requirements and may be limited by tech-
nology. A maximum velocity of vo = 200 pixels/second
will require resistance values around 5G Ohms and capac-
itor values around 2 pF for the velocity-tuned analog net-
work. These values are compatible with 0.5 � technologies.
Larger values of vo require lower resistor and capacitor val-
ues.

Acknowledgments

The authors would like to thank B. E. Shi and three
anonymous reviewers for helpful discussions and D. Al-
leysson, G. Sicard, A. Oliva and K. Davies for their com-
ments. Thanks also to P. Bessiere and O. Lebeltel for pro-
viding the Khepera sequence. This work has been partly
supported by the French Groupement d'Interêt Scienti�que
"Sciences de la cognition".

References

[1] E. H. Adelson and J. R. Bergen. Spatiotemporal energy models
for the perception of motion. J. Opt. Soc. Am. A, 2(2):284{299,
February 1985.

[2] J. Atick and A. Redlich. What does the retina know about
natural scenes? Neural Computation, 4:196{210, 1992.

[3] J. L. Barron, D. J. Fleet, and S.S. Beauchemin. Performances
of optical ow techniques. International Journal of Computer
Vision, 12(1):43{77, 1994.

[4] W. Beaudot, P. Palagi, and J. H�erault. Realistic simulation tool
for early visual processing including space, time and colour data.
Lecture notes in computer sciences, 686, "New trends in Neural
Computation", Springer Verlag. 1993.

[5] T. Delbr�uck. Silicon retina with correlation-based, velocity-
tuned pixels. IEEE Trans. Neural Networks, 4:529{541, 1993.

[6] R. A. Deutschmann and C. Koch. Compact real-time 2-D
gradient-based analog VLSI motion sensor. In Int. conf. on ad-
vanced focal plane arrays and electronic cameras, 1998.

[7] R.A. Deutschmann, C.M. Higgins, and C. Koch. Real-time ana-
log VLSI sensors for 2-D direction of motion. In W. Gerstner,
A. Germound,M. Hasler, and J.D. Nicoud, editors, Proc. Inter-
national Conference on Arti�cial Neural Networks (ICANN97),
volume 1327 of Lecture Notes in Computer Science, pages 1163{
1168, Lausanne, Switzerland, October 1997. Springer Verlag.

[8] D. J. Heeger. Model for the extraction of image ow. Journal
of Optical Society of America A, 4(8):1455{1471, August 1987.

[9] C.M. Higgins and C. Koch. Analog CMOS velocity sensors. In
Electronic Imagin'97, San Jose, CA., February 1997.

[10] J. H�erault. A model of colour processing in the retina of ver-
tebrates: From photoreceptors to colour opposition and colour
constancy phenomena. Neurocomputing, 12(2-3):113{129, 1996.

[11] C. Koch, J. Luo, and C. Mead. Computing motion using analog
binary resistive networks. Computer, pages 52{63, March 1988.

[12] J. Kramer. Compact integrated motion sensor with three-pixel
interaction. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 18(4):455{460, April 1996.

[13] C. Mead. Analog VLSI and Neural Systems. Addison-Wesley,
Reading, MA, 1989.

[14] C. A. Mead and M. A. Mahowald. A silicon model of early visual
processing. Neural Networks, 1:91{97, 1988.

[15] A. Mhani, G. Sicard, andG. Bouvier. Analog vision chip for sens-
ing edges contrasts and motion. ISCAS, pages 326{329, 1997.

[16] B. Nabet. Electronic hardware for vision modeling. In R. B.
Pinter and B. Nabet, editors, Nonlinear vision: determination
of neural receptive �elds, function and networks, chapter 18,
pages 463{474. CRC Press, 1992.

[17] T. Poggio, V. Torre, and C. Koch. Computational vision and
regularization theory. Nature, 317(26):314{319, September1985.

[18] R. Sarpeshkar, J. Kramer, G. Indiveri, and C. Koch. Analog
VLSI architectures for motion processing: from fundamentals
limits to system applications. Proc. IEEE, 84(7):969{987, July
1996.

[19] R. Sarpeshkar, R. F. Lyon, and C. Mead. A low-power wide-
linear-range transconductance ampli�er. Analog Integrated Cir-
cuits and Signal Processing, 13(1/2), 1997.

[20] B. E. Shi. Gabor-type �ltering in space and time with cellu-
lar neural networks. IEEE Trans. on Circuits and Systems-I,
45(2):121{132, February 1998.

[21] B. E. Shi, T. Roska, and L. O. Chua. Design of linear cellular
neural networks for motion sensitive �ltering. IEEE trans. on
circuits and systems-II, 40(5):320{331, May 1993.

[22] B. E. Shi, T. Roska, and L. O. Chua. Hyperacuity in cellular
neural networks and the measurement of optical ow. Int. J. of
Circuit Theory and Its Applications, 26:343{364, 1998.

[23] A. Spinei, D. Pellerin, and J. H�erault. Spatiotemporal energy-
based method for velocity estimation. Signal processing,
65(3):347{362, 1998.

[24] J. Tanner andC. Mead. An integratedanalog opticalmotion sen-
sor. In R.W. Brodersen and H.S. Moscovitz, editors,VLSI Signal
Processing, volume 2, pages 59{87, New York, 1988. IEEE.

[25] A. Torralba and J. H�erault. From retinal circuits to motion
processing: a neuromorphic approach to velocity estimation. In
Michel Verleysen, editor,ESANN'97, pages 47{54, Brussels, Bel-
gium, April 1997. D facto.

[26] A. B. Torralba and J. H�erault. Minimal complexity velocity-
tuned �lters with analogue neuromorphic networks: A theoret-
ical approach for e�cient design. Neural Processing Letters,
8(3):229{139, December 1998.

[27] A. B. Watson and A. J. Ahumada. A look at motion in the
frequency domain. In J. K. Tsotsos, editor, Motion: perception
and representation, pages 1{10, New York, 1983. Association for
computing machinery.

Antonio B. Torralba received the B.S. de-
gree in Telecommunications engineering in
1994 from the ETSETB-UPC (Barcelona,
Spain) and the M.S. degree in Signal and Im-
age Processing at the Institut National Poly-
technique (Grenoble, France). Now, he is part
of the LIS laboratory and he is studying for
his Ph.D degree. His �eld of research covers
human visual system including retina model-
ing and optical ow estimation. The models
are inspired from Neuromorphic circuits and

Cellular Neural Networks.

Prof. Jeanny H�erault received the M.S.
degree in electronics engineering in 1966,
Docteur-Ing�enieur and Docteur es Sciences de-
grees in 1974 and 1980 from Institut National
Polytechnique of Grenoble. He is Professor at
Universit�e Joseph Fourier of Grenoble. From
1985 to 1991, he has also been the head of the
"Institut des Sciences et Techniques" grouping
the four Engineering Schools of this university.
His interests include design and hardware im-
plementations of neural machines, with appli-

cations in models of Visual perception by means of Signal and non-
linear Data Processing. He is expert of the European Comunity and
reviewer for several Journals and conferences in Neural Networks and
Signal Processing.


