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ABSTRACT

The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the

multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional

derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the

operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre

orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system

of algebraic equations. For con�rming the ef�ciency and accuracy of the proposed scheme, some test problems are

implemented with their approximate solutions.

Key Words: Fractional optimal control problem, legendre polynomials, operational matrix, lagrange multiplier
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I. INTRODUCTION

In recent years, fractional calculus (theory of deriva-

tives and integrals with any non-integer arbitrary order)

gained considerable due to the considerable number of

importance applications in different �elds of physics and

engineering such as solid mechanics [1], robotic bird

[2], structure control [3], anomalous transport [4], con-

tinuum and statistical mechanics [5], �uid-dynamics [6],

economics [7] and many other �elds [8,9].

The operational matrix of fractional derivatives was

derived for some types of orthogonal polynomials such

as, the Legendre [10], Chebyshev [11] and Jacobi [12]

polynomials and used to solve several types of fractional

differential equations, (see [13–15]). On the other hand,

the operational matrix of fractional integrals have been
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derived for many types of orthogonal polynomials such

as, the Legendre [16], Chebyshev [17], Jacobi [18,19] and

Laguerre [20] polynomials.

The optimal control problem refers to the min-

imization of a performance index subject to dynamic

constraints on the state and control variables. If the frac-

tional differential equations are used as the dynamic

constraints, this leads to the fractional optimal control

problems (FOCPs). Optimal control problems appear in

engineering, science, economics, and many other �elds.

An extensive body of work exists in the area of optimal

control of integer order dynamic systems, see [21–23],

but limited work has been done in the area of FOCP.

FOCPs have gained much attention for their many appli-

cations in engineering and physics. For example, it has

been illustrated that materials with memory and heredi-

tary effects, and dynamical processes, including gas dif-

fusion and heat conduction in fractal porous media, can

be more adequately modeled by fractional-order mod-

els than integer-order models [24]. Other applications

of FOCPs are shown in [25–27]. For that reason, �nd-

ing robust and accurate numerical methods for solving

FOCPs has become an active research undertaking. In

recent years, many researchers studied obtaining numer-

ical solutions of FOCPs, (for instance see [28–33]). In

most papers in this �eld, one-dimensional FOCPs were

considered, where the problem contains one state vari-

able, one control variable and one fractional differen-

tial equation as the dynamic constraint, (see [34,35]).



Recently, Defterli [36] applied a numerical scheme to

solve the two-dimensional FOCP with a quadratic per-

formance index.

In this paper, we propose and develop a direct

numerical technique for solving the multi-dimensional

FOCP with a quadratic performance index

Min. J =
1

2 ∫
t1

t0

(
b1(t)x

2
1
(t) + b2(t)x

2
2
(t) + · · ·

+ bn(t)x
2
n
(t) + a0(t)u

2(t)
)
dt,

(I.1)

subject to the dynamic constraints,

D�x1(t) = bn+1(t)x1(t) + bn+2(t)x2(t) + · · ·

+ b2n(t)xn(t) + a1(t)u(t),

D�x2(t) = b2n+1(t)x1(t) + b2n+2(t)x2(t) + · · ·

+ b3n(t)xn(t) + a2(t)u(t),

⋮ = ⋮ ⋮ ⋮ ⋮ ⋮

D�xn(t) = bn2+1(t)x1(t) + bn2+2(t)x2(t) + · · ·

+ bn2+n(t)xn(t) + an(t)u(t),

x1(0) = x1, x2(0) = x2, · · · , xn(0) = xn,

(I.2)

where t0 ≤ t ≤ t1 and 0 ≤ � ≤ 1.

The proposed numerical scheme consists of expand-

ing the control variable u(t) and the fractional derivatives

of the state variables D�xj(t), j = 1, 2, · · · , n, by means

of theLegendre orthonormal polynomialswith unknown

coef�cients using the operational matrix of fractional

integrals. Then, the system of equations, derived from the

system of dynamic constraints (I.2), is adjoined to the

performance index (I.1), using the Lagrange multiplier

method. Finally, the M-DFOCP (I.1)-(I.2) is reduced to

a system of algebraic equations that can be solved by an

iterative method.

This article is organized as follows. In Section

II, we introduce some de�nitions and notations of

fractional calculus and we derive the operational

matrix of fractional integrals for the shifted orthonor-

mal Legendre polynomials. In Section III, the oper-

ational matrix of fractional integrals and the prop-

erties of the shifted Legendre orthonormal polyno-

mials are adopted, together with the help of the

Lagrange multiplier method in order to introduce an

approximate solution for the M-DFOCP (I.1)-(I.2).

In Section IV, three numerical examples are developed.

The new results and those obtained by other methods are

compared and discussed. Finally, Section V presents the

main conclusion.

II. PRELIMINARIES AND NOTATIONS

2.1 Fractional calculus de�nitions

The Riemann–Liouville and Caputo fractional

de�nitions are two often used de�nitions of fractional

derivatives.

De�nition 1.1. The integral of order � ≥ 0 (fractional)

according to Riemann-Liouville is given by

I� f (t) =
1

Γ(�)∫
t

0

(t − y)�−1f (y)dy, � > 0, t > 0,

I0f (t) = f (t),

(2.1)

where

Γ(�) = ∫
∞

0

t�−1e−tdt

is gamma function.

The operator I� satis�es the following properties

I�I�f (t) = I�+�f (t),

I�I�f (t) = I�I� f (t),

I� t� =
Γ(� + 1)

Γ(� + 1 + �)
t�+� .

(2.2)

De�nition 1.2. The Caputo fractional derivative of order

� is de�ned by

D� f (t) =
1

Γ(m − �)∫
t

0

(t − y)m−�−1
dm

dym
f (y)dy,

m − 1 < � ≤ m, t > 0,

(2.3)

where m is the ceiling function of � .



The operator D� satis�es the following properties

D�C = 0, (C is constant),

I�D� f (t) = f (t) −

m−1∑
i=0

f (i)(0+)
ti

i!
,

D� t� =
Γ(� + 1)

Γ(� + 1 − �)
t�−� ,

D� (�f (t) + �g(t)) = �D� f (t) + �D�g(t).

(2.4)

2.2 Shifted legendre polynomials

Assuming that the Legendre polynomial of degree

k is denoted by Pk(z) (de�ned on the interval (−1, 1) ).

Then Pk(z)may be generated by the recurrence formulae

Pk+1(z) =
2k + 1

k + 1
zPk(z) −

k

k + 1
Pk−1(z), 1 ≤ k,

P0(z) = 1, P1(z) = z.

Introducing z = 2t − 1, Legendre polynomials are

de�ned on the interval (0, 1) that may be called shifted

Legendre polynomials P∗

k
(t) and generated using the fol-

lowing recurrence formulae

P∗

k+1
(t) =

2k + 1

k + 1
(2t − 1)P∗

k
(t)−

k

k + 1
P∗

k−1
(t), 1 ≤ k,

P∗
0
(t) = 1, P∗

1
(t) = 2t − 1.

The orthogonality relation is

∫
1

0

P∗
j
(t)P∗

k
(t)dt =

{
1

2k + 1
, for j = k,

0, for j ≠ k.
(2.5)

The explicit analytical form of shifted Legendre

polynomial P∗

k
(t) of degree k may be written as

P∗

k
(t) =

k∑
i=0

(−1)k+i
(k + i)!

(k − i)! (i!)2
ti. (2.6)

Introducing the shifted Legendre orthonormal

polynomials P⋆

k
(t); P⋆

k
(t) ≡ √

2k + 1P∗

k
(t), we have

∫
1

0

P⋆
j
(t)P⋆

k
(t)dt =

{
1, for j = k,

0, for j ≠ k,
(2.7)

and

P⋆

k
(t) =

√
2k + 1

k∑
i=0

(−1)k+i
(k + i)!

(k − i)! (i!)2
ti. (2.8)

Any square integrable function y(t) de�ned on the

interval (0, 1), may be expressed in terms of shifted Leg-

endre polynomials P⋆

k
(t) as

y(t) =

∞∑
k=0

ykP
⋆

k
(t),

from which the coef�cients yk are given by

yk = ∫
1

0

y(t)P⋆

k
(t)dt, 0 ≤ k. (2.9)

If we approximate y(t)by the �rst (N+1)-terms, then

we can write

yN(t) =

N∑
k=0

ykP
⋆

k
(t), (2.10)

which alternatively may be written in the matrix form:

yN(t) ≃ YTΔN(t), (2.11)

with

Y =

⎛
⎜⎜⎜⎝

y0
y1
⋮

yN

⎞
⎟⎟⎟⎠
, ΔN(t) =

⎛
⎜⎜⎜⎝

P⋆

0
(t)

P⋆

1
(t)

⋮

P⋆
N
(t)

⎞
⎟⎟⎟⎠
. (2.12)

2.3 Operational matrix for fractional integrals

Theorem 2.1. The fractional integral of order � (in the

sense of Riemann–Liouville) of the shifted Legendre

polynomial vector ΔN(t) is given by

I�ΔN(t) = I(�)ΔN(t), (2.13)



where I(�) is the (N + 1) × (N + 1) operational matrix of

fractional integral of order � and is de�ned by

I(�)=

⎛
⎜⎜⎜⎜⎜⎜⎝

Θ�(0, 0) Θ�(0, 1) · · · Θ�(0, j) · · · Θ�(0,N)

Θ�(1, 0) Θ�(1, 1) · · · Θ�(1, j) · · · Θ�(1,N)

⋮ ⋮ ⋱ ⋮ ⋱ ⋮

Θ�(i, 0) Θ�(i, 1) · · · Θ�(i, j) · · · Θ�(i,N)

⋮ ⋮ ⋱ ⋮ ⋱ ⋮

Θ�(N, 0) Θ�(N, 1) · · · Θ�(N, j) · · · Θ�(N,N)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

Θ�(i, j) =

i∑
k=0

��(i, j, k) (2.14)

and

��(i.j, k) =
√
(2j + 1)(2i + 1)

j∑
l=0

(−1)i+j+k+l(i + k)!(l + j)!

(i−k)!k!Γ(k+�+1)(j−l)!(l!)2(k+l+�+1)
.

Proof. Using (2.4) and (2.8), the fractional integral of

order � for the shifted Legendre polynomials P⋆
i
(t) is

given by

I�P⋆

i
(t) =

√
2i + 1

i∑
k=0

(−1)i+k
(i + k)!

(i − k)! (k!)2
I�tk,

=
√
2i + 1

i∑
k=0

(−1)i+k
(i + k)!

(i − k)! k! Γ(k+�+1)
tk+� .

(2.15)

Now we can approximate tk+� by N + 1 terms of

shifted Legendre polynomials P⋆
j
(t) as:

tk+� =

N∑
j=0

�kjP
⋆

j
(t), (2.16)

where �kj is given as in (2.9) with y(t) = tk+� , then

�kj = ∫
1

0

tk+�P⋆

j
(t)dt

=
√
2j + 1

j∑
l=0

(−1)j+l
(j + l)!

(j − l)! (l!)2∫
1

0

tl+k+�dt

=
√
2j + 1

j∑
l=0

(−1)j+l
(j + l)!

(j − l)! (l!)2 (k + � + l + 1)
.

(2.17)

Employing (2.15)–(2.17), we have

I�P⋆
i
(t)=

√
2i+1

i∑
k=0

N∑
j=0

(−1)i+k
(i + k)!

(i−k)! k!Γ(k+�+1)

× �kjP
⋆

j
(t)

=

N∑
j=0

Θ�(i, j)P
⋆

j
(t),

(2.18)

where Θ(i, j) is given in (2.14).

Finally, we can rewrite (2.18) in a vector form as

I�P⋆

i
(t) ≃

[
Θ�(i, 0), Θ�(i, 1), · · · ,

Θ�(i, j), · · · , Θ�(i,N)
]
ΔN(t).

(2.19)

Eq. 2.19 completes the proof.

III. THE NUMERICAL SCHEME

In this section, we discuss our numerical scheme

to approximate the solution of the M-DFOCP in the

following form:

Min. J =
1

2 ∫
t1

t0

( n∑
i=1

[
bi(t)x

2
i
(t)

]
+ a0(t)u

2(t)
)
dt,

(3.1)

subjected to the dynamic constraints,

D�xj(t) =

n∑
i=1

[
bjn+i(t)xi(t)

]
+ aj(t)u(t),

xj(0) = xj,

j = 1, 2, · · · , n.

(3.2)



First, we can approximate D�xj(t), (j = 1, 2, · · · , n)

and u(t) by the shifted Legendre orthonormal polynomi-

als P⋆

k
(t) as

D�xj(t) ≃ CT
j
ΔN(t), j = 1, 2, · · · , n,

u(t) ≃ UTΔN(t),
(3.3)

where Cj, (j = 1, 2, · · · , n) and U are unknown coef�-

cients matrices that can be written as

U =

⎛
⎜⎜⎜⎝

u0
u1
⋮

uN

⎞
⎟⎟⎟⎠
, Cj =

⎛
⎜⎜⎜⎝

cj,0
cj,1
⋮

cj,N

⎞
⎟⎟⎟⎠
, j = 1, 2, · · · , n.

(3.4)

Using (2.4), we have

I�D�xj(t) = xj(t) − xj(0), j = 1, 2, · · · , n, (3.5)

also adopting (2.13) together with (3.3), we get

I�D�xj(t) ≃ CT
j
I(�)ΔN(t), j = 1, 2, · · · , n. (3.6)

Using (3.5) and (3.6), we can write

xj(t) ≃ CT
j
I(�)ΔN(t)+xj(0), j = 1, 2, · · · , n. (3.7)

By approximating xj(0) by the shifted Legendre

orthonormal polynomials P⋆

k
(t) as

xj(0) ≃ FT
j
ΔN(t), j = 1, 2, · · · , n, (3.8)

where

Fj =

⎛
⎜⎜⎜⎝

xj
0

⋮

0

⎞
⎟⎟⎟⎠
, j = 1, 2, · · · , n, (3.9)

we can approximate xj(t) as

xj(t) ≃
(
CT
j
I(�) + FT

j

)
ΔN(t), j = 1, 2, · · · , n.

(3.10)

Also, we approximate bi(t) (i = 1, 2, · · · , n(n + 1))

and aj(t) (j = 0, 1, · · · , n) by the the shifted Legendre

orthonormal polynomials P⋆

k
(t) as

bi(t) ≃ BT
i
ΔN(t), i = 1, 2, · · · , n(n + 1),

aj(t) ≃ AT
j
ΔN(t), j = 0, 1, · · · , n,

(3.11)

where

Bi =

⎛
⎜⎜⎜⎝

bi,0
bi,1
⋮

bi,N

⎞
⎟⎟⎟⎠
, Aj =

⎛
⎜⎜⎜⎝

aj,0
aj,1
⋮

aj,N

⎞
⎟⎟⎟⎠
,

i = 1, 2, · · · , n(n + 1), j = 0, 1, · · · , n.

(3.12)

and

bi,k = ∫
1

0

bi(t)P
⋆

k
(t)dt,

k = 0, 1, · · · ,N, i = 1, 2, · · · , n(n + 1),

aj,k = ∫
1

0

aj(t)P
⋆

k
(t)dt,

k = 0, 1, · · · ,N, j = 0, 1, · · · , n.

(3.13)

For general functions bi(t) (i = 1, 2, · · · , n(n + 1))

and aj(t) (j = 0, 1, · · · , n), it is more dif�cult to compute

the previous integrals exactly. Using the Legendre-Gauss

quadrature formula, we can approximate the coef�cients

bi,k and aj,k as

bi,k =

N∑
	=0

bi(tN,	)P
⋆

k
(tN,	)
N,	,

k = 0, 1, · · · ,N, i = 1, 2, · · · , n(n + 1),

aj,k =

N∑
	=0

aj(tN,	)P
⋆

k
(tN,	)
N,	,

k = 0, 1, · · · ,N, j = 0, 1, · · · , n,

where tN,	, 0 ≤ 	 ≤ N are the zeros of Legendre–Gauss

quadrature in the interval (0, 1), with 
N,	, 0 ≤ 	 ≤ N

are corresponding Christoffel numbers.



Using (3.3), (3.10) and (3.11), we can approximate

J ≡ J[C1,C2, · · · ,Cn,U] as

JN≃
1

2∫
t1

t0

( n∑
i=1

[(
BT
i
ΔN(t)

)(
CT
i
I(�) + dT

i

)
ΔN(t)Δ

T
N
(t)

(
CT
i
I(�) + dT

i

)T]
+
(
AT

0
ΔN(t)

)

×
(
UTΔN(t)Δ

T
N
(t)U

))
dt.

(3.14)

Employing (3.3), (3.10) and (3.11), the dynamic

constraints (3.2) can be approximated as

CT
j
ΔN(t) −

n∑
i=1

[
BT
jn+i

ΔN(t)Δ
T
N
(t)

(
CT
i
I(�) + dT

i

)T]

− AT
j
ΔN(t)Δ

T
N
(t)U = 0,

j = 1, 2, · · · , n.

(3.15)

Let

BT
jn+i

ΔN(t)Δ
T
N
(t) ≃ ΔT

N
(t)GT

jn+i
, i, j = 1, 2, · · · , n,

(3.16)

AT
j
ΔN(t)Δ

T
N
(t) ≃ ΔT

N
(t)HT

j
, j = 1, 2, · · · , n,

(3.17)

where Gjn+i andHj are N ×N matrices.

In order to compute Gjn+i (i, j = 1, 2, · · · , n) and

Hj (j = 1, 2, · · · , n), we may write (3.16) and (3.17) as

N∑
k=0

bjn+i,kP
⋆

k
(t)P⋆

l
(t) =

N∑
k=0

Gjn+i(lk)P
⋆

k
(t), i,

j = 1, 2, · · · , n, l = 0, 1, · · · ,N,

(3.18)

N∑
k=0

aj,kP
⋆

k
(t)P⋆

l
(t) =

N∑
k=0

Hj(lk)P
⋆

k
(t),

j = 1, 2, · · · , n, l = 0, 1, · · · ,N.

(3.19)

Multiplying both sides of (3.18) and (3.19) by

P⋆
m
(t), m = 0, 1, · · · ,N and integrating from 0 to 1, we

have

N∑
k=0

bjn+i,k∫
1

0

P⋆

k
(t)P⋆

l
(t)P⋆

m
(t)dt =

N∑
k=0

Gjn+i(lm)

×∫
1

0

P⋆

k
(t)P⋆

m
(t)dt,

(3.20)

N∑
k=0

aj,k∫
1

0

P⋆

k
(t)P⋆

l
(t)P⋆

m
(t)dt

N∑
k=0

Hj(lm)∫
1

0

P⋆

k
(t)P⋆

m
(t)dt,

(3.21)

i, j = 1, 2, · · · , n, l,m = 0, 1, · · · ,N.

Bymeans of the orthogonality relation (2.7), we get

Gjn+i(lm) =

N∑
k=0

bjn+i,k∫
1

0

P⋆

k
(t)P⋆

l
(t)P⋆

m
(t)dt,

Hj(lm) =

N∑
k=0

aj,k∫
1

0

P⋆

k
(t)P⋆

l
(t)P⋆

m
(t)dt,

i, j = 1, 2, · · · , n, l,m = 0, 1, · · · ,N.

(3.22)

Using (3.16) and (3.17), Eq. 3.15 may be written as

CT
j
ΔN(t) −

n∑
i=1

[
ΔT
N
(t)GT

jn+i

(
CT
i
I(�) + dT

i

)T]

− ΔT
N
(t)HT

j
U = 0, j = 1, 2, · · · , n,

(3.23)

or

(
CT
j
−

n∑
i=1

[
GT
jn+i

(
CT
i
I(�)+dT

i

)T ]
−HT

j
U
)
ΔN(t)=0,

j=1, 2, · · · , n.

(3.24)



Thus, the dynamic constraints (3.2) are converted

into the following linear system of algebraic equations:

CT
j
−

n∑
i=1

[
GT
jn+i

(
CT
i
I(�)+dT

i

)T]
−HT

j
U=0, j=1, 2, · · · , n.

(3.25)

Let

J⋆[C1,C2, · · · ,Cn,U, �] = J[C1,C2, · · · ,Cn,U]

+

n∑
j=1

(
CT
j
−

n∑
i=1

[
GT
jn+i

(
CT
i
I(�) + dT

i

)T]
−HT

j
U
)
�j,

(3.26)

where

�j =

⎛
⎜⎜⎜⎝

�j,0
�j,1
⋮

�j,N

⎞
⎟⎟⎟⎠
, j = 1, 2, · · · , n, (3.27)

is the unknown Lagrange multiplier.

The necessary conditions for the optimality of the

performance index (3.1) subjected to the dynamic con-

straints (3.2) are

�J⋆

�cj,k
= 0, j = 1, 2, · · · , n,

�J⋆

�uk
= 0,

�J⋆

��j,k
= 0, j = 1, 2, · · · , n,

k = 0, 1, · · · ,N.

(3.28)

The system of algebraic equations introduced

above can be solved by using any standard itera-

tion method for the unknown coef�cients cj,k, uk
and �j,k, j = 1, 2, · · · , n, k = 0, 1, · · · ,N. Conse-

quently, Cj, U and �j given in (3.4) and (3.27) can

be obtained.

IV. NUMERICAL EXPERIMENTS

In order to demonstrate the validity and accu-

racy of the proposed numerical scheme, we solve

three problems and we compare the results obtained

using the novel algorithm and those obtained using

other methods.

4.1 One-dimensional FOCP

As the �rst example, we consider the following

one-dimensional FOCP studied in [34,37]

Min. J =
1

2∫
1

0

(
x2(t) + u2(t)

)
dt, (4.1)

subjected to the dynamic constraints,

D�x(t) = −x(t) + u(t),

x(0) = 1.
(4.2)

The exact solution of this problem for � = 1 is

x(t) = cosh(
√
2t) + � sinh(

√
2t),

u(t) = (1 +
√
2�) cosh(

√
2t) + (

√
2 + �) sinh(

√
2t),

(4.3)

where

� = −
cosh(

√
2t) +

√
2 sinh(

√
2t)√

2 cosh(
√
2t) + sinh(

√
2t)

.

Fig. 1. Absolute error of x(t) at N = 8 with � = 1 for problem

(4.1).



In [34], the Lagrangemultipliermethod and the cal-

culus of variations were used together with the formula

for fractional integration by parts to obtain approximate

solutions of the control variable u(t) and the state variable

x(t). The authors used N = 10, 20, 40, 80, 160, 230, but

achieved reasonable results for the approximate values of

u(t) and x(t) only when adopting a large fN (see Figs 1–4

in [34]). Also, Jafari and Tajadodi [37] used the opera-

tional matrices of Bernstein polynomials to approximate

the solution of this problem.

Figs 1 and 2 depict the absolute errors of the state

variable x(t) and the control variable u(t) at N = 8 and

� = 1. Figs 3 and 4 present the approximate values of x(t)

and u(t) as functions of time when N = 6 and various

values of � namely, � = 0.80, 0.90, 0.99, and 1. In Table I,

Fig. 2. Absolute error of u(t) at N = 8 with � = 1 for problem

(4.1).
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Fig. 3. Approximate solutions of x(t) at N = 6 and

� = 1, 0.99, 0.90 and 0.80 for problem (4.1).
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Fig. 4. Approximate solutions of u(t) at N = 6 and

� = 1, 0.99, 0.90 and 0.80 for problem (4.1).

we compare the absolute errors of x(t) using our method

with those achieved using this in [37]. Tables II and III list

the absolute errors of x(t) and u(t) for � = 1 and various

values of N.

From Figs 1 and 2 and Tables I–III, it is clear

that adding few terms of shifted Legendre orthonormal

polynomials, leads to good approximations of the exact

state and control variables. Figs 3 and 4 reveal that as �

approaches to 1, the solution for the integer order system

is recovered.

4.2 Two-dimensional FOCP

As a two-dimensional FOCP, we consider the fol-

lowing problem [33,36]

Min. J =
1

2∫
1

0

(
x2
1
(t) + x2

2
(t) + u2(t)

)
dt, (4.4)

subjected to the dynamic constraints,

D�x1(t) = −x1(t) + x2(t) + u(t),

D�x2(t) = −2x2(t),

x1(0) = x2(0) = 1.

(4.5)

The exact solution of this problem for � = 1 is

x1(t) = −
3

2
e−2t + 2.48164e−

√
2t + 0.018352e

√
2t,

x2(t) = e−2t,

u(t) =
1

2
e−2t − 1.02793e−

√
2t + 0.0443056e

√
2t.



Table I. Comparing of the new method with the one proposed in [37] for x(t) at

� = 1 for problem (4.1).

t
Method in [37] Our method

N = 3 N = 4 N = 5 N = 3 N = 4 N = 5

0.1 3.41.10−4 4.77.10−5 1.34.10−5 3.30.10−4 3.66.10−5 2.39.10−6

0.2 5.08.10−4 3.25.10−5 2.12.10−5 4.86.10−4 1.00.10−5 1.21.10−6

0.3 1.12.10−4 7.74.10−6 3.24.10−5 7.78.10−5 2.64.10−5 1.72.10−6

0.4 2.87.10−4 2.13.10−5 4.73.10−5 3.34.10−4 2.53.10−5 6.82.10−7

0.5 3.97.10−4 6.43.10−5 6.20.10−5 4.57.10−4 4.23.10−6 1.93.10−6

0.6 1.50.10−4 1.03.10−4 7.49.10−5 2.30.10−4 2.91.10−5 3.10.10−7

0.7 2.93.10−4 1.12.10−4 8.88.10−5 2.02.10−4 2.14.10−5 1.90.10−6

0.8 6.29.10−4 9.14.10−5 1.07.10−5 5.21.10−3 1.72.10−5 9.16.10−7

0.9 3.71.10−4 9.41.10−5 1.31.10−4 2.42.10−4 3.46.10−5 2.49.10−6

Table II. Absolute errors of x(t) at � = 1 and various

values of N for problem (4.1).

t N = 6 N = 8 N = 10

0.1 6.86398.10−8 1.21608.10−10 5.77379.10−12

0.2 1.00670.10−7 3.87690.10−11 8.27005.10−13

0.3 1.33050.10−8 1.05482.10−10 9.84246.10−12

0.4 9.00998.10−8 1.52765.10−10 8.83471.10−12

0.5 9.27207.10−9 1.27758.10−11 3.52051.10−12

0.6 9.13792.10−8 1.44500.10−10 1.11767.10−11

0.7 4.44009.10−9 1.23409.10−10 4.95581.10−12

0.8 9.93486.10−8 1.63731.10−11 5.44142.10−12

0.9 8.05744.10−8 1.06073.10−10 1.02076.10−11

Defterli [36] used the Grünwald–Letnikov de�ni-

tion to approximate the Riemann–Liouville fractional

derivatives for approximating its solution. Defterli con-

sidered N = 8, 16, 32, 64, 128 and achieved reasonable

results for the approximate values of the control vari-

able, u(t), and the two state variables, x1(t) and x2(t),

only for a large number of N. Also, Youse� et al. [33]

introduced this problem and applied the Legendre mul-

tiwavelet collocation method (LMWCM) for solving it

numerically.

In Figs 5–7, we plot the approximate values of

the state variables, x1(t) and x2(t), and the control

variable u(t) for N = 8 and various choices of �, � =

0.80, 0.90, 0.99 and 1. In Figs 8–10, we present the

absolute errors of x1(t), x2(t) and u(t) at N = 10

and � = 1. Table IV shows the maximum abso-

lute errors (MAEs) of x1(t), x2(t) and u(t) using our

scheme at � = 1 and various choices of N. Table V

lists the absolute errors of x2(t) at � = 1 and
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Fig. 5. Approximate solutions of x1(t) at N = 8 and

� = 1, 0.99, 0.90 and 0.80 for problem (4.4).

Table III. Absolute errors of u(t) at � = 1 and various values of N for

problem (4.1).

t N = 3 N = 5 N = 7 N = 9

0.1 1.09654.10−4 7.08189.10−7 5.79289.10−11 5.44732.10−12

0.2 1.42091.10−4 3.99869.10−7 8.95548.10−10 7.88896.10−13

0.3 8.61549.10−6 4.98380.10−7 1.32975.10−9 9.50503.10−12

0.4 1.13021.10−4 2.49280.10−7 1.39678.10−11 9.25248.10−12

0.5 1.37870.10−4 5.81011.10−7 1.30231.10−9 2.24265.10−12

0.6 5.73271.10−5 4.96686.10−8 3.64046.10−10 1.12853.10−11

0.7 7.57957.10−5 5.92683.10−7 1.21586.10−9 7.22766.10−12

0.8 1.60967.10−4 2.40909.10−7 1.13464.10−9 3.48032.10−12

0.9 6.26788.10−5 7.61099.10−7 2.20743.10−10 9.91018.10−12
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Fig. 6. Approximate solutions of x2(t) at N = 8 and

� = 1, 0.99, 0.90 and 0.80 for problem (4.4).
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Fig. 7. Approximate solutions of u(t) at N = 8 and

� = 1, 0.99, 0.90 and 0.80 for problem (4.4).

Fig. 8. Absolute error of x1(t) at N = 10 with � = 1 for

problem (4.4).

Fig. 9. Absolute error of x2(t) at N = 10 with � = 1 for

problem (4.4).

Fig. 10. Absolute error of u(t) at N = 10 with � = 1 for

problem (4.4).

Table IV. MAEs of x1(t), x2(t) and u(t) at � = 1 and

various values of N for problem (4.4).

N x1(t) x2(t) u(t)

3 2.528709.10−3 3.759398.10−3 8.536543.10−4

4 3.888715.10−4 4.113533.10−4 9.095703.10−5

5 4.003185.10−5 3.702743.10−5 1.351619.10−5

6 3.502786.10−6 2.828678.10−6 1.053620.10−6

7 2.419059.10−7 1.876229.10−7 2.124256.10−7

8 6.575392.10−8 1.099375.10−8 1.286924.10−7

9 5.000459.10−8 5.768396.10−10 1.319097.10−7

various values of N. In order to demonstrate that our

scheme ismore accurate than the LMWCM [33], we com-

pare in Tables VI–VIII the absolute errors of x1(t), x2(t)



Table V. Absolute errors of x2(t) at � = 1 and various values of

N for problem (4.4).

t N = 5 N = 7 N = 9 N = 11

0.1 1.395.10−5 1.482.10−9 1.755.10−10 1.833.10−13

0.2 7.572.10−6 3.552.10−8 1.449.10−10 3.969.10−14

0.3 9.842.10−6 5.139.10−8 6.718.10−11 9.892.10−14

0.4 5.458.10−6 1.486.10−9 6.240.10−11 2.063.10−13

0.5 1.129.10−5 5.058.10−8 1.406.10−10 2.664.10−13

0.6 1.229.10−6 1.322.10−8 8.527.10−11 2.313.10−13

0.7 1.141.10−5 4.756.10−8 4.350.10−11 1.362.10−13

0.8 4.895.10−6 4.356.10−8 1.344.10−10 7.757.10−14

0.9 1.483.10−5 7.911.10−9 1.699.10−10 2.117.10−13

and u(t), at � = 1 and N = 6, with those obtained using

the LMWCM [33].

4.3 Three-dimensional FOCP

In order to obtain that the proposed method can be

applied for high dimensions problems, we consider the

following problem as a three-dimensional FOCP

Min. J =
1

2∫
1

0

(
x2
1
(t)+x2

2
(t)−x2

3
(t)+u2(t)

)
dt, (4.7)

subjected to the dynamic constraints,

D�x1(t) = −2x1(t) − tx2(t) + u(t),

D�x2(t) = 3x1(t) + x3(t) − u(t),

D�x3(t) = tx1(t) + x2(t),

x1(0) = x2(0) = x3(0) = 1.

(4.8)

This problem is solved by the numerical method

introduced above. In Figs 11–14, we plot the approximate

values of the state variables x1(t), x2(t), x3(t) and the con-

trol variable u(t) at N = 3 with various choices of �, � =

0.60, 0.80, 0.90, 0.99 and 1. As shown in Figs 11–14, by

using the presented method we achieve satisfactory result

with at most three elements of the shifted Legendre

orthonormal basis, which demonstrates the ef�ciency of

the presented method for high dimensions problems.

Table VI. Comparing the new method with the LMWCM [33] for x1(t) at � = 1 for

problem (4.4).

t
LMWCM [33] Our method

N = 3 N = 4 N = 6 N = 3 N = 4 N = 6

0.1 4.496.10−4 6.283.10−5 6.947.10−6 7.444.10−4 1.590.10−4 7.373.10−7

0.2 1.152.10−3 3.861.10−4 5.662.10−6 9.097.10−4 3.592.10−5 1.101.10−6

0.3 2.906.10−3 4.751.10−4 1.420.10−6 1.418.10−5 1.169.10−4 1.928.10−7

0.4 3.764.10−3 2.562.10−4 5.483.10−7 7.544.10−4 1.027.10−4 9.998.10−7

0.5 3.342.10−3 1.135.10−4 3.537.10−6 8.713.10−4 2.658.10−5 1.193.10−7

0.6 1.763.10−3 4.026.10−4 5.847.10−6 3.189.10−4 1.266.10−4 9.780.10−7

0.7 4.660.10−4 4.290.10−4 3.908.10−6 5.379.10−4 8.487.10−5 1.166.10−7

0.8 2.556.10−3 1.591.10−4 1.154.10−7 1.050.10−3 8.129.10−5 1.124.10−6

0.9 3.512.10−3 2.141.10−4 1.843.10−6 3.622.10−4 1.456.10−4 8.710.10−7

Table VII. Comparing the new method with the LMWCM [33] for x2(t) at � = 1 for

problem (4.4).

t
LMWCM [33] Our method

N = 3 N = 4 N = 6 N = 3 N = 4 N = 6

0.1 7.175.10−4 5.965.10−5 1.802.10−6 1.043.10−3 1.680.10−4 6.053.10−7

0.2 1.630.10−3 4.057.10−4 1.281.10−6 1.409.10−3 4.112.10−5 9.096.10−7

0.3 4.397.10−3 5.105.10−4 1.754.10−6 1.357.10−4 1.226.10−4 1.430.10−7

0.4 6.018.10−3 2.878.10−4 2.109.10−6 1.058.10−3 1.113.10−4 8.084.10−7

0.5 5.810.10−3 1.039.10−4 6.633.10−7 1.338.10−3 2.471.10−5 1.083.10−7

0.6 3.814.10−3 4.207.10−4 2.867.10−6 5.927.10−4 1.336.10−4 8.232.10−7

0.7 6.659.10−4 4.649.10−4 1.555.10−6 6.962.10−4 9.287.10−5 6.466.10−8

0.8 2.517.10−3 1.924.10−4 1.528.10−6 1.562.10−3 8.327.10−5 8.936.10−7

0.9 4.218.10−3 1.995.10−4 1.285.10−6 6.409.10−4 1.557.10−4 7.454.10−7



Table VIII. Comparing the new method with the LMWCM [33] for u(t) at � = 1 for

problem (4.4).

t
LMWCM [33] Our method

N = 3 N = 4 N = 6 N = 3 N = 4 N = 6

0.1 1.883.10−4 1.046.10−5 2.597.10−6 2.287.10−4 3.568.10−5 1.711.10−7

0.2 3.498.10−4 8.057.10−5 2.121.10−6 3.118.10−4 4.319.10−6 3.728.10−7

0.3 9.956.10−4 8.937.10−5 8.640.10−7 3.045.10−5 3.022.10−5 6.595.10−9

0.4 1.399.10−4 2.583.10−5 5.089.10−7 2.329.10−4 2.387.10−5 2.301.10−7

0.5 1.411.10−3 6.734.10−5 1.346.10−6 2.953.10−4 7.706.10−6 1.135.10−7

0.6 1.039.10−3 1.341.10−5 1.960.10−6 1.323.10−4 2.948.10−5 3.717.10−7

0.7 4.216.10−4 1.350.10−4 1.319.10−6 1.514.10−4 1.704.10−5 5.660.10−8

0.8 1.969.10−4 6.878.10−5 9.161.10−6 3.437.10−4 2.207.10−5 2.197.10−7

0.9 4.782.10−4 1.375.10−5 1.003.10−7 1.393.10−4 3.393.10−5 3.873.10−7

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

1.0

t

x
1
(t

)

0.60

0.80

0.90

0.99

1

Fig. 11. Approximate solutions of x1(t) at N = 3 and

� = 1, 0.99, 0.90, 0.80 and 0.60 for problem (4.7).
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Fig. 12. Approximate solutions of x2(t) at N = 3 and

� = 1, 0.99, 0.90, 0.80 and 0.60 for problem (4.7).
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Fig. 13. Approximate solutions of x3(t) at N = 3 and

� = 1, 0.99, 0.90, 0.80 and 0.60 for problem (4.7).
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Fig. 14. Approximate solutions of u(t) at N = 3 and

� = 1, 0.99, 0.90, 0.80 and 0.60 for problem (4.7).



V. CONCLUSION

In this paper, a new formulation of the M-DFOCP

was considered. The Lagrange multiplier method for

the constrained extremum and the operational matrix of

fractional integrals are used, together with the help of

the properties of the shifted Legendre orthonormal poly-

nomials, to solve the M-DFOCP numerically, by reduc-

ing it to a solution of a system of algebraic equations.

The fractional derivatives are described in the Caputo

sense, while the fractional integrals are described in the

Riemann–Liouville sense. In order to clarify the validity

and accuracy of the proposed scheme, three numerical

examples were presented with their exact and approxi-

mate solutions.
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