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Techniques from numerical analysis and crystallographic refinement have been combined to produce a 
variant of the Truncated Newton nonlinear optimization procedure. The new algorithm shows particular 
promise for potential energy minimization of large molecular systems. Usual implementations of New- 
ton's method require storage space proportional to the number of atoms squared (i.e., O(N ')) and computer 
time of O(N3).  Our suggested implementation of the Truncated Newton technique requires storage of less 
than O(N 1.5) and CPU time of less than O(N ') for structures containing several hundred to a few thousand 
atoms. The algorithm exhibits quadratic convergence near the minimum and is also very tolerant of poor 
initial structures. A comparison with existing optimization procedures is detailed for cyclohexane, arach- 
idonic acid, and the small protein crambin. In particular, a structure for crambin (662 atoms) has been 
refined to an RMS gradient of 3.6 x kcal/mol/A per atom on the MM2 potential energy surface. 
Several suggestions are made which may lead to further improvement of the new method. 

INTRODUCTION 

One of the major advantages of molecular 
mechanics compared to other computational 
techniques is the relative ease with which 
structures can be optimized via minimization 
of the corresponding potential energy func- 
ti0ns.l A number of sophisticated methods are 
available which permit efficient minimiza- 
tion of potential energy for small molecular 
systems. Atom-by-atom block diagonal ap- 
proximations of Newton's method are toler- 
ant of poor initial geometries and quickly 
convergent, often to within 0.1 kcal/mol or 
less of a local energy minimum. Quadratic 
convergence to the exact minimum structure 
and energy, limited only by machine toler- 
ance, can be achieved with full matrix 
Newton methods implemented via gener- 
alized matrix inversion' or imposition of 
Eckart  constraint^.^ 

With the tremendous advances in computer 
processing speed realized over the past de- 
cade, molecular mechanics computations on 
small to moderate sized proteins and com- 
parably sized nucleic acids have become al- 
most routine. Several program packages 
capable of performing such calculations have 
been re~orted.~-' ' All of these programs make 

available one or more methods for energy 
minimization. Unlike the small molecule 
case, energy minimization of a large bio- 
polymer can tax the resources of even the 
largest current computers. In particular, full 
matrix Newton methods a re  limited to  
systems of less than a few hundred atoms 
since standard implementations of these 
methods require storage proportional to the 
square of the number of atoms, O(N'), and 
CPU time of OW3). 

Most reported macromolecular energy 
minimizations make use of nonlinear conju- 
gate gradient, variable metric (ECEPP" and 
Levitt's torsional angle optimization6) or lim- 
ited memory Newton techniques (the ABNR 
method available in CHARMM5). These 
methods exhibit at best superlinear con- 
vergence (often only linear) and typically 
require many hundreds or thousands of itera- 
tions to reduce the RMS energy gradient per 
atom into the 0.1 to 0.01 kcal/mol/A range. 

In this article we present a variant of New- 
ton's method adapted specifically for full 
Cartesian coordinate energy minimization of 
large molecules. The method is based on the 
Truncated Newton formalism elaborated re- 
cently by several numerical analysis groups. 
Alterations borrowed from the sparse matrix 
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techniques used in crystallographic refine- 
ment serve to  greatly reduce total com- 
putational requirements. 

ALGORITHM 

The numerical analysis literature on Trun- 
cated methods and particularly 
the preconditioned conjugate gradient l6 

(PCG) approach to linear equations is exten- 
sive. For convenience, we provide an algo- 
rithm for the basic method. Computational 
results and several possible extensions 
are discussed in subsequent sections. We as- 
sume access to a set of callable subroutines 
which, given the Cartesian coordinates x, 
( i  = 1 , 3 N ) ,  compute the potential energy 
(El ,  gradient vector (g, where g, = dE/dx,) ,  
and Hessian ma t r ix  (H, where H,, = 
d2E/dx ,  dxJ).  A Truncated Newton optimiza- 
tion using a sparse Hessian approximation 
and a preconditioned linear conjugate gra- 
dient method for the iterative solution of 
the resulting Newton equations consists of 
the following steps: 

Truncated Newton Method 

(1) Begin a Truncated Newton cycle by 
evaluating the current potential energy and 
gradient. If convergence criteria based upon 
these values have been met, then we are done. 
For small molecules (N < 100) we typically 
require the RMS gradient per atom to be W4 
to kcal/mol/A or less at convergence. 
For larger structures, values of 
are routinely obtained. 

(2) Evaluate the Hessian matrix. For large 
systems where storage of the full Hessian is 
impossible, a sparse approximation (which 
we will still call H )  is computed storing only 
elements on the diagonal or in the upper tri- 
angle of the full Hessian which have absolute 
value greater than some cutoff tolerance. 
Data structures needed for sparse matrix 
storage can be found in the 1i terat~re . l~ 

(3 )  Approximately solve the Newton equa- 
tions: H p  = -g, where the vector p is a 
search direction that will (hopefully) lead to  
reduction of the current energy. These linear 
equations can be solved by a number of meth- 
ods. The Truncated Newton idea is to use an 
iterative method to obtain a partial solution 
since exact solution is an O(N3)  process and 

to  

quite unnecessary except in the immediate 
vicinity of the minimum. We currently use 
the preconditioned linear conjugate gradient 
method outlined below, although other itera- 
tive methods have been suggested. 

(4) Use a line search technique to minimize 
the energy in the search directionP. Our 
current algorithm is a simple parabolic 
extrapolation/cubic interpolation procedure 
which uses both energy and gradient evalua- 
tions along the search direction. The search is 
terminated when the magnitude of the 
projection of the gradient on the search direc- 
tion has been reduced by half from its value at 
the start of the current line search. Any num- 
ber of alternative line search methods could 
be used since the overall optimization time is 
not very sensitive to the efficiency of this step. 

(5) Increment the number of Truncated 
Newton cycles performed and set the current 
coordinates to be those located during the line 
search. Compute the RMS change in atom 
positions and any other quantities of interest. 
Return to step 1 to begin the next cycle. 

As outlined above, the centerpiece of the 
Truncated Newton optimizer is its partial 
solution of the Newton equations. The algo- 
rithm is outlined below: 

Preconditioned Linear Conjugate Gradient 
Method (PCG) 

(1) Transform the Newton equations by 
scaling the gradient and Hessian with the 
exact Hessian diagonal. Create a diagonal 
scaling vector b such that b, = (abs(H,,))O5, 
then set g, = g,/b,, and H ,  = H,/(b,bJ) for 
i , j  = 1 to 3N. Without this transformation, 
the Truncated Newton cycles very near the 
minimum were often observed to exhibit an 
oscillatory behavior. 

(2) Initialize various vector and scalar vari- 
ables prior to  beginning conjugate gradient 
iterations. Compute the Euclidian lengths of 
the gradient vector, g-norm and the RMS gra- 
dient per atom, g-rms. Set the convergence 
tolerance epsilon to the minimum of g-rms 
and l/cycle, where cycle is the number of the 
current Truncated Newton cycle (see algo- 
rithm above). Setp, = 0 and r, = g, for i = 1 
to 3N. 

(3 )  Solve the linear equations Ms = r for 
the vector s, where M is some (simple) precon- 
ditioning matrix which approximates H .  The 
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equations are solved directly via (incomplete) 
Cholesky factorization followed by substi- 
tution. One particularly simple choice is to 
set M to the identity matrix in which case 
we get s = r. Several other, much more 
efficient, choices for M are discussed later in 
this article. 
(4) Set d ,  = s, for i = 1 to 3N and equate 

rs-old with the dot product of the r and s 
vectors. 

(5) Begin a conjugate gradient iteration by 
computing the vector q where q = Hd. If a 
sparse approximation to H is being used it is 
imperative to use that sparsity to compute q 
as efficiently as possible since for large mole- 
cules formation of this vector-matrix product 
is the rate limiting step in the PCG method. 

(6) Set dq to the dot product of the d and q 
vectors. If dq is less than zero then negative 
curvature has been detected in the trans- 
formed Hessian matrix and we exit the PCG 
algorithm with the current unscaled search 
direction p ,  = p, /b ,  for i = 1 to 3N. If dq 
is less than zero on the first conjugate gra- 
dient iteration then choose p L  = d , /b ,  for 
i = 1 to 3N. 

(7) Set the scalar t equal to  rs-oldldq. 
Setp, = p L  + ( t )d ,  and r, = r, - (t)q, for i = 1 
to 3N. 

(8) Compute r-norm, the Euclidian length 
of the r vector. If r-norm/g-norm is less than 
epsilon, we exit the PCG algorithm with the 
current unscaled search direction p ,  = p,/b,. 
This is the normal termination. 

(9) Solve the new set of preconditioning 
equations Ms = r. Note that T- has just been 
updated, but the matrix M need not change. 
Thus any factorization of M from step 3 can 
be reused here. 

(10) Compute rs-new, the dot product of the 
current r and s vectors. Set u = rs-new/ 
rs-old, then d ,  = s, + (u )d ,  for i = 1 to 3N. 
Set rs-old = rs-new. 

(11) If we have performed the maximum 
allowed number of conjugate gradient itera- 
tions, then exit the PCG algorithm with the 
current unscaled search direction p ,  = p,/b,  
for i = 1 to 3N. Otherwise, increment the it- 
eration counter and return to step 5 to begin 
the next iteration. Our current program al- 
lows a maximum of 10 x (3N)05PCG iter- 
ations per Truncated Newton cycle. In most 
cases far fewer than the allowed number of 
iterations are actually required to reach the 
desired convergence. 

COMPUTATIONAL 

In order to test the efficacy of the Truncated 
Newton method and compare it with other 
optimization methods, an explicit potential 
function and several test cases are required. 
We have developed a compact, modular set of 
potential energy routines, YALIE, which is 
easily interfaced to a number of different non- 
linear optimizers. The present program im- 
plements an expanded and slightly modified 
version of the MM2 potential surface." Elec- 
trostatic interactions are modelled as a sum of 
dipole-dipole, charge-dipole and charge- 
charge terms. Various subroutines are avail- 
able to evaluate the energy, gradient and 
Hessian in any combinati~n.'~ CPU times re- 
quired for sample evaluations are shown in 
Table I. In general, gradient evaluations are 
slightly less than twice as costly as com- 
putation of the potential energy. Hessian 
evaluation requires CPU time equivalent to  
about 15 gradient calls for small structures 
decreasing to a factor of 10 or less as the num- 
ber of atoms becomes large. Two comments 
are required with regard to  the reported 
times. First, van der Waals and electrostatic 
interactions are computed from a pairwise 
search rather than neighbor list or grid 
partitioning techniques," since we routinely 
use infinite cutoffs for such interactions. Sec- 
ondly, the Hessian matrix is computed one 
atom at a time and only significant elements 
are retained for storage. This introduces 
an inefficiency of a factor of 2 to 4 into the 
Hessian CPU times compared to more direct 
methods, but permits Hessian computation 
on very large systems without the require- 
ment for a large amount of computer memory. 
Table I1 indicates the number of Hessian ele- 
ments stored as a function of various cutoff 
values. Since the largest Hessian elements 
for a typical molecule will have a magnitude 
of 1000 to 3000 kcal/mol Hi2, a Hessian cutoff 
of 0.01 would include elements five orders of 
magnitude smaller than the largest element. 

Results from several different optimization 
techniques are reported in the next section. 
The standard Fletcher-Reeves nonlinear con- 
jugate gradient methodz1 can be made self- 
restarting and less dependent on line search 
accuracy if the update formula is derived from 
a memoryless BFGS quasi-Newton update. 
Our scaled version of this method will be re- 
ferred to as MQN." 
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Table I. CPU times required for potential energy functions". 

Molecule Atoms Energy Gradient Hessian 

Cyclohexane 18 0.09 0.18 3.00 
Arachidonic Acid 56 0.69 1.26 14.62 

Gramacidin A 278 17.0 27.9 258.5 
Crambin 662 94 164 1590 
L y s o z y m e 2025 735 1369 13726 
Crambin' 662 45 72 78 1 
Lysozyme' 2025 308 436 4316 

Pentapeptide' 85 1.80 3.21 35.73 

"All times are in CPU seconds on a VAX 111750 with 3 Mbytes of memory and a floating point accelerator running 
under VMS Verison 4.2. 

bALA-PRO-TRP-MET-GLN in a turn conformation. 
'Van der Waals interactions were cutoff a t  8 A; dipole-dipole interactions were cutoff a t  12 A. 

Table 11. Hessian matrix storage" 

Molecule 

Value of Hessian Cutoff' 
0.0 0.01 0.1 1.0 

Number of Matrix Elements above Cutoff 

C yclohexane 2916 2422 1984 1372 
Arachidonic Acid 28224 7794 5932 4090 
Pentapeptide 65025 20651 12299 7441 
Gramacidin A 695556 90328 41670 23678 
Crambin 3944196 392265 122328 57177 
Lysozyme 36905625 1570559 403157 174549 

"Requirements for the full matrix; in practice only the diagonal and upper triangle elements need to be stored. 
'Only those elements whose magnitudes are greater than the listed cutoffs are accounted; matrix elements have 

units of kcal/mol/A2. 

Quasi-Newton (variable metric) methods 
are usually preferred over nonlinear conju- 
gate gradients when space is available to 
store an  approximation to the inverse Hes- 
sian. One particularly efficient version is the 
optimally conditioned method without line 
searches devised by D a ~ i d o n . ~ ~  The economy 
of this technique is due to the fact that most 
iterations require only one function/gradient 
evaluation. This method and the related 
VAO9D routine from the NAG Library have 
already seen use in chemical applications. 
Our implementation will be referred to as 
DAVIDON. 

The Truncated Newton method with linear 
conjugate gradient solution of the Newton 
equations (TNCG) was tested without scaling 
or preconditioning (TNCG-N), with only di- 
agonal scaling (TNCG-D), with both diagonal 
scaling and 3-by-3 block diagonal precon- 
ditioning (TNCG-B), and with symmetric suc- 
cessive over-relaxation preconditioningz4 
(TNCG-S). 

In addition, a standard full matrix Newton 
method (NEWTON) was simulated by using 
the Truncated Newton formalism, but with 
an exact solution of the Newton equations at 
each cycle. A 3-by-3 block diagonal Newton 
method (BLOCK NEWTON) was achieved by 
passing a Hessian matrix containing only the 
block diagonal elements to the NEWTON 
method just described. Finally, the one atom 
at a time 3-by-3 block diagonal method used 
by the standard MM2 program was tested. 

Three test problems were selected for in- 
vestigation: (1) cyclohexane starting from a 
model with standard bond lengths and angles 
and + 601 - 601 + 60 degree dihedral angles 
around the ring, (2) arachidonic acid starting 
from standard bond lengths and angles, +90 
degree dihedral angles around all sp ' -sp 
bonds and 180 degree dihedrals around all 
sp3-sp3 bonds, and (3) the 46-residue protein 
crambin starting from Protein Data Bank co- 
ordinates with hydrogen atoms added in ide- 
alized p ~ s i t i o n s . ~ ~ , ~ ~  All calculations involving 
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the potential functions and optimization 
methods were performed in double precision 
arithmetic on a VAX 11/750 computer. 

RESULTS 

The small cyclohexane test case is easily 
solved by all optimization methods. Statis- 
tical summaries of the minimizations are 
shown in Table 111. It is clear even for this 
simple problem that block diagonal Newton 
methods are much closer to conjugate gra- 
dient (MQN) and quasi-Newton (DAVIDON) 
methods in terms of the total number of algo- 
rithm cycles required. In contrast, all vari- 
ants of the TNCG procedure exhibit quadratic 
or near-quadratic convergence. 

Despite its moderate size, 56 "atoms" in- 
cluding two MM2 lone pairs, the arachidonic 
acid problem proved to be quite difficult. The 
initial structure is an extended conformation 
and lies on an almost flat portion of the po- 
tential surface. Thus even the Newton-based 
methods tend to wander somewhat before lo- 
cating a productive minimum. All of the opti- 
mizers do however eventually converge upon 
the same final structure.  As shown in  
Table IV, the MQN conjugate gradient tech- 
nique exceeds 7500 cycles and 13000 energy/ 

Table 111. Comparison of optimization methods for cyclohexane. 

gradient evaluations before reaching the 
requested RMS gradient convergence of 

kcal/mol/A per atom. This is typical of 
the action of linearly convergent algorithms 
on difficult problems. The DAVIDON method 
exhibits superlinear convergence on the 
arachidonic acid test problem while needing 
only slightly more than one energy evalu- 
ation per iteration. 

The 3-by-3 block diagonal methods perform 
poorly on the arachidonic acid test. The 
BLOCK NEWTON technique barely gets 
with 1 kcal/mol of the correct minimum en- 
ergy in 100 cycles. The behavior of the orig- 
inal MM2 algorithm is only very slightly 
better; i t  reaches a potential energy of 
13.2 kcal/mol after 100 iterations. In addi- 
tion, convergence of the block diagonal meth- 
ods is even slower than  with MQN. A t  
1672 iterations the MM2 method results in 
an energy decrease of less than lop5 kcal/mol 
over the previous 5 iterations. At this point, 
the energy was still almost 0.1 kcal/mol 
above the exact minimum and the RMS devia- 
tion in atom positions between the MM2 
structure and the exact minimum was 0.29 A. 

Our full matrix Newton variant (NEW- 
TON) converged to an RMS gradient under 

kcal/mol/A per atom in 22 cycles. Re- 

~~ 

Algorithm Evaluations Hessian PCG Final RMS 
Method Iterations Ener/Grad Hess cutoff Cycles Energy Gradient 

~ - ~ -~_____ ~_____ 

MQN 43 76 - - - 6.5510 9.9 
DAVIDON 34 54/35 - 

Block 
Newton 40 63 (40) - - 6.5510 1.3 10 -~  
MM2" 16 (16) (16) - - 6.5510 1.1 10-~ 
Newton 3 7 3 0.0 136 6.5510 5.0 10 -~  
TNCG-N 6 11 6 0.0 30 6.5510 3.3 10-~  
TNCG-D 5 10 5 0.0 72 6.5510 3.7 lo-@ 

TNCG-S 5 10 5 0.0 40 6.5510 7.5 
TNCG-N 6 11 6 0.01 30 6.5510 2.9 
TNCG-D 5 10 5 0.01 76 6.5510 3.3 lo-@ 
TNCG-B 5 10 5 0.01 44 6.5510 7.1 lo-? 
TNCG-N 6 11 6 0.1 33 6.5510 2.8 

TNCG-B 5 10 5 0.1 57 6.5510 9.3 
TNCG-S 5 13 5 0.1 46 6.5510 8.3 
TNCG-N 

12 6 1.0 163 6.5510 4.9 TNCG-D 6 
TNCG-B 6 12 
TNCG-S 9 16 9 

- - 6.5510 8.3 

TNCG-B 5 10 5 0.0 37 6.5510 1.4 lo-@ 

TNCG-S 5 10 5 0.01 42 6.5510 9.2 

TNCG-D 5 10 5 0.1 93 6.5510 9.8 

9 21 9 1.0 182 6.5510 6.1 10-~  

1.0 141 6.5510 5.3 10-5 
6 1.0 119 6.5510 5.1 lo-' 

"The standard MM2 program was continued until a potential energy of 6.5510 kcal/mol was achieved, this 
kcal/mol/A per atom required of all other minimizations. criterion is less restrictive than the RMS gradient of 
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Table IV. Comparison of optimization methods for arachidonic acid. 

Algorithm Evaluations Hessian PCG 
Method Iterations Ener/Grad Hess cutoff Cycles 

Final 
Energy 

RMS 
Gradient 

MQN 

DAVIDON 
Block 
Newton 
MM2" 
Newton 
TNCG-N 
TNCG-D 
TNCG-B 
TNCG-S 
TNCG-N 
TNCG-D 
TNCG-B 
TNCG-S 
TNCG-N 
TNCG-D 
TNCG-B 
TNCG-S 
TNCG-N 
TNCG-D 
TNCG-B 
TNCG-S 

500 
1000 
2500 
7887 
679 

100 
1672 

22 
35 
29 
17 
16 
33 
28 
20 
29 
43 
32 
38 
42 

100 
100 
100 
100 

769 
1520 
3820 

13754 
836/680 

193 
(1672) 

33 
51 
41 
25 
26 
58 
35 
34 
54 
69 
47 
76 
76 

168 
178 
182 
171 

- 
- 
- 
- 
- 

(100) 
(1672) 

22 
35 
29 
17 
16 
33 
28 
20 
29 
43 
32 
38 
42 

100 
100 
100 
100 

- 
- 
- 
- 
- 

- 
- 

0.0 
0.0 
0.0 
0.0 
0.0 
0.01 
0.01 
0.01 
0.01 
0.1 
0.1 
0.1 
0.1 
1.0 
1.0 
1.0 
1.0 

- 
- 
- 

- 
- 

- 
- 

3378 
3244 
3111 
1671 
1185 
2921 
3137 
2103 
2332 
4290 
3812 
3994 
3303 
6581 
5874 
4654 
2413 

12.5384 
12.4629 
12.4495 
12.4469 
12.4469 

13.3705 
12.5318 
12.4469 
12.4469 
12.4469 
12.4469 
12.4469 
12.4469 
12.4469 
12.4469 
12.4469 
12.4469 
12.4469 
12.4469 
12.4469 
12.4472 
12.4472 
12.4473 
12.4471 

9.4 
4.4 
3.7 
8.0 1 0 - ~  
6.6 

1.2 lo-' 
3.5 

6.8 
7.9 

5.9 

5.6 
2.9 10-5 
9.8 1 0 - ~  
5.9 
7.4 10-~  
8.8 1 0 - ~  
8.4 10-5 
9.5 10-5 
3.3 10 -~  
9.9 10-5 

9.1 1 0 - ~  
4.8 

1.1 
1.8 

"The standard MM2 Dropram was continued until the energy decrease over 5 iterations was less than 
L "  

kcal/mol. 

sults for the Truncated Newton algorithm 
show it to be very similar to the full matrix 
Newton in terms of cycles required and final 
gradient values. In fact, the best performance 
of any method is achieved by TNCG-S using 
the exact Hessian. That Truncated Newton, 
an approximation to  full matrix Newton 
methods, should outperform the NEWTON 
routine is perhaps surprising. Similar behav- 
ior has been observed on other classes of nu- 
merical test pr0b1ems.l~ The initial steps of a 
Truncated Newton method interpolate be- 
tween the exact Newton direction and the 
steepest descent direction for the transformed 
equations submitted to preconditioned linear 
conjugate gradient solution. In the case of 
relatively poor initial geometries, the trun- 
cated solution to the Newton equations will 
often result in a better search direction than 
the exact solution. We recall that  a full 
Newton treatment will often diverge from an 
arbitrary structure while methods closer to 
steepest descent are much more tolerant of 
grossly incorrect initial geometries. 

It is clear from inspection of Table IV that 
use of a Hessian cutoff degrades the resulting 

TNCG method. However, it is important in 
the case of larger structures to choose the big- 
gest possible cutoff that  still affords the 
desired degree and rate of convergence. In- 
creasing the size of the cutoff reduces the total 
amount of storage (Table 11) and speeds the 
linear conjugate gradient iterations. The re- 
sults for arachidonic acid (and many other 
test cases not reported here) indicate that a 
cutoff in the 0.1 to 0.01 kcal/mol/A2 range is 
often a good compromise. Use of a Hessian 
cutoff as large as 1.0 appears to severely dam- 
age performance of the algorithm. Finally, we 
note that different variants of TNCG seem to 
react differently to  use of a non-zero cutoff. In 
particular, TNCG-B or TNCG-S is the pre- 
ferred method when the full Hessian is re- 
tained. However, the performance of TNCG-D 
is degraded much more slowly than TNCG-B 
or TNCG-S by a cutoff in the range men- 
tioned above. Thus, we currently use the 
TNCG-D method with a moderate Hessian 
cutoff for problems containing over a few 
hundred atoms. 

The preformance degradation observed 
with the use of large Hessian cutoffs can 
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be partially eleviated by replacing the 
vector-matrix product in step 5 of the PCG 
algorithm with a finite difference approxi- 
mation. '' Since this approximation requires a 
gradient evaluation at each PCG cycle, its 
higher time cost per Truncated Newton itera- 
tion will be justified only if an extremely pre- 
cise answer is required (i.e., an RMS gradient 
per atom smaller than those reported in 
Tables 111-V). 

Results for the small protein crambin are 
provided in Table V. Since the original pa- 
rameterization of the MM2 potential surface 
did not provide for amides, several small ex- 
tensions have been made to enable peptide 
and protein computations. The TNCG-D 
method with a Hessian cutoff varied from 
lo-' (first 39 cycles) to (last 5 cycles) is 
able to reach an  RMS gradient of 3.6 X 

kcal/mol/A per atom. This is the great- 
est reported degree of convergence for any 
Cartesian coordinate protein optimization. 
The energy at the minimum is determined to 
a precision of at least 0.0001 kcal/mol. The 
conjugate gradient MQN method converges 
within a few hundred iterations to a potential 
energy value 10 to 15 kcal above the local 
minimum. After 1200 cycles, the MQN en- 
ergy is still nearly 2 kcal/mol above the 
TNCG-D minimum energy. Further mini- 
mization of the 1200 iteration MQN structure 
with the TNCG-D optimizer results in the 
same minimum as TNCG-D optimization of 
the initial x-ray coordinates. After 600 MQN 
iterations the RMS deviation in atom posi- 
tions between the MQN structure and the ex- 
act minimum is 0.47 A; at  1200 MQN cycles 
the deviation is reduced to 0.28 A. Both the 
full matrix NEWTON and the quasi-Newton 
DAVIDON method are too expensive to apply 

Table V. Comparison of optimization methods for crambin. 

to the crambin problem. Block diagonal meth- 
ods were not attempted in light of their poor 
performance on the arachidonic acid test case. 
In fact, the complete TNCG-D trial with a 
Hessian cutoff of 0.01 kcal/mol/A required 
less total CPU time than the first 600 itera- 
tions of the MQN trial. An increase of the 
Hessian cutoff from 0.01 to 0.1 does degrade 
convergence to a small extent. However, use 
of the latter cutoff still results in convergence 
to within 0.1 kcal/mol of the exact minimum 
and yields a correspondingly small deviation 
in atom positions. 

DISCUSSION 

Use of the Truncated Newton formalism 
significantly reduces both the storage and 
computer time necessary for complete con- 
vergence. For proteins in the size range of 
crambin or lysozyme, use of a Hessian cutoff 
of 0.01 kcal/mol/A' requires storage roughly 
proportional to N'.5. A larger Hessian cutoff 
value of 0.1 further reduces the storage 
growth rate. Similar sparse matrix tech- 
niques coupled with linear conjugate gra- 
dient solution of the normal equations arising 
during least squares fitting have been used 
for crystallographic r e f i~~e rnen t . ' ~ .~~  In this 
setting, approximately 1% of the correspond- 
ing matrix is retained to assure convergence 
for protein structures. 

Overhead for the Truncated Newton proce- 
dure is dominated by the preconditioned 
linear conjugate gradient step. The PCG algo- 
rithm requires several scalar-vector products 
and vector dot products each involving 
3Nfl0ps.~' However, for large N the total PCG 
cost is dominated by the formation of the 
vector-matrix product in step 5.  This product 

Algorithm Evaluations Hessian PCG 
Method Iterations Ener/Grad Hess cutoff Cycles 

- - 300 467 - 
600 993 - - 
900 1403 - - 

1200 1881 - - 

- 
MQN 

- 
- 

TNCG-D 44 88 44 0.01 to 7500 
10-~  

Final RMS 
Energy Gradient 

- 549.8590 9.9 lo-' 
-557.4671 9.2 lo-' 
-561.6985 8.7 lo-' 
-562.4097 9.1 
-564.2269 3.6 

6.5 1 0 - ~  
119 58 0.01 11678 - 564.2269 3.0 10-3 

0.1 10462 -564.1851 9.5 10-2 

TNCG-D 44 89 44 0.01 6402 -564.2264 
58 

67 152 67 0.1 6993 -564.11 16 1.3 TNCG-D 54 128 54 
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needs a number of flops equal to the number 
of non-zero Hessian matrix elements. Since 
the number of elements is O(N1.5) or less 
for large N and moderate Hessian cutoff, 
each PCG iteration should require O(N1.5) 
flops. Since a properly preconditioned linear 
conjugate gradient method is reported to 
average O(N0.5) iterations for convergence,16 
the total overhead for the Truncated Newton 
cycles should be O(N2)  as a worst case. In 
fact, many early cycles will require very few 
PCG iterations and significantly better the 
above analysis. 

The ability of the Truncated Newton proce- 
dure to completely converge to a local mini- 
mum may be of assistance in comparing 
macromolecular potential energy functions. 
For example, the RMS deviation of the fully 
optimized crambin structure from the initial 
x-ray coordinates is 0.71 A for all non- 
hydrogen atoms. After 600 MQN nonlinear 
conjugate gradient iterations, the corre- 
sponding deviation is only 0.47 A while the 
RMS gradient is consistently below 0.1 kcall 
mol/A per atom and near 0.01 on some iter- 
ations. Thus, energy minimization results 
based upon convergence at the 0.1 kcall 
mol/A per atom level may significantly un- 
derestimate the deviation of the (exact) mini- 
mum from the starting structure. This bias is 
particularly severe for nonlinear conjugate 
gradient techniques since our experience in- 
dicates these methods follow “valley bottoms” 
much more closely than Newton-based meth- 
ods and can return low RMS gradients while 
still far from a local minimum. 

Further improvement in the Truncated 
Newton method will most easily be achieved 
by reducing the number of PCG iterations 
used when very close to the minimum. A pre- 
conditioning matrix M which is close to the 
full Hessian matrix H will reduce the number 
of PCG iterations. Note that use of M = H 
would produce convergence in only one itera- 
tion at  the expense of making solution of the 
preconditioning equations a O(N3)  process. 
One attractive possibility involves use of an 
incomplete Cholesky factorization3’ of the 
sparse matrix H as the “exact factorization of 
the preconditioning matrix M (which need 
not be computed explicitly). This precondi- 
tioning greatly improves the PCG algorithm 
in application to certain classes of partial dif- 
ferential  equation^.^^ With appropriate reor- 

ganization of the steps in the algorithm 
outlined in the second section, the incom- 
plete Cholesky factorization can be imple- 
mented with only one vector-matrix product 
per i terat i~n.~’  

Another potential improvement would 
involve setting the initial search direction 
to  something other than the steepest de- 
scent direction upon entering the PCG algo- 
rithm. One option is to determine the initial 
direction by means of a nonlinear conjugate 
gradient or limited memory quasi-Newton 
update applied to the Truncated Newton cy- 
cles (i.e., outside the PCG iterati0ns1.l~ An 
alternate method which also uses informa- 
tion gleaned from the previous Truncated 
Newton cycle has been ~ u g g e s t e d . ~ ~  These 
ideas may be of great assistance very near to 
the minimum where the steepest descent di- 
rection is usually a poor approximation to the 
Newton direction. 

CONCLUSION 

The Truncated Newton method presented 
above appears to be competitive with the best 
optimization techniques reported for small 
molecules and superior to those commonly 
used for energy minimization of large struc- 
tures. Shifting a large portion of the opti- 
mization procedure to solution of the Newton 
equations and away from repeated potential 
energy evaluations should encourage ex- 
perimentation with computationally costly 
potential functions and ease the necessity 
to  approximate currently used functional 
forms in the face of limited computer process- 
ing power. 

Note Added in Proof: Since submission 
of this article, we have implemented a version 
of the incomplete Cholesky factorization 
mentioned above [see T. A. Manteuffel, Math. 
Comp., 34 473 (1980) for details]. This pre- 
conditioning method can greatly reduce the 
number of PCG iterations at the expense of 
additional preconditioning work. A current 
version of the VAX Fortran source code, in- 
cluding the incomplete Cholesky option, is 
available from the authors. 

This work was supported by a grant from the Insti- 
tute of General Medical Sciences to F. M. R. GM-22778. 
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