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Abstract. Motivated by the recent searchable symmetric encryption
protocol of Cash et al., we propose a new multi-client searchable encryp-
tion protocol in this work. By tactfully leveraging the RSA-function, our
protocol avoids the per-query interaction between the data owner and
the client, thus reducing the communication overhead significantly and
eliminating the need of the data owner to provide the online services to
clients at all times. Furthermore, our protocol manages to protect the
query privacy of clients to some extent, meaning that our protocol hides
the exact queries from the data owner. In terms of the leakage to server,
it is exactly the same as Cash et al., thus achieving the same security
against the adversarial server. In addition, by employing attribute-based
encryption technique, our protocol also realizes the fine-grained access
control on the stored data. To be compatible with our RSA-based app-
roach, we also present a deterministic and memory-efficient ‘keyword to
prime’ hash function, which may be of independent interest.

Keywords: Cloud storage · Searchable encryption · Non-interaction ·
Multi-client · RSA function

1 Introduction

Cloud technology is now a major industry trend that offers great benefits to
users. Cloud storage (or data outsourcing) provides an excellent way to extend
the capability to store large volume of data, to prepare for the high velocity
of data generation, and to easily process the high variety of data (the “3V”
of Big Data). In other words, cloud storage is well designed for the big data
era. Meanwhile, data outsourcing raises confidentiality and privacy concerns
[2,9,20–24]. Simple encryption technology can protect data confidentiality easily.
However, it is not possible to search within the encrypted domain. In order to
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search for a particular keyword, user has to decrypt the data first, before start-
ing the searching process. It is not practical especially when the volume of data
is large. Searchable encryption (SE) [5,7,8,11,32] is a cryptographic primitive
addressing encrypted search.

The architecture of SE can be classified into 4 types: single-writer/
single-reader, single-writer/multi-reader, multi-writer/single-reader and multi-
writer/multi-reader. The traditional single-writer/single-reader allows the data
owner to first use a special encryption algorithm which produces an encrypted
version of the database, including encrypted metadata, that is then stored on
an external server. Later, data owner can interact with the server to carry out a
search on the database and obtain the results (this is also called the symmetric
setting as there is only one writer to the database, the owner, who uses sym-
metric encryption.) Single-writer/multi-reader SE allows an arbitrary group of
parties other than the owner to submit search queries. The owner can control
the search access by granting and revoking searching privileges to other users.

In the setting of searching on public-key-encrypted data, users who encrypt
the data can be different from the owner of the decryption key. This creates
the model for multi-writer/single-reader SE. A more generalized model further
allows every user to write an encrypted document to the database as well as to
search within the encrypted domain, including those ciphertexts produced by
other users. This is the multi-reader/multi-writer setting.

In the rest of the paper, we focus on the single-writer/multi-reader setting. In
this framework, whenever a reader (or client) wants to search over the database,
she usually needs to perform a per-query interaction with the writer (or data
owner) and asks the data owner to produce and send back the necessary trapdoor
information to help her carry out the search, as shown in the representative
work [16]. Thus, the data owner is required to be online all the time. However,
the initial goal of the data owner is to outsource his storage and services to the
cloud server, so removing the per-query interaction between the data owner and
the client is a desired feature.

1.1 Our Contributions

In this work, we first present a deterministic and memory-efficient hash function,
which maps keywords to primes. With this function, we then propose an efficient
non-interactive multi-client searchable encryption in the single-writer/ multi -
reader setting, with support for boolean queries. Our construction enjoys the
following nice features:

1. Our construction is motivated by the searchable symmetric encryption (SSE)
protocol of Cash et al. [7] (CASH). When compared to its multi-client ver-
sion [16] (MULTI), we improve the communication overhead between the
data owner and the client significantly. In fact, MULTI requires the client to
interact with the data owner each time she wants to search on database. For
each query, the data owner responds by generating a partial search token and
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sending it back to the client. Then the client generates the full token and for-
wards it to the server to facilitate the searching process. In return, the server
sends to the client an encrypted index (or document identifier), by decrypting
which the client gets the plaintext document identifier. In our construction,
we totally eliminate the interactive process, except at the beginning the client
needs to obtain a search-authorized private key from the data owner for some
permitted keywords. With the private key, the client can generate a search
token for any boolean queries on those permitted keywords. In the return of
the encrypted indices from the server, the client is also able to decrypt them
without obtaining any assistance from the data owner.

2. We also note that there is a naive approach to turn MULTI into non-
interactive setting. The data owner can pre-generate all possible search tokens
for the client. The number of pre-generated tokens is of order O(M), where
M is the number of possible queries the client is allowed to make. Our con-
struction only requires the data owner to generate a search-authorized secret
key to the client. The size of the secret key is of order O(1), which is actu-
ally just 3072 bits (with respect to 1024-bit RSA security) regardless of the
number of permitted queries.

3. We deploy Attribute-Based Encryption (ABE) mechanism to allow the client
to decrypt the encrypted indices given by the server without any assistance
from the data owner. According to our framework, the data owner can also
realize fine-grained access control on his data. In addition, the data owner in
our protocol does not know which particular queries the client has generated
or which documents the client has retrieved, provided that the data owner
has authorized the client to search for a set of permitted keywords. In terms
of information leakage to the server, we show that our construction is exactly
the same as CASH, meaning the transcripts between the client and the server
in real protocol can be properly simulated only with the same leakage profile
as CASH. Regarding the expressiveness, our protocol is similar to CASH,
which allows clients to perform arbitrary boolean queries efficiently.

1.2 Related Works

The first SE by Song et al. [32] is presented in the single-writer/single-reader
setting. The first notion of security for SE was introduced by Goh [14]. Curtmola
et al. [11] proposed the strong security notion of IND-CKA2. Kurosawa and
Ohtaki [19] provided the IND-CKA2 security in the universal composability
(UC) model. On the other hand, Boneh et al. [5] introduced the first public
key encryption with keyword search, together with the security model in the
multi-writer/single-reader architecture.

Kamara et al. [17,18] proposed dynamic SE schemes which allow efficient
update of the database. Golle et al. [15] gave the first SE with conjunctive
keyword searches, in the single-writer/single-reader setting, but its search time
is linear in the number of keywords to search. Most recently, Cash et al. [7]
proposed the first sublinear SE with support for boolean queries and efficiently
implemented it in a large database [6].
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In the single-writer/multi-reader architecture, Curtmola et al. [11] proposed
a general construction based on broadcast encryption, which leads to a relatively
inefficient implementation. The search time of the scheme by Raykova et al. [29]
is linear in the number of documents. The scheme uses deterministic encryption
and directly leaks the search pattern in addition to the access pattern. Recently,
Jarecki et al. [16] extend the scheme by Cash et al. [7] to a single-writer/multi-
reader setting, which preserves all nice features provided by the original scheme
but requires a per-query interaction between the data owner and the client.

In the multi-writer/multi-reader setting, a number of schemes [1,3,12,33]
were presented with a high level of security, but the search time is linear in
the number of keywords per document. The scheme in [27] improved the search
complexity by removing the need of TTP in previous schemes. In addition, a
stronger model for access pattern privacy was proposed in [30]. However, all
these schemes only support single keyword searches.

2 Preliminaries

In this section, we give a list of notations and terminologies (cf. Table 1) used
through our work and a brief review of hardness assumptions and cryptographic
primitives deployed in our construction.

2.1 Hardness Assumptions

Definition 1 (DDH problem). Let G be a cyclic group of prime order p,
the decisional Diffie-Hellman (DDH) problem is to distinguish the ensembles
{(g, ga, gb, gab)} from {(g, ga, gb, gz)}, where the elements g ∈ G and a, b, z ∈ Zp

are chosen uniformly at random. Formally, the advantage for any PPT distin-
guisher D is defined as:

AdvDDH
D,G (κ) = |Pr[D(g, ga, gb, gab) = 1] − Pr[D(g, ga, gb, gz) = 1]|.

We say that the DDH assumption holds if for any PPT distinguisher D, its
advantage AdvDDH

D,G (κ) is negligible in κ.

Definition 2 (Strong RSA Problem [10]). Let n = pq, where p and q are
two κ-bit prime numbers such that p = 2p′ + 1 and q = 2q′ + 1 for some primes
p′, q′. Let g be a random element in Z

∗
n. We say that an efficient algorithm A

solves the strong RSA problem if it receives as input the tuple (n, g) and outputs
two elements (z, e) such that ze = g mod n.

2.2 Pseudorandom Functions

Let F : {0, 1}κ × X → Y be a function defined from {0, 1}κ × X to Y. We say F
is a pseudorandom function (PRF) if for all efficient adversaries A, its advantage

Advprf
F,A(κ) = |Pr[AF (K,·)(1κ)] − Pr[Af(·)(1κ)]| < negl(κ), where K

$← {0, 1}κ

and f is a random function from X to Y.
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Table 1. Notations and terminologies

Notation Meaning

κ A security parameter

idi The document identifier of the i-th document

Widi A list of keywords contained in the i-th document

DB = (idi, Widi)
d
i=1 A database consisting of a list of document identifier and

keyword-set pairs

DB[w] = {id : w ∈ Wid} The set of identifiers of documents that contain
keyword w

W =
⋃d

i=1 Widi The keyword set of the database

RDK The retrieval decryption key array, used to retrieve the
original documents

U The attribute universe of the system

[T ] The set of positive integers not larger than T , i.e.,
{1, 2, . . . , T}

a‖b The concatenation of a and b

s
$← S The operation of uniformly sampling a random element s

from a set S

sterm The least frequent term among queried terms (or
keywords) in a search query

xterm Other queried terms in a search query (i.e., the queried
terms excluding sterm)

PPT The abbreviation of probabilistic polynomial time

negl(κ) A negligible function in the security parameter κ

2.3 Non-interactive Multi-client Searchable Encryption

In our single-writer/multi-reader (we call it multi-client in the rest of this paper)
setting, there are three parties: the data owner of the plaintext database, a
service provider that stores the encrypted database, and the clients who want
to perform search queries over the database. In more details, the data owner
outsources his search service to a cloud server, and generates a search-authorized
private key for each client in terms of her credentials. When a client performs a
search query, she generates the search token by herself using her own private key
and then forwards the token to the service provider. With the token, the server
finally retrieves the encrypted identifier or documents for the client. Formally,
the syntax of our non-interactive multi-client searchable encryption consists of
the following algorithms:

• EDBSetup(1κ,DB,RDK,U): the data owner takes κ, DB,RDK and U as input
and generates the system master key MK and public key PK, with which he
processes the plaintext database DB and outsources the encrypted database
EDB and XSet to the server.
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• ClientKGen(MK, S,w): for a client with attribute set S, the data owner takes
MK, S and a set w of permitted keywords as input and generates a search-
authorized private key sk for the client. Note that w is authorized by the data
owner according to the client’s credentials.

• TokenGen(sk,Q): the client uses her private key sk to produce the search token
st for the query Q she wants to perform.

• Search(st,EDB,XSet): with the search token st, the server carries out the
search over the encrypted database EDB and XSet and returns the matching
results R to the client.

• Retrieve(sk,R): the client uses her private key sk to decrypt the search result R
(returned by the sever) and retrieves the original documents using the relevant
document identifiers and decryption keys.

2.4 Security Definitions

In this section, we give security definitions of our searchable encryption. In the
multi-client setting, we consider both securities with respect to (w.r.t.) the adver-
sarial server and the clients. Similar to [7], we do not model the retrieval of
encrypted documents in the security analysis and just focus on the storage and
processing of the metadata.

First, let us consider the security w.r.t. the adversarial server, which can be
extended straightforwardly from [7]. This security is parameterized by a leakage
function L, as described below, which captures information allowed to learn by
an adversary from the interaction with a secure scheme. Loosely speaking, the
security says that the server’s view during an adaptive attack can be properly
simulated given only the output of the leakage function L. As in [7], the “adap-
tive” here means the server selects the database and queries. Moreover, it selects
the authorized keywords for each client in our setting.

Let Π = (EDBSetup,ClientKGen,TokenGen,Search) be a searchable encryp-
tion scheme and A,S be two efficient algorithms. The security is formally defined
via a real experiment RealΠA(κ) and an ideal experiment IdealΠA,S(κ) as follows:

RealΠA(κ): A(1κ) chooses a database DB. Then the experiment runs the
algorithm (MK,PK,EDB,XSet) ← EDBSetup(1κ,DB,RDK,U) and returns
(PK,EDB,XSet) to A. After that, A selects a set w of authorized keywords
for a client and then repeatedly chooses a search query q, where we assume
the keywords associated with q are always within the authorized keyword set
w. To respond, the experiment runs the remaining algorithms in Π (including
ClientKGen, TokenGen and Search), and gives the transcript and client output
to A. Eventually, the experiment outputs the bit that A returns.

IdealΠA,S(κ): The game initializes an empty list q and a counter i = 0. A(1κ)
chooses a DB. Then the experiment runs (PK,EDB,XSet) ← S(L(DB)) and
gives (PK,EDB,XSet) to A. A then repeatedly chooses a search query q. To
respond, the experiment records this query as q[i], increments i and gives
the output of S(L(DB,q)) to A, where q consists of all previous queries in
addition to the latest query issued by A. Eventually, the experiment outputs
the bit that A returns.
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Definition 3 (Security w.r.t. Server). The scheme Π is called L-
semantically-secure against adaptive attacks if for all PPT adversaries A there
exists an efficient simulator S such that |Pr[RealΠA(κ) = 1]−Pr[IdealΠA,S(κ)]| ≤
negl(κ).

Before going ahead, we first give the description of leakage function L used
in our security analysis. We note that, for sake of simplicity, we only present
the detailed security proof of our scheme for conjunctive queries, so we start by
describing the leakage function for such a simple scenario. Actually, the scheme
and security proof can be readily adapted to any search boolean queries, which
will be further discussed later.

In the following, we represent a sequence of T conjunctive queries by q =
(s,x), where s[t] and x[t, ·] for t ∈ [T ] denote the sterm and xterms in the t-th
query respectively, and each individual query is written as q[i] = (s[i],x[i, ·]).
With DB and q as input, the leakage function outputs the following leakage
items:

• N =
∑d

i=1 |Widi
| is the number of keyword-document pairs, which is the size

of EDB and XSet.
• s̄ ∈ N

T is the equality pattern of the sterms s, indicating which queries have
the same sterms. It is calculated as an array of integers, such that each integer
represents one sterm. For instance, if we have s = (a, b, c, a, a), then s̄ = (1,
2, 3, 1, 1).

• SP[σ] is the size pattern of the queries, which is the number of matching results
returned for each stag. Note that we index it by the values of s̄, i.e., σ ∈ s̄,
instead of the query number t as in [7], so we have SP[̄s[t]] = |DB[s[t]]|.

• RP[t, α] = DB[s[t]] ∩ DB[x[t, α]], where s[t] �= x[t, α], reveals the intersection
of the sterm with any other xterm in the same query.

• SRP[t] = DB[s[t]] is the search result pattern corresponding to the stag of the
t-th query.

• IP[t1, t2, α, β] =

{
DB[s[t1]] ∩ DB[s[t2]], if s[t1] �= s[t2] and x[t1, α]=x[t2, β]
∅, otherwise

is the conditional intersection pattern, which is a generalization of the IP
structure in [7].

• XT[t] = |x[t, ·]| is the number of xterms in the t-th query.

The leakage function for our protocol is similar to [7], but a number of com-
ponents have been generalized and some additional components are introduced.
The generalization of SP is straightforward. RP has changed a lot. Within a
query, it is possible to test the results from the stag against any other keyword,
since a full xtoken is sent to the server. RP captures this as the intersection
between the sterm and xterms. IP is also generalized, where any of the sterms
for each conjunctive query is considered instead of only one xterm per query. Of
the additional pieces of leakage, XT is straightforward. However, there is also a
component SRP which represents the results corresponding to any sterm. This
component overstates the true leakage but is required by the design of the proof.
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Actually, RP and IP also overstate the leakage they represent, because the server
in real protocol never has access to the unencrypted indices.

Next, we continue to consider the security w.r.t. adversarial clients. In our
setting, whenever a legitimate client registers to the system, the data owner
assigns a set of keywords and generates the associated private key for the client
according to her attributes or credentials. Thus, each client is only permitted
to perform search queries on the authorized keywords in our system. Loosely
speaking, the security requires that it be impossible to forge a valid search token
for a query containing some non-authorized keywords, even for an adaptive client
(who can select the authorized keywords by herself). That is, the malicious client
is not allowed to gain information beyond what she is authorized for. Formally,
the security is defined via the following game ExpUF

A,token(κ) played between a
challenger C and an adversary A:

Initialization: the challenger runs the setup algorithm (MK,PK,EDB,XSet) ←
EDBSetup(1κ,DB, RDK,U) and returns the system public key PK to the
adversary A.

Client key extraction: when receiving a private key extraction request for
keywords w = (w1, . . . , wn), the challenger C runs the client key generation
algorithm sk ← ClientKGen(MK, S,w) and sends back sk to A.

Output: Eventually, the adversary outputs a search token st for a new query
containing some keyword w′ /∈ w, and the challenger outputs 1 if st is valid.

Definition 4 (Security w.r.t. Client). The search token in Π is said to be
unforgeable against adaptive clients if for all PPT adversaries A its advantage
Pr[ExpUF

A,token(κ) = 1] ≤ negl(κ).

Note that in our syntax search tokens are produced by clients using their
private keys, so if the generation of valid tokens is (almost) equivalent to that
of the corresponding private key, then the security can be formulated in terms
of forging a valid private key instead of a search token (i.e., the goal of the
adversary in the game is to finally output a valid private key for some un-
authorized keyword w′ /∈ w). For the proof of our scheme, we will follow the
latter equivalent way.

3 A Deterministic, Memory-Efficient Mapping
from Keywords to Primes

Before presenting our multi-client SE protocol, we first give an efficient ‘keyword
to prime’ hash function. In our work, we assume that the search index keywords
have been mapped during the encrypted database setup to prime integers, in
order to be compatible with our RSA-based token-derivation function, and that
the token generation and search algorithms can re-compute the same correspond-
ing primes for the keywords searched by the client. A straightforward approach
to implement such a mapping would be to use a lookup table at the data owner
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and client, storing all keywords and their corresponding primes. While compu-
tationally efficient, this approach requires memory storage at the data owner
proportional to the total number |W| of keywords in the database index, and
memory storage at the client proportional to the number of keywords n to be
searched for by this client, which may be prohibitive and would eliminate the
advantage of the compact (constant length independent of n) client tokens of
our protocol.

In this section, we show how to avoid the storage overheads of the lookup
table approach, by constructing a deterministic and memory-efficient collision-
resistant hash function for mapping keywords to their corresponding primes. In
this construction, the memory requirements at the data owner and client are
constant, indpendent of the number of keywords |W| in the index or the number
of keywords n at the client.

Our construction of a ‘keyword to prime’ collision-resistant hash is a deter-
ministic variant of the randomized ‘strings to primes’ hash function introduced
by Gennaro, Halevi and Rabin [13].

Construction. The main idea is to use the randomized hash function introduced
in [13] along with a primality test algorithm, derandomizing the result by using
a pseudorandom function (PRF) and choosing the first prime in a psedurandom
sequence of integers as the hash output. Our construction builds a collision-
resistant ‘keyword-to-prime’ hash function family H, where each function h ∈
H maps the keyword space W to the set P2κ of 2κ-bit prime integers. The
construction uses the following ingredients:

• A collision-resistant hash family H̄, where each function h̄ ∈ H̄ maps W to
the set of κ-bit strings {0, 1}κ.

• A PRF family F , where each function Fk ∈ F maps {0, 1}κ to {0, 1}κ.

We let Int denote the natural mapping from a binary string in c ∈ {0, 1}κ to
the integer Int(c) in [0, 2κ − 1] whose binary representation is c, and denote
by Bin its inverse mapping from integers to binary strings. A hash function
h : W → P2κ from our family H is specified by randomly picking a function h̄
from the collision-resistant family H̄ and a pseudorandom function Fk from the
PRF family F . The algorithm for evaluating the function h on a given keyword
x ∈ W using (h̄, Fk) to get a corresponding prime w ∈ P2κ is presented in
Algorithm 1.

Lemma 1. (1) The hash family H is collision-resistant if the hash family H̄
is collision-resistant. (2) Furthermore, if family F is a pseudorandom function
family, and the density of primes in the intervals [2κ · h̄(x), 2κ · h̄(x) + 2κ − 1]
is ≥ 1/ ln(22κ) for each x (as heuristically expected from the Prime Number
Theorem), then for each input x ∈ W and m ≥ 1, the number of iterations of
the while loop in Algorithm1 is ≤ 1.4 · m · κ, except with probability negligibly
larger than exp(−m).

We now estimate the practical cost of evaluating our hash function h.
The memory storage costs are constant (independent of the size of the key-
word set W), namely the cost of storing the two keys for the functions h̄ and the
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Algorithm 1. h: Hashing from Keywords to Primes
Input: keyword x ∈ W, functions h̄ : W → {0, 1}κ ∈ H̄, Fk : {0, 1}κ → {0, 1}κ ∈ F
Output: prime integer w ∈ P2κ

1: foundprime ← False
2: r ← 0.
3: while foundprime = False do
4: let w ← 2κ · Int(h̄(x)) + Int(Fk(Bin(r))) // random int. with MS bits equal to

h̄(x)
5: if w is prime then
6: let foundprime ← True
7: end if
8: let r ← r + 1 mod 2κ

9: end while
10: return w.

PRF Fk. The main computation cost in Algorithm1 is the cost of each primality
check of the 2κ-bit integer w in the iterations of the while loop. According to
Lemma 1 with m = 3, the number of such primality tests would be L ≤ 4.2 · κ,
except with small probability ≈0.05. Let Texp(2κ) denote the time needed to
compute a full exponentiation modulo a 2κ-bit modulus. Assuming that we
implement these primality checks using a Miller-Rabin probabilistic primality
test [25,28], the expected cost [31, Chap. 10] of these L tests (at a 2−κ false
positive probability) would be at most κ/2 exponentiations modulo a 2κ-bit
integer for the last while loop iteration, plus an expected ≤2 exponentiations
modulo a 2κ-bit modulus for all other L − 1 iterations (which give compos-
ites), giving a total expected time of Th ≤ (κ/2 + 2 · L) · Texp(2κ). Further-
more, using fast trial division by small primes up to (say) 101 before testing
with Miller-Rabin, would reduce the number of dominant Miller-Rabin tests to
LMR ≈ (

∏
prime p≤101

p−1
p ) · L ≤ 0.11 · L. Thus, the overall expected time for

evaluating our hash function would be

Th ≤ (κ/2 + 0.22 · L) · Texp(2κ) ≈ 1.5κ · Texp(2κ).

Thus, for a typical security parameter κ = 100, we estimate Th to be equiva-
lent to about 150 · Texp(200) (i.e. 150 exponentiations with a 200-bit modulus).
To put this into context with the rest of our protocol, the latter requires dur-
ing each token generation to perform an exponentiation modulo a λ ≈ 2048-
bit modulus (to make sure the RSA problem has a ≈2100 secrity level) for
each keyword w. Since the time Texp(κ) for an exponentiation modulo a κ-
bit modulus is, assuming classical arithmetic, at least quadratic in κ, we have
Texp(λ)/Texp(2κ) = Texp(2048)/Texp(200) ≥ (2048/200)2 ≈ 104, so the cost
of evaluating our hash function for w is expected to be only Th ≈ 150/104 ·
Texp(2048) ≈ 1.44 · Texp(2048), i.e. equivalent to only 1.44 exponetiations with
a 2048-bit modulus, thus adding only a reasonable overhead to the computa-
tion time of our protocol for typical security parameters (2.44 exponentiations
instead of 1 exponentiation modulo 2048-bit per keyword).
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4 Our Construction

In this section, we present our SE scheme which mainly consists of four algo-
rithms Π = (EDBSetup,ClientKGen,TokenGen,Search). For completeness, we also
give the description of a simple original document retrieval algorithm Retrieve, by
which the client finally retrieves the desired documents from the cloud server. In
our construction, we deploy CP-ABE as a primitive, which has been an effective
and scalable access control mechanism for encrypted data and generally consists
of four algorithms ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec). For its
formal syntax and semantic security, please refer to [4]. We always assume that
the set W =

⋃d
i=1 Widi

of keywords in DB = (idi,Widi
)d
i=1 consists of distinct

primes, which are mapped from the real keywords by our ‘keyword to prime’
function given in Sect. 3, and that a specific policy A is implicitly specified for
each document identifier idi.

EDBSetup(1κ,DB,RDK,U): takes as input a security parameter κ, a database
DB = (idi,Wi)d

i=1, a retrieval decryption key array RDK and an attribute
universe U , it chooses big primes p, q, random keys KI ,KZ ,KX for a PRF
Fp and KS for a PRF F . Then it outputs the system master key MK =
(p, q,KS ,KI ,KZ ,KX , g1, g2, g3,msk) and the corresponding system public key

PK = (n, g,mpk), where (mpk,msk) ← ABE.Setup(1κ,U), n = pq, g
$← G and

gi
$← Z

∗
n for i ∈ [3]. Then it generates the encrypted database EDB and XSet

with the system keys as the following Algorithm 2.

Algorithm 2. EDB Setup Algorithm
Input: MK, PK, DB, RDK
Output: EDB,XSet
1: function EDBGen(MK, PK, DB, RDK)
2: EDB ← {}; XSet ← ∅
3: for w ∈ W do
4: c ← 1; stagw ← F (KS , g

1/w
1 mod n)

5: for id ∈ DB[w] do
6: � ← F (stagw, c); e ← ABE.Enc(mpk, id||kid,A)

7: xind ← Fp(KI , id); z ← Fp(KZ , g
1/w
2 mod n||c)

8: y ← xind · z−1; xtag ← gFp(KX , g
1/w
3 mod n)·xind

9: EDB[�] = (e, y); XSet ← XSet ∪ {xtag}
10: c ← c + 1
11: end for
12: end for
13: return EDB,XSet
14: end function

ClientKGen(MK, S,w): assuming that a legitimate client with attribute set S is
permitted to perform searches over keywords w = (w1, w2, . . . , wn), the data
owner generates a corresponding private key sk = (KS ,KI ,KZ ,KX , skS , skw),
where skS ← ABE.KeyGen(msk, S) and skw = (sk(1)

w , sk
(2)
w , sk

(3)
w ) is computed as
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Algorithm 3. Token Generation Algorithm
Input: sk, Q
Output: st
1: function TokenGen(sk, Q)
2: st, xtoken ← {}; s̄ ← ∅
3: s̄ ← s̄ ∪ {w′

1}
4: x ← w̄ \ s̄

5: stag ← F
(
KS , (sk

(1)
w )

∏
w∈w\{w′

1} w
mod n

)
= F (KS , g

1/w′
1

1 mod n)
6: for c = 1, 2, . . . until the server stops do
7: for i = 2, . . . , m do

8: xtoken[c, i] ← g
Fp
(
KZ,(sk(2)

w )

∏

w∈w\{w′
1} w

modn||c)·Fp
(
KX,(sk(3)

w )

∏

w∈w\{w′
i
} w

modn
)

= g
Fp(KZ,g

1/w′
1

2 mod n||c)·Fp(KX,g
1/w′

i
3 mod n)

9: end for
10: end for
11: st ← (stag, xtoken)
12: return st
13: end function

sk(i)
w =

(
g
1/
∏n

j=1 wj

i mod n
)

for i ∈ [3].

At last, the data owner sends back sk together with w to the client, where we
implicitly assume that the keyword appearance frequency satisfies |w1| < |w2| <
· · · < |wn|.
TokenGen(sk,Q): whenever the client wants to search a boolean query Q on
keywords w̄ ⊆ w, she first chooses sterms s̄ ⊆ w̄ according to the query Q. For
simplicity, we take the conjunctive query, Q = w′

1 ∧w′
2 ∧· · ·∧w′

m, as an example
and assume that w′

1 is the chosen sterm, then the search token st (including
stags and xtoken) for this query is computed as in Algorithm3.

Search(st,EDB,XSet): takes the search token st = (stag, xtoken[1], xtoken[2], · · · )
for a query Q and (EDB,XSet), the server returns the search result R as in
Algorithm 4.

Retrieve(sk,R): the client with private key skS decrypts the encrypted indices
(search result R) and gets the matching document identifiers and retrieval
decryption keys:

• For each e ∈ R, recover (id||kid) ← ABE.Dec(skS , e) if the client’s attributes in
S satisfy the access policy A assigned by the data owner to document identifier
id.

• Send id to the server, get the encrypted document ct = Enc(kid, doc), and
retrieve the document doc = Dec(kid, ct) with the corresponding symmetric
key kid.

Note that our protocol is derived from CASH and the RSA function, its
correctness is easy to verify, which follows from the correctness of CASH and the
underlying ABE. In addition, it is easy to observe that the plaintext identifiers
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Algorithm 4. Search Algorithm
Input: st = (stag, xtoken[1], xtoken[2], · · · ),EDB,XSet
Output: R
1: function Search(st,EDB,XSet)
2: R ← {}
3: for stag ∈ stags do
4: c ← 1; � ← F (stag, c)
5: while � ∈ EDB do
6: (e, y) ← EDB[�]
7: if xtoken[c, i]y ∈ XSet for all i then
8: R ← R ∪ {e}
9: end if

10: c ← c + 1; � ← F (stag, c)
11: end while
12: end for
13: return R
14: end function

are leaked to the server during the second step of our Retrieve procedure, which
in fact can be avoided by deploying e.g., blind storage in [26]. In this work, we
are mainly concerned with search on encrypted indices, for more details about
blind storage please refer to [26].

5 Security Analysis

In this section, we show the security of our protocol against the adaptive server
and the client one after another. Similar to [7], we first give a proof of security
against non-adaptive attacks w.r.t. server, and further discuss the proof of full
security later. As to the security w.r.t. client, we use a slight variant of security
definition where the goal of the adversarial client is to generate a new valid
private key.

Theorem 1. Our scheme Π is L-semantically secure against non-adaptive
attacks where L is the leakage function defined as before, assuming that the DDH
assumption holds in G, that F and Fp are secure PRFs and that ABE is a CPA
secure attribute-based encryption.

Theorem 2. Our scheme Π is secure against malicious clients, i.e., search
token in Π is unforgeable against adaptive attacks, assuming that the strong
RSA assumption holds.

Theorem 3. Let L be the leakage function defined before, our scheme Π is
L-semantically secure against adaptive attacks, assuming that the DDH assump-
tion holds in G, that F and Fp are secure PRFs and that ABE is a CPA secure
attribute-based encryption.

We remark that for lack of space, we omit the detailed proofs here, which
will be given in the full version.
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6 Further Extension

For sake of simplicity, we only presented our protocol and its security analysis
for the case of conjunctive queries. Similar to [7,16], our protocol can also be
readily adapted to support such form of boolean queries “w1 ∧ ψ(w2, . . . , wm)”,
where ψ is a boolean formula over the keywords (w2, . . . , wm) and wi belongs to
the client’s permitted keyword set w. In this case, the client calculates the stag
corresponding w1 and the xtoken for the other keywords and forwards the search
token (stag, xtoken) and the boolean formula ψ to the server. Then the server
uses stag to retrieve the tuples (e, y) containing w1. The only difference from the
conjunctive case for the server is the way he determines which tuples match the
sub-boolean query ψ. For the t-th tuple, instead of checking if xtoken[c, i]y ∈ XSet
for all 2 ≤ i ≤ m, the server will set a series of boolean variables v2, . . . , vm such
that

vi =
{

1, xtoken[c, i]y ∈ XSet
0, otherwise ,

and evaluate the value of ψ(v2, . . . , vm). If it is true, meaning the tuple matches
the query, the server returns the encrypted index e. Clearly, the search com-
plexity for such boolean queries is still O(|DB[w1]|), the same as for conjunctive
queries. For the same set of keywords, the leakage information to the server for
boolean case is also the same as for the conjunctive case, except that the boolean
formula ψ is exposed to the server too. Hence, the proof for this case can also
be readily adapted. For the support of other boolean queries, please refer to the
details of [7].

7 Security and Performance Comparison

In general, we focus on the privacy of data owner in (multi-client) searchable
encryption settings. In some scenarios, however, the clients may not want the
data owner to get the information about the search queries they made or hope
that the data owner learns as little as possible about the queries performed by
themselves.

To achieve the additional property mentioned above, Jarecki et al. [16] fur-
ther augmented their multi-client SSE to the outsourced private information
retrieval (OSPIR) setting. Same as the underlying protocol, the enhanced pro-
tocol OSPIR still requires the clients to interact with the data owner and to
submit each boolean formula for each boolean query, although it enables to hide
the exact queried values from data owner. Our initial goal is to avoid the inter-
action between the data owner and the clients, but we also succeed to protect
the privacy of the clients to some extent. More precisely, the data owner in
our multi-client SE only knows the queried values belong to the keyword set
that is authorized by the data owner according to the client’s credentials at the
beginning, but he has no means to learn what kind of queries the client made.
Moreover, he cannot learn the exact queried values of the search. Therefore, our
multi-client SSE also enjoys some additional nice security features.
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In contrast to previous works such as [7,16], we further enforce the secu-
rity of documents by employing CP-ABE to encrypt the document identifiers
and retrieval decryption keys, by which our protocol realizes the fine-grained
access control on the documents at the same time. In this case, even though
the client can retrieve many encrypted indices, she still cannot learn the match-
ing document identifiers and retrieval keys if her attributes do not satisfy the
access policy associated with the ciphertext (encrypted index). Regarding the
leakage information learned by the server, it is easy to observe that our protocol
is exactly the same as [7,16].

Both our protocol and MULTI [16] are based on the CASH [7], but they rely
on different methods and have distinct features. Compared to MULTI, our pro-
tocol manages to avoid the interaction between the data owner and the client,
except at the beginning the client gets a search-authorized private key for some
permitted keyword set. Moreover, as discussed before, we achieve the fine-grained
access control on the stored documents by leveraging the ABE technique. Iden-
tical to MULTI, our protocol also supports any boolean queries. All the func-
tionality features are summarized in Table 2.

Table 2. Functionality analysis

Reference Query-type Multi-user Interactiona Access control

Cash et al. [7] Boolean No - No

Jarecki et al. [16] Boolean Yes Yes No

Our scheme Boolean Yes No Yes
aThe interaction needed between the data owner and the clients whenever
a client performs search queries.

In the above, we give a brief security and function analysis of our protocol
and a comparison with the representative multi-client SSE in [16] (MULTI).
Next, we continue to analyze the efficiency of our protocol. Due to the fact
that both our protocol and the MULTI are under the framework of CASH,
the communication overhead between the data owner and the server (mainly
contributed by (EDB,XSet) during the setup phase) and that between the client
and the server (mainly contributed by (stag, xtoken) during the search phase) are
almost identical, except that in our protocol document identifiers are encrypted
via ABE instead of symmetric encryption. Beside the storage overhead intro-
duced by the ABE ciphertext, using ABE also brings some computational cost
to the data owner in contrast to exploiting symmetric encryption. In addition,
the data owner needs to compute one extra exponentiation (i.e., the RSA func-
tion) for each calculation of the PRF during the setup phase, totally introducing
(2

∑
w∈W |DB[w]|+ |W|) exponentiation operations for the whole database. For-

tunately, the encrypted database (EDB,XSet) are outsourced to the server once
and forever, hence in this part we focus on analyzing the communication over-
head between the data owner and the client as well as their computational cost
introduced by the frequent search queries.
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For a conjunctive query, e.g., Q = (w1 ∧ w2 ∧ · · · ∧ wm) performed by a
client, we assume that the associated keywords belong to the client’s authorized
keyword set w, i.e., wi ∈ w for i ∈ [m]. To perform such a search, the client
in [16] has to interact with the data owner each time and gets the correspond-
ing trapdoor information and authentication information, where the data owner
needs to calculate (m − 1) exponentiations and an authenticated encryption.
In contrast, the client in our protocol only needs to get from the data owner
some keyword-related (and attribute-related) secret information at the begin-
ning, where the data owner needs to computes 3 exponentiations and generates
an attribute-related secret key for each client, and then she can perform the
following searches by herself at the cost of introducing (m + 1) additional expo-
nentiations to the generation of xtoken. Note that following our approach the
client needs not to intact with the data owner ever after receiving her secret key
because she can use the keyword-related part to generate the search tokens by
herself only if she performs a query complying to the authorized keyword set.
Therefore, once the data owner in our protocol outsourced his data to the server,
he needs not to be online all the time. Precisely, the communication (comm.)
overhead and the computational (comp.) cost w.r.t. the data owner and the
client during each query are summarized in Table 3. We remark that in the table
we only focus on the main comm. overhead and comp. cost contributed by the
queried keywords, and omit the less contributed part, e.g., AuthEnc in [16] and
ABE.KeyGen (which is only computed once for each client) in our protocol.

Table 3. Communication overhead between client and data owner & their computa-
tional cost

Conjunctive query Q = (w1 ∧ w2 ∧ · · · ∧ wm), where wi ∈ w

Reference Comm. overhead Data owner’s comp. cost Clients’ comp. cost

Cash et al. [7] - |DB[w1]|(m − 1) · exp -

Jarecki et al. [16] (m − 1)|G| (m − 1) · exp |DB[w1]|(m − 1) · exp

Our scheme 3|Z∗
n| 3 · exp (|DB[w1]|(m − 1)

+(m + 1)) · exp

exp: the exponentiation operation on the group; | · |: the size of a finite set or group,
e.g., |G|; w: the authorized keyword set for a client.

It is easy to see from this table the communication complexity of our protocol
for each conjunctive query is O(1), even taking into account of all the other part
of the private key, e.g., the attribute-related key skS , and that of Jarecki et al.
[16] is O(m). Moreover, when the client performs k conjunctive queries, which
are assumed comply to her authorized keyword set w, the complexity of our
protocol remains the same but that of [16] is O(k · m), which increases linearly
with the number of legitimate queries.
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8 Conclusions

In this paper we present a new efficient multi-client searchable encryption pro-
tocol based on the RSA function. Our protocol avoids the per-query interaction
between the data owner and the client, which decreases their communication
overhead significantly. Meanwhile, our protocol can protect the privacy of the
client to some extent. Precisely, the data owner in our protocol only knows
the permitted search keyword set of the client, but has no means to learn the
exact type of search queries or documents. Moreover, by employing attribute-
based encryption, our protocol realizes fine-grained access control on the stored
data. Support for searchability and access control simultaneously is actually a
desirable feature in the practical data sharing scenarios. However, our current
protocol only allows one data owner to share his data with many clients. We
leave as an open problem to construct a system with the same advantages of
ours while also support multi-data owner setting.
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