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Abstract

We propose a polynomial-based numerical scheme for solving some important

nonlinear partial differential equations (PDEs). In the proposed technique, the

temporal part is discretized by finite difference method together with θ -weighted
scheme. Then, for the approximation of spatial part of unknown function and its

spatial derivatives, we use a mixed approach based on Lucas and Fibonacci

polynomials. With the help of these approximations, we transform the nonlinear

partial differential equation to a system of algebraic equations, which can be easily

handled. We test the performance of the method on the generalized Burgers–Huxley

and Burgers–Fisher equations, and one- and two-dimensional coupled Burgers

equations. To compare the efficiency and accuracy of the proposed scheme, we

computed L∞, L2, and root mean square (RMS) error norms. Computations validate

that the proposed method produces better results than other numerical methods.

We also discussed and confirmed the stability of the technique.
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1 Introduction

Nonlinear partial differential equations (PDEs) are used tomodel many physical phenom-

ena arising in sciences and engineering. As a result of their considerable applications and

popularity, much attention has been devoted to develop an accurate and efficient numeri-

cal method for solving PDEs. Consider a one-dimensional nonlinear parabolic partial dif-

ferential equation of the form

Yt + αYmYξ – βYξξ = γ f (Y ), (1)
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where α, β , γ are real parameters,m is a positive integer, and f (Y ) is a nonlinear function.

The initial and boundary conditions are

Y (ξ , 0) = Y0(ξ ), a ≤ ξ ≤ b, t > 0, (2)

Y (a, t) = g1(t), Y (b, t) = g2(t). (3)

When f (Y ) = Y (1 – Ym)(Ym – ǫ), Eq. (1) defines the generalized Burger–Huxley (GBH)

equation

Yt + αYmYξ – βYξξ = γY
(

1 – Ym
)(

Ym – ǫ
)

, 0≤ ǫ ≤ 1, t > 0. (4)

Equation (4) describes the interaction between convection, reaction, and diffusion pro-

cesses. When α = 0, β = 1, andm = 1, Eq. (4) reduces to the Huxley equation investigating

wall motion in liquid crystallography and propagation of pulse in nerve fibers. For γ = 0,

m = 1, and β = 1, Eq. (4) reduces to the Burger equation used for analysis of nonlinear

wave propagation, aspect of turbulence, traffic flows, and shock waves [1]. Similarly, when

f (Y ) = Y (1 – Ym), Eq. (1) becomes the generalized Burger Fisher (GBF) equation

Yt + αYmYξ – βYξξ = γY
(

1 – Ym
)

, t > 0. (5)

The generalized Burger–Fisher equation has a wide application in fluid mechanics, gas

dynamics, plasma physics, number theory, elasticity, and heat conduction problems [2].

Equation (5) is a highly nonlinear model, which includes a combination of reaction, con-

vection, and diffusion mechanisms. When γ = 0 and m = 1, Eq. (5) reduces to the Fisher

equation having applications in population biology, chemistry, and biological sciences

such as spreading of bacterial colonies, spread of reaction fronts in chemically bistable

systems, and switching in nonlinear optics [1].

Next, we consider the following two-dimensional coupled viscous Burger equations:

Yt +μ{Yξξ + Yηη} + ν(YYξ ) + α(YZ)ξ + γ {YYξ + ZYη} = 0, (6)

Zt +μ{Zξξ + Zηη} + ν(ZZξ ) + β(YZ)ξ + γ {YZξ + ZZη} = 0, (ξ ,η) ∈ Ŵ, (7)

with initial and boundary conditions

Y (ξ ,η, t) = Y0(ξ ,η), Z(ξ ,η, t) = Z0(ξ ,η), (ξ ,η) ∈ Ŵ, t = 0,

Y (ξ ,η, t) = h(t), Z(ξ ,η, t) = g(t), (ξ ,η) ∈ ∂Ŵ, t ≥ 0, (8)

where Ŵ and ∂Ŵ represent the domain and its boundary, respectively, and μ, η, α, and

β are arbitrary constants. The system was introduced by Esipov [3] to study a model of

polydispersive sedimentation. This system has numerous applications in science and en-

gineering such as gas dynamics, viscous flow of turbulence, shock waves, sedimentation

of particles in fluid suspension, elasticity, and heat conduction problems [4, 5].

Many numerical methods have been applied to approximate solutions of these equa-

tions. For example, the finite difference method [6], spectral method [7], differential

quadrature method [8, 9] and Adomian decomposition method [10]. Khattak [11] used a
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meshfree collocation method, whereas Zhu and Kang [12] applied B-spline interpolation

for solution the Burger–Fisher equation. Celik [13] studied the Haar wavelet method for

solving GBH equation. Dehghan [14] worked on a mixed collocation and finite difference

method. Haq et al. [15] numericallly solved the Burger–Huxley equation using a meshless

method of line. Zhang et al. [16] used the local discontinuous Galerkin method, whereas

in [17] the author proposed a pseudospectral method for approximation of GBF equation.

Wasim et al. [18] used a hybrid B-spline collocation technique for approximation of GBH

and GBF equations. Mittal and Tripathe [2] proposed a cubic B-spline technique.

Themodified Burger equation has been investigated in [19, 20] using ameshlessmethod

and hybrid Haar wavelet finite difference method. The author of [21] obtained approx-

imate solution of coupled Burger equations using Adomian–Pade technique. Khater et

al. [5] explained the cubic-spline collocation method for solving the coupled Burger

equations. Recently, Mittal and Jiwari [22] obtained an approximate solution of one-

dimensional coupled Burger equation with the help of the differential quadraturemethod.

Dehghan et al. [23, 24] proposed a mixed finite difference and Galerkin method and mul-

tisymplectic box method for numerical study of Burgers equations. Oruc et al. [25, 26]

applied a unified finite difference Chebyshev wavelet approach for time fractional Burger

equations. The same authors studied the Chebyshev wavelet method for approximation of

coupled Burgers equations [27]. Ali et al. [4] applied a meshfree collocationmethod based

on the Crank–Nicolson method for time discretization and radial basis function for space

discretization to solve two-dimensional coupled Burger equations, whereas the meshless

method of radial basis functions (RBFs) and local RBFs were described in [28, 29] for ap-

proximate solutions of Burger-type equations. In [30] a multiscale variational algorithm

was combined with the Kriging element-free Galerkin method to produce the discontinu-

ous solutions of Burgers type equations. Srivastava et al. [31] studied a fully implicit finite

difference scheme for solving two-dimensional coupled viscous Burger equations.

In this work, we compute numerical solutions of the generalized Burger–Huxley,

Burger–Fisher, and coupled Burger equations using mixed Lucas and Fibonacci polyno-

mials combined with finite differences. The main advantage of the proposed scheme is

that the higher-order derivatives can be easily computed using relation of Lucas and Fi-

bonacci polynomials. Moreover, the proposed scheme produces better accuracy for small

number of collocation points, which reduces the computational cost. These polynomials

have considerable applications in the area of ordinary differential equations. For exam-

ple, Elhameed and Youssri [32, 33] described connection between Chebyshev and Lucas

polynomials and obtained accurate solutions of boundary value problems. In [34–36]

the author implemented the Lucas polynomials for solutions of fractional and coupled

fractional differential equations in the Caputo sense. Mostefa [37] proposed the Lucas

sequence for approximation of integro-differential equations. Cetin [38] obtained numer-

ical solution of higher-order differential equations using the Lucas polynomial approach.

Farshid et al. [39] proposed a Fibonacci polynomial approach for numerical solution of

Volterra–Fredholm integral differential equations. Bayku [40] presented a hybrid Taylor–

Lucas polynomial method and obtained numerical solution of delay difference equations.

Oruc [41, 42] for the first time applied these polynomials for solution of time-dependent

partial differential equations called a mixed Lucas and Fibonacci polynomial technique.
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The rest of the paper is organized as follows. In Sect. 2, we discuss description of solution

methodology. In Sect. 3, describe the stability of the method. In Sects. 4 and 5, we present

numerical experiments followed by conclusion of the paper.

2 Methodology

In this section, we give a description of the proposed method for two different cases. The

suggested technique will be tested by some examples.

Case.1 Nonlinear PDEs

For solution of Eq. (1) using the proposed technique, we discretize the time derivative

of the equation with finite differences and apply the θ -weighted scheme to its spatial part

to get

1

δt

[

Y n+1 – Y n
]

+ θ
{

α
(

YmYξ

)n+1
– βY n+1

ξξ – γ
(

f (Y )
)n+1}

(9)

+ (1 – θ )
{

αYmYξ – βYξξ – γ f (Y )
}n

= 0, 0 ≤ θ ≤ 1,

where Y n = Y (ξ , tn), tn = nδt, n = 1, 2, . . . ,N , δt is the time step. The nonlinear term in

Eq. (9) is linearized using the lagging method given as

(

YmYξ

)n+1
=
(

Y n
)m

Y n+1
ξ . (10)

Using Eq. (10) in Eq. (9), we get

Y n+1 + θδt
{

α
(

Y n
)m

Y n+1
ξ – βY n+1

ξξ – γ
(

f (Y )
)n+1}

= Y n + (θ – 1)δt
{

α
(

YmYξ

)n
– βY n

ξξ – γ
(

f (Y )
)n}

. (11)

Approximating Y n(ξ ) by Lucas polynomials is as follows:

Y n(ξ ) =

N
∑

k=1

Cn
kLk(ξ ) =WCn, (12)

where Cn
k are unknown coefficients to be computed, and Lk(ξ ) are the Lucas polynomials

defined by [41]

Lk(ξ ) = ξLk–1(ξ ) + Lk–2(ξ ), k ≥ 2, with Lo(ξ ) = 2, L1(ξ ) = ξ .

To determine Cn
k , we use the collocation method. At collocation points ξi = a + iδξ , Eq.

(12) can be written as

Y n(ξi) =

N
∑

k=0

Cn
kLk(ξi), i = 1, . . . ,N . (13)
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Putting the values from Eq. (13) into Eq. (11), we obtain the following system of N equa-

tions:

N
∑

k=1

Cn+1
k Lk(ξi)

+ θδt

[

α

{

N
∑

k=1

Cn
kLk(ξi)

}m N
∑

k=1

Cn+1
k L′

k(ξi) – β

N
∑

k=1

Cn+1
k L′′

k (ξi) – γ
(

f (Y )
)n+1

]

=

N
∑

k=1

Cn
kLk(ξi)

+ (θ – 1)δt

[

α

{

N
∑

k=1

Cn
kLk(ξi)

}m N
∑

k=1

Cn
kL

′
k(ξi) – β

N
∑

k=1

Cn
kL

′′
k (ξi) – γ

(

f (Y )
)n

]

. (14)

The primes in Eq. (14) represent differentiation with respect to ξ , which allows us to re-

place Lk by Fibonacci polynomials [41]:

L′
k(ξ ) = kFk(ξ ), L′′

k (ξ ) = kFk(ξ )D, (15)

where Fk(ξ ) are the Fibonacci polynomials defined as [41].

Fk(ξ ) = ξFk–1(ξ ) + Fk–2(ξ ) for k ≥ 2, with F0(ξ ) = 0, F1(ξ ) = 1,

and D is differentiation matrix given by [41]

D =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 . . . 0

0
... d

0

⎤

⎥

⎥

⎥

⎥

⎦

,

where d is the square matrix of order N defined by

dm,n =

⎧

⎨

⎩

m(–1)
(n–m–1)

2 if n >m,n –m odd,

0 otherwise.

Substituting the values from Eq. (15) into Eq. (14), we can write

N
∑

k=1

Cn+1
k Lk(ξi)

+ θδt

[

α

{

N
∑

k=1

Cn
kLk(ξi)

}m N
∑

k=1

Cn+1
k kFk(ξi) – β

N
∑

k=1

Cn+1
k kFk(ξi)D – γ

(

f (Y )
)n+1

]

=

N
∑

k=1

Cn
kLk(ξi) + (θ – 1)δt

[

α

{

N
∑

k=1

Cn
kLk(ξi)

}m N
∑

k=1

Cn
k kFk(ξi)

– β

N
∑

k=1

Cn
k kFk(ξi)D – γ

(

f (Y )
)n

]

. (16)
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Similarly, Eqs. (2) and (3) can be transformed to

N
∑

k=1

C1
kLk(ξi)) = Y0(ξi),

N
∑

k=1

Cn+1
k Lk(ξ1) = g1(t),

N
∑

k=1

Cn+1
k Lk(ξN ) = g2(t) i = 1, . . . ,N .

(17)

In matrix form, Eqs. (16)–(17) can be written as

HCn+1 =GCn +An+1, (18)

where H , G, and A are square matrices of order N with components given by

Hik =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Lk(ξi) + δtθ{αLk(ξi)kFk(ξi) – βkFk(ξi)D – γ f (Y )},

i = 2, . . . ,N – 1,k = 1, 2, . . . ,N ,

Lk(ξi), i = 1,N ,k = 1, 2, . . . ,N ,

(19)

Gik =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Lk(ξi) + δt(θ – 1){αLk(ξi)kFk(ξi) – βkFk(ξi)D – γ f (Y )},

i = 2, . . . ,N – 1,k = 1, 2, . . . ,N ,

0, i = 1,N ,k = 1, 2, . . . ,N ,

(20)

Aik =

⎧

⎨

⎩

0, i = 2, . . . ,N – 1,k = 1, 2, . . . ,N ,

gn+1(ξi), i = 1,N ,k = 1, 2, . . . ,N .
(21)

Solution of Eq. (18) give required unknowns C, and hence a solution of problem (1) can

be obtained with the help of Eq. (13).

Case 2: Coupled PDEs

To construct a scheme for coupled Burger Eqs. (6)–(7), discretizing the temporal and

spatial parts in a similar way as discussed in case 1, we have

Y n+1 – Y n

δt
+ θ
[

μ
(

Y n+1
ξξ + Y n+1

ηη

)

+ ν(YYξ )
n+1 + α

(

(YZξ )
n+1 + (ZYξ )

n+1
)

+ γ
[

(YYξ )
n+1 + (ZYη)

n+1
]]

= (θ – 1)
[

μ
(

Y n
ξξ + Y n

ηη

)

+ ν(YYξ )
n + α

(

(YZξ )
n + (ZYξ )

n
)

+ γ
[

(YYξ )
n + (ZYη)

n
]]

, (22)

Zn+1 – Zn

δt
+ θ
[

μ
(

Zn+1
ξξ + Zn+1

ηη

)

+ ν(ZZξ )
n+1 + β

(

(YZξ )
n+1 + (ZYξ )

n+1
)

+ γ
[

(YZξ )
n+1 + (ZZη)

n+1
]]

= (θ – 1)
[

μ
(

Zn
ξξ + Zn

ηη

)

+ ν(ZZξ )
n + β

(

(YZξ )
n + (ZYξ )

n
)

+ γ
[

(YZξ )
n + (ZZη)

n
]]

. (23)
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For θ = 1/2, these equations become the well-known Cran–Nicolson scheme with accu-

racy O(δt2) [43]. For nonlinear terms, we use the lagging method

(YYξ )
n+1 = Y n+1Y n

ξ . (24)

Using Eq. (24) in Eqs. (22)–(23) and waiving the error terms, we get

Y n+1 + δtθ
[

μ
(

Y n+1
ξξ + Y n+1

ηη

)

+ νY n+1Y n
ξ + α

(

Y n+1Zn
ξ + ZnY n+1

ξ

)

+ γ
(

Y n+1Y n
ξ + ZnY n+1

η

)]

= Y n + (θ – 1)δt
[

μ
(

Y n
ξξ + Y n

ηη

)

+ ν(YYξ )
n + α

(

(YZξ )
n + (ZYξ )

n
)

+ γ (YYξ + ZYη)
n
]

, (25)

Zn+1 + δtθ
[

μ
(

Zn+1
ξξ + Zn+1

ηη

)

+ νZn+1Zn
ξ + β

(

Y nZn+1
ξ + Zn+1Y n

ξ

)

+ γ
(

Y nZn+1
ξ + Zn+1Zn

η

)]

= Zn + (θ – 1)δt
[

μ
(

Zn
ξξ + Zn

ηη

)

+ ν(ZZξ )
n + β

(

(YZξ )
n + (ZYξ )

n
)

+ γ
(

(YZξ )
n + (ZZη)

n
)]

. (26)

Now we approximate Y n and Zn by Lucas polynomials as follows:

Y n(ξ ,η) =

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)Lm(ηj), Zn(ξ ,η) =

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)Lm(ηj), (27)

where λn
km and Cn

km are unknown coefficients, and ξi = ηi = a + (i – 1)dξ i, dξ = dη, are the

regular collocation points or the Chebyshev–Gauss–Lobatto (CGL) collocation points

ξi = ηi = a +
b – a

2

(

1 – cos
(

(i – 1)π/M
))

with a = ξ1 = η1 and b = ξM = ηM ; dξ is spacial step size. Plugging Eq. (27) into Eqs. (25)–

(26), we get

N
∑

k=1

N
∑

m=1

Cn+1
km Lk(ξi)Lm(ηj)

+ δtθ

{

μ

(

N
∑

k=1

N
∑

m=1

Cn+1
km L′′

k (ξi)Lm(ηj) +

N
∑

k=1

N
∑

m=1

Cn+1
km Lk(ξi)L

′′
m(ηj)

)

+ ν

N
∑

k=1

N
∑

m=1

Cn+1
km Lk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

Cn
kmL

′
k(ξi)Lm(ηj)

+ α

N
∑

k=1

N
∑

m=1

Cn+1
km Lk(ξi)Lm(ηj)

∗

N
∑

k=1

N
∑

m=1

λn
kmL

′
k(ξi)Lm(ηj) + α

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

Cn+1
km L′

k(ξi)Lm(ηj)
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+ γ

N
∑

k=1

N
∑

m=1

Cn+1
km Lk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

Cn
kmL

′
k(ξi)Lm(ηj)

+ γ

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

Cn+1
km Lk(ξi)L

′
m(ηj)

}

=

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)Lm(ηj) (28)

+ δt(θ – 1)

{

μ

(

N
∑

k=1

N
∑

m=1

Cn
kmL

′′
k (ξi)Lm(ηj) +

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)L

′′
m(ηj)

)

+ ν

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

Cn
kmL

′
k(ξi)Lm(ηj) + α

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)Lm(ηj)

∗

N
∑

k=1

N
∑

m=1

λn
kmL

′
k(ξi)Lm(ηj) + α

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

Cn
kmL

′
k(ξi)Lm(ηj)

+ γ

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

Cn
kmL

′
k(ξi)Lm(ηj)

+ γ

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)L

′
m(ηj)

}

,

N
∑

k=1

N
∑

m=1

λn+1
km Lk(ξi)Lm(ηj)

+ δtθ

{

μ

(

N
∑

k=1

N
∑

m=1

λn+1
km L′′

k (ξi)Lm(ηj) +

N
∑

k=1

N
∑

m=1

λn+1
km Lk(ξi)L

′′
m(ηj)

)

+ ν

N
∑

k=1

N
∑

m=1

λn+1
km Lk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

λn
kmL

′
k(ξi)Lm(ηj) + β

N
∑

k=1

N
∑

m=1

λn+1
km Lk(ξi)Lm(ηj)

∗

N
∑

k=1

N
∑

m=1

Cn
kmL

′
k(ξi)Lm(ηj) + β

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

λn+1
km L′

k(ξi)Lm(ηj)

+ γ

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

λn+1
km L′

k(ξi)Lm(ηj)

+ γ

N
∑

k=1

N
∑

m=1

λn+1
km Lk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)L

′
m(ηj)

}

(29)

=

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)Lm(ηj) + δt(θ – 1)

∗

{

μ

(

N
∑

k=1

N
∑

m=1

λn
kmL

′′
k (ξi)Lm(ηj) +

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)L

′′
m(ηj)

)

+ ν

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

λn
kmL

′
k(ξi)Lm(ηj) + β

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)Lm(ηj)
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∗

N
∑

k=1

N
∑

m=1

Cn
kmL

′
k(ξi)Lm(ηj) + β

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

λn
kmL

′
k(ξi)Lm(ηj)

+ γ

N
∑

k=1

N
∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

λn
kmL

′
k(ξi)Lm(ηj)

+ γ

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)Lm(ηj)

N
∑

k=1

N
∑

m=1

λn
kmLk(ξi)L

′
m(ηj)

}

.

In these equations, “*” represents the usual product. Similarly, boundary conditions given

in Eq. (8) take the form

N
∑

k=1

N
∑

m=1

Cn+1
km Lk(ξi)Lm(ηj) = h1

(

tn+1
)

,

N
∑

k=1

N
∑

m=1

Cn+1
km Lk(ξi)Lm(ηj) = h2

(

tn+1
)

, (30)

N
∑

k=1

N
∑

m=1

λn+1
km Lk(ξi)Lm(ηj) = g1

(

tn+1
)

,

N
∑

k=1

N
∑

m=1

λn+1
km Lk(ξi)Lm(ηj) = g2

(

tn+1
)

, (31)

considering the relation between the Lucas and Fibonacci polynomials

L′
k(ξ ) = kFk(ξ ), L′′

k (ξ ) = kFk(ξ )D, (32)

where F(ξ ) and D have the same meaning as before. Putting values from Eq. (32) into

Eqs. (28)–(29), the matrix form of Eqs. (28)–(31) can be written as

A + δtθ
{

μ(Q3 +Q4) + νA ∗ Y n
ξ + α

(

A ∗ Zn
ξ +Q1 ∗ Zn

)

(33)

+ γ
(

A ∗ Y n
ξ +Q2 ∗ Zn

)}

Cn+1

= A + δt(θ – 1)
{

μ(Q3 +Q4) + νA ∗ Y n
ξ + α

(

A ∗ Zn
ξ +Q1 ∗ Zn

)

+ γ
(

A ∗ Y n
ξ +Q2 ∗ Zn

)}

Cn +Hn+1,

A + δtθ
{

μ(Q3 +Q4) + νA ∗ Zn
ξ + β

(

A ∗ Y n
ξ +Q1 ∗ Y n

)

(34)

+ γ
(

Q1 ∗ Y n +A ∗ Zn
η

)}

λn+1

= A + δt(θ – 1)
{

μ(Q3 +Q4) + νA ∗ Zn
ξ + β

(

A ∗ Y n
ξ +Q1 ∗ Y n

)

+ γ
(

Q1 ∗ Y n +A ∗ Zn
η

)}

λn +Gn+1,

where

A = Lk(ξi)Lm(ηj)}
N
k,m=1, Q1 = kFk(ξi)Lm(ηj)}

N
k,m=1, Q2 = Lk(ξi)mFm(ηj)}

N
k,m=1,

Q3 = kFk(ξi)DLm(ηj)}
N
k,m=1, Q4 = Lk(ξi)mFmD(ηj)}

N
k,m=1,

and

Hn+1 =
{

hn+11 , 0, 0, . . . ,hn+12

}T
,

Gn+1 =
{

gn+11 , 0, 0, . . . , gn+12

}T
.
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Equations (33)–(34) can be written as

Cn+1 =M–1
1 N1C

n
1 +M–1

1 Hn+1, (35)

λn+1 =M–1
2 N2C

n
2 +M–1

2 Gn+1, (36)

where

M1 = A + δtθ
{

μ(Q3 +Q4) + νA ∗ Y n
ξ + α

(

A ∗ Zn
ξ +Q1 ∗ Zn

)

+ γ
(

A ∗ Y n
ξ +Q2 ∗ Zn

)}

,

N1 = A + δt(θ – 1)
{

μ(Q3 +Q4) + νA ∗ Y n
ξ + α

(

A ∗ Zn
ξ +Q1 ∗ Zn

)

+ γ
(

A ∗ Y n
ξ +Q2 ∗ Zn

)}

,

M2 = A + δtθ
{

μ(Q3 +Q4) + νA ∗ Zn
ξ + β

(

A ∗ Y n
ξ +Q1 ∗ Y n

)

+ γ
(

Q1 ∗ Y n +A ∗ Zn
η

)}

,

N2 = A + δt(θ – 1)
{

μ(Q3 +Q4) + νA ∗ Zn
ξ + β

(

A ∗ Y n
ξ +Q1 ∗ Y n

)

+ γ
(

Q1 ∗ Y n +A ∗ Zn
η

)}

.

Since Y n = ACn and Zn = Aλn, we get

Y n+1 = AM–1
1 N1A

–1Y n +AM–1
1 Hn+1, (37)

Zn+1 = AM–1
2 N2A

–1Zn +AM–1
2 Gn+1. (38)

If M1, M2 are fully ranked, then M–1
1 and M–1

2 exist [44, 45]. In our computation, these

matrices are fully ranked, which is checked using Matlab command rank(Mi). Therefore

system (35)–(36) can be solved for unknown Cn and λn, and a solution of original coupled

equations can be obtained from Eq. (27).

3 Numerical stability analysis

To check the stability of the proposed technique, we use the matrix method. For this pur-

pose, first rewrite Eq. (18) as follows:

Cn+1 =H–1GCn +H–1An+1 for n≥ 0. (39)

If Y denotes the approximate solution, and u denotes the exact one, then the error is de-

fined as

En = un+1 – Y n+1 with Y n+1 =WCn+1. (40)

Substituting the values from Eq. (39) into Eq. (40), we get

En+1 =WH–1GW–1En =MEn. (41)

Here M = WH–1GW–1 is known as the implication matrix. Scheme (39) is stable if the

matrixM satisfies the Lax–Richtmyer stability condition

‖M‖ ≤ 1. (42)
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If ρ(M) denotes the spectral radius of amatrixM, then ρ(M)≤ ‖M‖. The validation of this

condition is described with the help of different numerical examples in the next section.

4 Numerical examples

In this section, we apply the proposed technique to some problems. Efficiency of the

scheme is tested by comparing the obtained results with exact and approximate solutions

available in the literature. We study the accuracy of the method in the form of the root

mean square (RMS), L2 and L∞ norms, and the time convergence rate given by

L∞ = max
∣

∣E(ξi, t) – Y (ξi, t)
∣

∣

N

i=1
, RMS =

√

∑N
i=1 |E(ξi, t) – Y (ξi, t)|2

N
,

L2 =

√

∑N
i=1 |E(ξi, t) – Y (ξi, t)|2

dξ
, Rate =

log( L∞(2δt,dξ )
L∞(δt,dξ )

)

log( 2δt
δt
)

.

Example 1 Consider Eq. (4) with β = 1 and exact solution [2]

Y (ξ , t) =

[

ǫ

2
+

ǫ

2
tanh

(

a1(ξ – a2t)
)

]1/m

, t ≥ 0, (43)

where

a1 =
–αm +m

√

α2 + 4γ (1 +m)

4(1 +m)
ǫ,

a2 =
αǫ

(1 +m)
–
(1 +m – ǫ)(–α +

√

α2 + 4γ (1 +m))

2(1 +m)
.

We obtain the approximate solution the proposed method taking special domains [0, 1]

and [–10, 20]. Initial and boundary conditions are taken from the exact solution. In this

example, we discuss various cases for different values of the parameters α, γ , ǫ, andm ap-

pearing in Eq. (4). We compute the solution for both regular and CGL collocation points.

We compare the computed results in the form of error norms with those available in the

literature [2, 7]. From comparison it is clear that the present method gives better accu-

racy or comparable results with those available in the literature. We can observe from the

comparison that the proposed method produces slightly more accurate results for CGL

collocations points than for regular points.We also report and show in tables the compar-

ison carried out for stability of the scheme in the form of spectral radius.

Case 1.1: In this case, we take α = γ = 1,m = 2, and ǫ = 0.5 with nodal pointsN = 10. The

solution is computed over the domain [0, 1] for different values of T = 15, 30, 60, and 120

with step size 0.01 and is shown in Tables 1 and 3. FromTable 1 it is clear that the accuracy

of the solution increases with time where the system remains stable, that is, ρ(M) < 1. The

computed results are compared with those of the collocation cubic B-spline method [2].

From the comparison it is obvious that the present technique gives better accuracy than

the collocation cubic B-spline method.

Case 1.2: In this case, we take the parameters are α = γ =m = 1 and ǫ = 0.5 with nodal

points N = 10. The solution has been computed at different time levels T = 15, 30, 60, and

120 with step size δt = 0.01. For accuracy of the scheme, different error norms were calcu-

lated and compared with the error norms of cubic B-spline [2] and tabulated in Tables 2
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Table 1 Error norms and spectral radius for the solution of Example 1 in Case 1.1

T Present method using CGL points [2]

L∞ L2 RMS CPU time ρ(M) L∞ L2

15 1.28718E–04 7.86412E–05 7.49814E–05 0.66911 0.90538 5.06827E–07 6.49722E–07

30 3.23867E–07 1.97190E–07 1.88013E–07 1.33715 0.90538 5.02830E–07 6.43856E–07

60 1.31743E–08 7.88550E–09 7.51850E–09 2.65801 0.90538 5.00811E–07 6.40890E–07

120 5.45880E–09 3.87940E–09 3.69890E–09 5.26212 0.90538 5.00144E–07 6.30883E–07

Table 2 Error norms and spectral radius for the solution of Example 1 in Case 1.2

T Present method using CGL points [2]

L∞ L2 RMS CPU time ρ(M) L∞ L2

15 3.81435E–03 2.33487E–03 2.22621E–03 0.67051 0.90525 2.83295E–07 4.07965E–07

30 7.27212E–04 4.45113E–04 4.24399E–04 1.25709 0.90536 1.63593E–07 3.21668E–07

60 1.78124E–05 1.09024E–05 1.03950E–05 2.47020 0.90538 1.58949E–07 2.95373E–07

120 6.28300E–09 3.71490E–09 3.54210E–09 4.90538 0.90538 6.94339E–07 1.15759E–07

Table 3 Error norms of Example 1 using regular points

T Case 1.1 Case 1.2

L∞ L2 RMS L∞ L2 RMS

15 1.28637E–04 9.37455E–05 8.93828E–05 3.81426E–03 2.78445E–03 2.65487E–03

30 3.33900E–07 2.30756E–07 2.20017E–07 7.27194E–04 5.30825E–04 5.06122E–04

60 7.44355E–08 5.89236E–08 5.61815E–08 1.77841E–05 1.29857E–05 1.23814E–05

120 1.62962E–08 1.04962E–08 1.00077E–08 3.14269E–08 1.55306E–08 1.48079E–08

Table 4 Error norms and spectral radius for the solution of Example 1 in Case 1.3

m T Present method using CGL points [7] [2]

L∞ L2 RMS CPU time ρ(M) L∞ L∞

1 0.2 1.33150E–05 8.21325E–06 7.83102E–06 0.87604 0.99950 4.01380E–08 3.74874E–08

4 3.41652E–05 2.10921E–05 2.01105E–05 0.99275 0.99901 1.31390E–05 1.22706E–05

8 4.32643E–05 2.67392E–05 2.54948E–05 0.94157 0.99901 3.55400E–05 3.31915E–05

1 1 1.54346E–05 9.45976E–06 9.01953E–06 4.56786 0.99505 4.68490E–08 4.29397E–08

4 4.24238E–05 2.60076E–05 2.47973E–05 4.88423 0.99505 1.53250E–05 1.40455E–05

8 5.07108E–05 3.10875E–05 2.96408E–05 4.57482 0.99505 4.14070E–05 3.79493E–05

and 3. From Table 2 we observe that for small times, the results of cubic B-spline are bet-

ter than those of the present method, but as time increases, the accuracy of the proposed

technique increases. We can also observe from the table that the spectral radius ρ(M) < 1

for all time levels, which shows the stability of the scheme.

Case 1.3: In this case, the solution was computed using CGL grid points for α = γ = 1

and ǫ = 0.001, and various values ofm = 1, 4, 8. The spectral radius and error norms were

computed at different values of T = 0.2, 1 and compared with the results available in the

literature, which are shown in Table 4. From the table it is clear that the present method

gives an excellent solution in comparison to available techniques. We can observe from

the table that the present method gives the same accuracy for all values of the parameter

m, whereas the accuracy of spectral and cubic B-splinemethods [2, 7] suddenly decreases,

which reflects the feasibility of the proposed scheme. The solution is also been computed

using regular grid point and shown in Table 6.

Case 1.4: In this case, we take α = γ = m = 1 and ǫ = 0.01. The solution is computed

over the domain [–10, 20] with step size δt = 0.003. The error norms and spectral radius
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Table 5 Error norms and spectral radius for the solution of Example 1 in Case 1.4

T Present method using CGL points [46]

L∞ L2 RMS CPU time ρ(M) L∞

0.01 5.52020E–06 1.61179E–05 2.80576E–06 0.04790 0.99996 6.42780E–05

1 6.44885E–04 1.88153E–03 3.27533E–04 0.23661 0.99996 9.45430E–04

5 2.84188E–03 8.78479E–03 1.52924E–03 1.02861 0.99996 3.42880E–03

10 5.10071E–03 1.48716E–02 2.58882E–03 1.97531 0.99998 6.51530E–03

Table 6 Error norms of Example 1 using regular points

m T Case 1.3 T Case 1.4

L∞ L2 RMS L∞ L2 RMS

1 0.2 1.52588E–05 1.10913E–05 1.05751E–05 1 5.37444E–04 1.78976E–03 3.11557E–04

4 3.32664E–05 2.44805E–05 2.33412E–05 5 2.53004E–03 8.25125E–03 1.43636E–03

8 4.38909E–05 3.23169E–05 3.08129E–05 10 4.36676E–03 1.37152E–02 2.38750E–03

are computed for different time levels T = 0.1, 1, 5, and 10, which are presented in Ta-

bles 5 and 6. From the table we can observe that the present method gives better results

than those available in the literature even for large space and time domains. We can easily

understand from these tables that as the domain increases, the spectral radius remains

ρ(M) < 1, which shows the stability of the proposed scheme. Overall, it is obvious that the

present method gives better results and is flexible to implement.

Example 2 Consider Eq. (5) with β = 1. In this case, the exact solution [2] is given by

Y (ξ , t) =

[

1

2
+
1

2
tanh

(

w1(ξ –w2t)
)

]1/m

, t ≥ 0, (44)

where

w1 =
–αm

2(1 +m)
, w2 =

α

(1 +m)
+

γ (1 +m)

α
.

The initial and boundary conditions are taken from the exact solution, and numerical so-

lution is computed using the suggested technique with domain [–1, 1]. The error norms

were computed for comparison of the proposed scheme with exact and available solu-

tions in the literature. Two different cases were discussed for different values of the real

parameterm, whereas α = γ = β = 1.

Case 2.1: In this case, the parameter m = 1 with step size δt = 0.0001. The solution was

obtained for T = 0.5, 1, 2, and 4. The computed results are compared with the exact and

available numerical solution in the form of error norms. The stability of the scheme was

studied in the form of spectral radius shown in Tables 7 and 9. From Table 7 we can notice

that the proposed scheme is stable in the given domain and gives a better accuracy than

the collocation cubic B-spline method [2].

Case 2.2: Now we take m = 2 and compute the solution for different time levels T =

5, 10, 15, and 20. The error norms along with spectral radius were obtained at each time

level, and the results were compared with existing numerical solutions described in Ta-

bles 8 and 9. It is obvious from the table that the accuracy increases with time and con-

verges toward the true solution. It is also clear from the table that in all the three error
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Table 7 Error norms and spectral radius for the solution of Example 2 in Case 2.1

T Present method using CGL points [2]

L∞ L2 RMS CPU time ρ(M) L∞ L2

0.5 1.30003E–06 1.19098E–06 8.02962E–07 2.47751 0.99977 9.17284E–06 6.95296E–06

1 2.71589E–06 2.40019E–06 1.61820E–06 4.96976 0.99975 6.85294E–06 6.13104E–06

2 1.83876E–06 1.59027E–06 1.07216E–06 9.90485 0.99973 7.30254E–06 7.22859E–06

4 2.15134E–07 1.84222E–07 1.24203E–07 19.74891 0.99972 6.44377E–07 6.70231E–07

Table 8 Error norms and spectral radius for the solution of Example 2 in Case 2.2

T Present method using CGL points [2]

L∞ L2 RMS CPU time ρ(M) L∞ L2

5 8.82513E–09 7.44850E–09 5.02178E–09 2.62885 0.99728 2.13998E–06 1.18957E–06

10 2.15147E–10 2.02252E–10 1.36358E–10 5.18462 0.99728 2.13948E–06 1.18924E–06

15 1.28184E–10 9.95507E–11 6.71170E–11 7.69960 0.99728 2.13899E–06 1.18892E–06

20 9.16529E–11 8.23733E–11 5.55361E–11 10.28641 0.99728 2.13869E–06 1.18744E–06

Table 9 Error norms of Example 2 using regular points

T Case 2.1 T Case 2.2

L∞ L2 CPU time L∞ L2 CPU time

0.5 1.3015E–06 1.4090E–06 2.54465 5 7.9591E–09 7.9238E–09 2.63473

1 2.7606E–06 2.8584E–06 5.21997 10 3.7959E–10 3.8231E–10 5.36142

2 1.8656E–06 1.8930E–06 10.30594 15 3.1634E–10 3.5744E–10 8.05531

4 2.1323E–07 2.1460E–07 20.12716 20 3.6716E–10 3.2228E–10 9.75643

norms the proposedmethod gives excellent results at each time level as compared to avail-

able results in the literature. The table also shows that the value of spectral radius remains

less than 1, which clarifies the stability of the scheme.

Example 3 Putting f (Y ) = Y (1 – Y )(Y – 0.5) and α = γ =m = 1 in Eq. (1), we have

Yt + YYξ – βYξξ = Y (1 – Y )(Y – 0.5) (45)

with initial and boundary conditions [2]

Y (ξ , 0) = sin(πξ ), 0 ≤ x≤ 1, (46)

Y (0, t) = Y (1, t) = 0, t ≥ 0. (47)

The solution is computed for different time levels T = 0.1, 0.3, 0.6, and 0.9 and various val-

ues of β = 2–1, 2–4, 2–6, and 2–9, respectively. The solution profile for different time levels

is plotted in Fig. 1, which shows the same pattern reported in [2]. Due to unavailability of

exact solution, we studied the accuracy via the stability of the method and noticed that as

the value of β approaches zero, the solution diverges, and the scheme becomes unstable.

From Figs. 1(a)–1(c) it is clear that the solution profile shows a proper behavior and the

scheme is stable, that is, ρ(M) < 1, and as the spectral radius increases, the scheme goes to

an unstable region, and the solution diverges, as shown in Fig. 1(d). We can also observe

from the figure that for a fixed value of β , the graph tends to zero as time increases, and

for various values of β , the curve propagates to the right and follows a sharp decay. Thus

the present method shows the proper behavior of Eq. (45) for various values of β and t.
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Figure 1 Approximate solutions of Example 3: (a) solution of β = 2–1 with ρ(M) < 1, (b) solution of β = 2–4

with ρ(M) < 1, (c) solution of β = 2–6 with ρ(M) < 1, and (d) solution of β = 2–9 with ρ(M) > 1

The same behavior of this equation was illustrated byMahanty and Sharma [1] andMittal

[2].

Example 4 Consider Eq. (1) with γ = 0 and α =m = 1 to obtain

Yt + YYξ – βYξξ = 0 (48)

with initial and boundary conditions [1]

Y (ξ , 0) = ξ
(

1 – ξ 2
)

, 0≤ x≤ 1, (49)

Y (0, t) = Y (1, t) = 0, t ≥ 0. (50)

We computed the solution of the problem for various values of β = 2–3, 2–6, 2–9, 2–11 and

time T = 0.1, 0.3, 0.6, 0.9 with step size δt = 0.001. The obtained results are presented in

Fig. 2, which clarifies the behavior of the problem. Similarly to Example 3, We can notice

that as the value of β decreases, the solution diverges, and the scheme become unstable.

The same pattern of the problemhas been reported by [8] and [1]. The accuracy of solution

was discussed by means of the stability of the scheme.
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Figure 2 Approximate solutions of Example 4: (a) solution of β = 2–3 with ρ(M) < 1, (b) solution of β = 2–6

with ρ(M) < 1, (c) solution of β = 2–9 with ρ(M) = 1.003, and (d) solution of β = 2–11 with ρ(M) = 1.75

Example 5 In this case, we consider the coupled one-dimensional Burger Eq. (7) by taking

μ = –1, ν = 2, and γ = 0, which leads to

Yt – Yξξ + 2YYξ + α(YZ)ξ = 0, (51)

Zt – Zξξ + 2ZZξ + β(ZY )ξ = 0. (52)

The exact solution is [47, 48]

Y (ξ , t) = a0
(

1 – tanh
(

A(ξ – 2At)
))

, (53)

Z(ξ , t) = a0

((

2β – 1

2α – 1

)

– tanh
(

A(ξ – 2At)
)

)

, (54)

where ao is an arbitrary constant, andA = 1
2
a0(

4αβ–1
2α–1

). The initial and boundary conditions

are extracted from the exact solution. The numerical solution was computed for different

values of α, β , and T = 0.5, 1 in the domain [–10, 10] with a0 = 0.05 and dt = 0.001. For

comparison, the error norms were computed and shown in Table 10. The stability of the

scheme was discussed in terms of the spectral radius shown in the table. From the table

it is clear that the proposed scheme is stable and produces better results even in large

domains. The solution profile of Y and Z for T = 1 is plotted in Fig. 3. From the figure we

can easily notice the betterment of the proposed technique.
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Table 10 Error norms and spectral radius for Y(ξ , t) and Z(ξ , t) of Example 5 for dt = 0.001

T Present method using CGL points [47] [48]

α β ρ(M) L∞ L2 RMS L∞ L2 L∞ L2

solution of Y

0.5 0.1 0.3 1.00030 2.04E–06 1.80E–06 1.74E–06 4.17E–05 6.74E–04 9.62E–04 3.25E–05

0.3 0.03 1.00003 6.45E–06 3.66E–06 3.54E–06 4.59E–05 7.33E–04 4.31E–04 2.73E–05

1 0.1 0.3 1.00077 4.03E–06 3.53E–06 3.41E–06 8.26E–05 1.33E–03 1.15E–03 2.41E–05

0.3 0.03 1.00024 1.29E–05 7.18E–06 6.96E–06 9.18E–05 1.45E–03 1.27E–03 5.83E–05

solution of Z

0.5 0.1 0.3 1.00003 1.75E–06 8.68E–07 8.40E–07 1.48E–04 9.06E–04 3.33E–04 2.75E–05

0.3 0.03 1.00004 1.05E–05 8.36E–06 8.09E–06 5.73E–04 1.59E–03 1.15E–03 2.45E–04

1 0.1 0.3 1.00007 3.51E–06 1.71E–06 1.66E–06 4.77E–05 1.25E–03 1.16E–03 3.75E–05

0.3 0.03 1.00002 2.10E–05 1.64E–05 1.59E–05 3.62E–04 2.25E–03 1.64E–03 4.53E–04

Figure 3 Exact and approximate solutions of Example 5 for T = 1, α = 0.1, β = 0.3

Example 6 In this example, we consider one-dimensional Eq. (7) with μ = –1, ν = –2,

γ = 0, and α = β = 1 which leads to

Yt – Yξξ – 2YYξ + (YZ)ξ = 0, (55)

Zt – Zξξ – 2ZZξ + (ZY )ξ = 0, (56)

with exact solution [22]

Y (ξ , t) = e–t sin(ξ ), (57)

Z(ξ , t) = e–t sin(ξ ). (58)
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Table 11 Error norms and spectral radius for Y(ξ , t) and Z(ξ , t) of Example 6 for dt = 0.001

T Present method using CGL points [22]

L∞ L2 RMS ρ(M) CPU time L∞

solution of Y

0.5 2.52724E–06 3.95542E–06 1.53590E–06 1.00003 2.55860 1.51688E–04

1 3.06570E–06 1.91419E–06 1.86313E–06 1.00047 2.66805 1.83970E–04

2 2.25560E–06 3.53027E–06 1.37081E–06 0.99855 2.92445 1.35250E–04

3 1.24468E–06 1.94806E–06 7.56436E–07 0.99788 3.16637 7.46014E–05

solution of Z

0.5 2.52724E–06 3.95542E–06 1.53590E–06 1.00003 2.55860 1.51688E–04

1 3.06570E–06 1.91419E–06 1.86313E–06 1.00047 2.66805 1.83970E–04

2 2.25560E–06 3.53027E–06 1.37081E–06 0.99855 2.92445 1.35250E–04

3 1.24468E–06 1.94806E–06 7.56436E–07 0.99788 3.16637 7.46014E–05

Table 12 Convergence rate of maximum error of Example 6 at T = 1

dt Solution of u Solution of v

L∞ Rate CPU time L∞ Rate CPU time

1/10 3.06899E–04 – 2.46295 3.06899E–04 – 2.46295

1/20 7.66623E–05 2.00117 2.44621 7.66623E–05 2.00117 2.44621

1/40 1.91617E–05 2.00029 2.49829 1.91617E–05 2.00029 2.49829

1/80 4.79018E–06 2.00007 2.57567 4.79018E–06 2.00007 2.57567

1/160 1.19753E–06 2.00002 2.83212 1.19753E–06 2.00002 2.83212

The initial and boundary conditions are extracted from the exact solution. The numerical

solution was obtained for time levels T = 0.5, 1 in the domain [–π ,π ]. The obtained re-

sults were compared in the form of error norms with those of the differential quadrature

method [22] and are shown in Table 11. The rate of convergence using CGL collocation

points is shown in Table 12. From Table 11 we can observe that the present method is sta-

ble and produces a better solution than the available techniques. In Fig. 4 the numerical

and exact solutions of Y and Z are plotted for T = 1. The figures reflect a good agreement

of the obtained numerical result with exact solution.

Example 7 In this case, we take Eq. (7) with ν = 0, α = 0, β = 0, γ = 1, and μ = –1/Re,

which leads to the following two-dimensional coupled Burger equation

Yt + YYξ + ZYη –
1

Re
(Yξξ + Yηη) = 0, (59)

Zt + YZξ + ZZη –
1

Re
(Zξξ + Zηη) = 0. (60)

The exact solution is

Y (ξ ,χ , t) = 0.75 – 0.25

[

1 + exp

(

(–4ξ + 4η – t)
Re

32

)]–1

, (61)

Z(ξ ,χ , t) = 0.75 + 0.25

[

1 + exp

(

(–4ξ + 4η – t)
Re

32

)]–1

. (62)

The initial and boundary conditions are taken from the exact solution. The numerical

solution was computed in the domain [0, 1] × [0, 1] for different values of nodal points

M and Reynolds number Re when T = 0.01. The spectral radius and error norms were
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Figure 4 Exact and approximate solutions of Example 6 for T = 1, α = 1, β = 1

Table 13 Error norms and spectral radius for Y(ξ ,η, t) and Z(ξ ,η, t) of Example 7 for T = 0.01 using

regular points

N Present method [4]

dt Re L∞ L2 RMS ρ(M) CPU time L∞

solution of Y

100 0.0001 1 4.85E–05 3.20E–05 1.28E–05 1.00000 1.28383 2.29E–04

100 0.005 10 2.33E–04 1.77E–04 3.01E–05 1.00003 0.07259 7.23E–05

400 0.001 100 6.43E–03 2.06E–03 1.03E–04 1.00030 9.37317 8.80E–05

solution of Z

100 0.0001 1 3.93E–05 2.91E–05 1.22E–05 1.00000 – 3.23E–04

100 0.005 10 4.64E–04 3.50E–04 4.23E–05 1.00005 – 1.03E–04

400 0.001 100 6.83E–03 2.22E–03 1.07E–04 1.00034 – 1.00E–04

computed for Re = 1, 10, and 100 and nodal pointsN = 100, 400, that is,N = (10× 10) and

(20× 20), and compared with the error norms obtained by Arshad [4] using the meshfree

technique presented in Table 13. From the table we notice that the present results aremore

accurate when Re = 1, whereas the accuracy decreases as Re increases with increasing

spectral radius. The solution and error plots are shown in Fig. 5, which shows a kink-like

behavior for Re = 50.

Example 8 Finally, we study two-dimensional coupled Burger equations (59)–(60) in the

domain [0, 1]× [0, 1] with the following initial and boundary conditions taken from [4]:

Y (ξ ,η, 0) = sin(πξ ) sin(πη),

Z(ξ ,η, 0) =
[

sin(πξ ) + sin(2πξ )
][

sin(πη) + sin(2πη)
]

,
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Figure 5 Solution profile and error analysis of Example 7 for T = 0.01, N = 400, Re = 50, and dt = 0.005

Y (0,η, t) = Y (1,η, t) = Y (ξ , 0, t) = Y (ξ , 1, t) = 0, t > 0,

Z(0,η, t) = Z(1,η, t) = Z(ξ , 0, t) = Z(ξ , 1, t) = 0, t > 0.

The problem was solved using the proposed technique for nodal pointsN = 100, 400, that

is, N = (10 × 10) and (20 × 20) at time t = 0.01, and Re = 1. Due to the nonavailability

of the exact solution, the obtained results were compared at different collocation points

with the numerical solution by the meshfree method [4] and finite element technique [49]

shown in Table 14. From the table it is clear that the proposed method produces almost

the same results as those of existing methods. The solution profile for different time levels

t = 0, 0.01, 0.05 at fixed values of η are plotted in Fig. 6. From the figure we can observe

that as the time increases, Z(ξ ,η, t)) moves from the negative part to the positive one, and

the graphs tend to zero. Similarly, a 3D plot of the solution is shown in Fig. 7.

5 Conclusion

In this paper, we studied a numerical method based on the Lucas polynomials and com-

puted solutions of three different models, including the generalized Burger–Huxley equa-

tion, generalized Burger–Fisher equation, and one- and two-dimensional nonlinear cou-

pled Burger equations. The dependent variable is approximated by the Lucas polynomials,

whereas the Fibonacci polynomials are used for its derivatives. We discussed the stability

of the proposed scheme in the form of spectral radius. For comparison of the proposed

method, we computed the error norms in different domains and compared the results with
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Table 14 Comparison of the values of Y(ξ ,η, t) and Z(ξ ,η, t) of Example 8 for T = 0.01 using regular

points

Points Present method [49] [4]

N = 100 N = 400 N = 100 N = 400 N = 100 N = 400

dt = 0.0002 0.0001 dt = 0.0002 0.0001 dt = 0.00125 –

solution of Y

(0.1, 0.1) 0.07299 0.07260 0.07279 0.07257 0.07254 0.07251

(0.2, 0.8) 0.28886 0.28861 0.28867 0.28842 0.27778 0.27778

(0.4, 0.4) 0.72340 0.72256 0.72375 0.7221 0.72174 0.72174

(0.7, 0.1) 0.20148 0.20125 0.20157 0.20117 0.20481 0.20484

(0.9, 0.9) 0.07939 0.07945 0.07951 0.07947 0.07942 0.07944

solution of Z

(0.1, 0.1) 0.43027 0.43239 0.44132 0.44336 0.43159 0.43087

(0.2, 0.8) –0.1242 –0.1225 –0.13172 –0.12366 –0.12428 –0.1241

(0.4, 0.4) 1.65850 1.65514 1.66212 1.65499 1.65245 1.65244

(0.7, 0.1) 0.06571 0.06662 0.06306 0.06621 0.06716 0.06705

(0.9, 0.9) 0.01212 0.01364 0.01459 0.01367 0.01358 0.01335

Figure 6 Solution profile of Example 8 at T = 0, 0.01, 0.05, N = 400, Re = 1, and dt = 0.00125
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Figure 7 Solution profile of Example 8 at T = 0.01, N = 400, Re = 1, and dt = 0.0001

exact and available results in the literature. From comparison it is clear that the proposed

technique gives a better accuracy and is easy to implement.
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