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Abstract 
 

Nonlinear wave equations are more difficult to study mathematically, and no general analytical method exists for their 

solution. It is found that the Exponential Time Differencing (ETD) scheme requires the steps to achieve a given 

accuracy, offers a speedy method in calculation time, and has exceptional stability properties in solving a nonlinear 

equation. This article solves the diagonal example of nonlinear heat equation via the exponential time difference Runge-

Kutta 4 methods (ETDRK4). Implementation of the method is proposed by short Matlab programs. 
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1. Introduction 

It is found that several time-dependent partial differential equations (PDEs) combine low-order nonlinear terms with 

higher-order linear terms. It is most appropriate to apply high-order approximations in space and time in order to find 

accurate numerical solutions of such problems. 

Cox and Matthews presented a clear derivation of the explicit ELP schemes of arbitrary order referring to the ELP 

methods as the Exponential Time Differencing (ETD) methods [1 - 3]. After that Tokman studied a class of exponential 

propagation techniques known as Exponential Propagation Iterative (EPI) schemes [4]. In order to make better the ETD 

schemes, Wright deliberated on these schemes and thus reforming the solution in integral form of a nonlinear 

autonomous system of ODEs to an extension in terms of matrix and vector functions products [5]. 

The basic formula of the ETD schemes, the linear part of the differential equation is integrated, and applied a suitable 

approximate for the nonlinear terms. Lawson [6] presented a similar approach for the first time that is currently used in 

the integrating factor (IF) schemes. In the approach of IF schemes [7 - 9], both sides of an ODE were multiplied by an 

integrating factor, and made a change of variable that the linear part can be solved exactly. 

Applications of exponential time difference methods are in solving stiff systems. Moreover, comparing various fourth-

order methods, including the ETD methods and their results revealed that the best choice was the ETD4RK method for 

solving various one-dimensional diffusion-type problems [10], [11]. An extensive application of the ETD methods has 

been made according to related work in many simulations of stiff problems [12]. Aziz et al. [13], [14] studied on the 

exponential time difference Runge-Kutta 4 method (ETDRK4) for solving the diagonal example of Korteweg-de Vries 

(KdV) and Kuramoto-Sivashinsky (K-S) equations [15], [16] with Fourier's transformation, and to be implement by the 

integration factor method. Other papers on this subject include [17 - 24].  

The present paper is organized as follows: In section 1, we introduce the subject. In section 2, we carry out the 

execution on a diagonal example of nonlinear heat equation, together with fast Fourier transform (FFT).In section 3, we 

compare the exact and numerical solution. In section 4, a brief conclusion is given.  
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2. A diagonal example  

Let us consider a nonlinear heat equation 

 

ut = uxx + u5 , x ∈ [0,2π]                                                                                                                                                 (1) 

 

With the initial condition given using  

 

u(x, 0) = 1 + cos(πx).                                                                                                                                                     (2) 

 

In the above equation, we use the fast Fourier transform (FFT)  

 

ût − i2k2û + u5̂ = 0 
 

Where i = √−1.The equation (1) is multiplied byek
2t, i.e. 

 

ek
2tût + ek

2tk2û + ek
2tu2̂ = 0 

 

If we define the change of variable 

 

Û = ek
2tû                                                                                                                                                                           (3) 

 

With 

 

Ût = k2ek
2tû + ek

2tût                                                                                                                                                      (4) 

 

And substituting (3) in (4), we have 

 

Ût + ek
2tu5̂ = 0  

 

Working in Fourier space (applying FFT), the numerical algorithm discretizing can be obtained by 

 

Ût + ek
2tF((F−1(e−k

2tÛ))5) = 0  

 

Where F is the Fourier transformed operator. 

For time stepping, we use the ETDRK4 witht = 150, the ETDRK4 is given by 

 

an = une
hL 2⁄ + (ehL 2⁄ − I)N(un, tn) L⁄ ,                                                                                                                          (5) 

 

bn = une
hL 2⁄ + (ehL 2⁄ − I)N(an, tn + h 2⁄ ) L⁄                                                                                                                (6) 

 

cn = ane
hL 2⁄ + (ehL 2⁄ − I) (2N(bn, tn + h 2⁄ ) − N(un, tn)) L⁄                                                                                    (7) 

 

un+1 = ane
hL +                                                                                                                                                                 (8) 

 

{∅1N(un, tn) + 2∅2(N(an, tn + h 2⁄ ) + N(bn, tn + h 2⁄ ))

+∅3N(cn, tn + h)}
(L3h2)⁄ , 

 

Where 

 

∅1 = (L2h2 − 3Lh + 4)ehL − Lh − 4 ,                                                                                                                             (9) 

 

∅2 = (Lh − 2)ehL + Lh + 2 ,                                                                                                                                          (10) 

 

∅3 = (−Lh + 4)ehL − L2h2 − 3Lh − 4                                                                                                                          (11) 

 



International Journal of Applied Mathematical Research 439 

 

 

 

 

 
Fig. 1: Time Evolution for Nonlinear Equation. The 𝐗 Axis Runs from 𝐗 = 𝟎 to 𝐗 = 𝟐𝛑and the t-Axis Runs from t=0 to t=150. 

3. Comparison with the numerical solution and the exact solution 

The nonlinear heat equation (1) and initial condition (2) are considered .The results of the equation (2) is plotted in 

Figure (2) 

 

 
Fig. 2: The Evolution of Exact Solution Nonlinear Heat Equation 

 

As a result, Figure 2 shows that the results of ETDRK4 numerical solution as shown in Figure 1 are acceptable to the 

exact solution. In conclusion, the ETDRK4 is able to generate the numerical solution. 

4. Conclusion 

In this work, we have presented a nonlinear wave equation with the initial condition u(x, 0) = 1 + cos(πx). For 

integrating the system (1), the ETDRK4 method is used. For solving the equation, we implemented the Matlab software. 

Figure 1 shows the result created by Matlab code listed (Appendix A). It is observed that ETDRK4 is suitable in every 

case. For diagonal and non-diagonal problems, it works equally well due to it is accurate and fast, and the ETDRK4 

needs the fewest steps to achieve a given accuracy. Moreover, for running the programmes, the computational time 

required is less than one second, which is faster compared with the conventional Runge-Kutta 4. 
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Appendix A 

Matlab code to solve nonlinear heat equation and produce Figure 1 

 

 

 


