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Abstract  

The one pot conversion of glycerol to lactic acid using monometallic Au and Pt as well as 

bimetallic (Au-Pt) catalysts supported on nanocrystalline CeO2 (n-CeO2) in aqueous solution 

in the presence of a base and oxygen was investigated. Catalytic performance of the bimetallic 

catalysts is considerably better than the monometallic ones and is indicative for synergistic 

effects. The bimetallic system shows excellent activity (TOF = 1170 h-1) with a high 

selectivity (80%) to lactic acid at 99% glycerol conversion (373 K, NaOH to glycerol ratio of 

4 mol/mol 5 bar oxygen). The Au-Pt/nCeO2 catalyst was recycled 5 times in a batch set-up 

without a significant drop in activity and lactic acid selectivity, indicative for good catalyst 

stability. 
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1. Introduction  

The catalytic conversion of glycerol to green bulk chemicals is currently an active field of 

research [1-3]. One of the main drivers is the surplus of glycerol as a result of the growing 

biodiesel production levels. Gold, previously being considered as an inert metal, shows very 

good catalytic activity when present as nano particles [4, 5] and catalytic transformations 

using gold are now well established [6-10]. For instance, glycerol can be oxidised selectively 

to glyceric acid at aqueous alkaline conditions in a temperature range of 303-333 K [11-

14]using gold nanoparticles on various supports. Interactions between the support and the 

gold nanoparticles are of paramount importance and determine the activity and selectivity of 

the oxidation reactions [15, 16]. Catalyst performance can be improved significantly by the 

incorporation of a second metal such as palladium or platinum [17-22]. Best performance is 

obtained when both metals are present as nano-sized clusters in a single phase [23]. 

Lactic acid (2-hydroxy propionic acid) is an interesting bi-functional molecule. It is used as a 

monomer for the production of biodegradable polymers (polylactic acid) as well as for the 

production of biodegradable, nontoxic solvents (lactic acid esters) [24, 25]. It also has 

applications in the food, cosmetic, and pharmaceutical industry[24]. Lactic acid is considered 

a top 12 biobased platform molecule and may serve as a starting point for a wide range of 

future biobased chemicals by catalytic routes [26],[27]. Lactic acid can be produced either 

chemically or biotechnologically by fermentation routes. The chemical route using HCN and 

acetaldehyde is of less interest nowadays due to environmental concerns. The current 

commercial process involves fermentation of various carbohydrates sources. However, both 

the low space time yields and the difficult recovery of lactic acid from the fermentation broth 

have a major impact on the production costs [2] and alternative catalytic processes for the 

production of lactic acid are highly desirable. 

Base catalysed conversions of glycerol to lactic acid at elevated temperatures have been 

reported. For instance, Kishida et al. showed that lactic acid can be produced from glycerol by 

a hydrothermal treatment at 573 K in strong alkaline conditions up to a yield of 90 mol% after 

1.5 h reaction time [28] (eq 1). 

 

                                                                                                        (eq 1) 
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Higher glycerol concentrations were applied by Lopez et al., which resulted in 84% lactic 

acid yield in 1.5 h at 553 K [29]. KOH has superior activity compared to NaOH in the 

reaction [30]. The severe reaction conditions, viz. a high reaction temperature coupled with 

the necessity for a large amount of base, are a major concern for further scale up of this 

synthetic methodology.  

Catalytic conversions of glycerol to lactic acid using heterogeneous catalysts have also been 

explored, both under reductive and oxidative conditions. Maris et al. observed lactic acid 

formation during the hydrogenolysis (473 K, 40 bar H2) of glycerol in base solutions using 

monometallic (Ru and Pt) and bimetallic (PtRu and AuRu) on a carbon support. A lactic acid 

selectivity up to 62% (25% glycerol conversion) for Pt/C and 60% (21% conversion) for 

AuRu/C were obtained, though the selectivity decreased considerably at higher glycerol 

conversions [31, 32]. Ten Dam et al. also noticed lactic acid formation (55% selectivity at 

46% glycerol conversion after 18 h) for the hydrogenolysis of glycerol using Pt/CaCO3 in 

combination with boric acid (glycerol to boric acid ratio of 1, pH 12, 473 K, 40 bar H2) [33]. 

Lactic acid formation under oxidative conditions have also been investigated. Shen et al. 

recently showed that monometallic Au and bimetallic Au-Pt on a TiO2 support are selective 

catalysts for the conversion of glycerol to lactic acid at 363 K in strong alkaline conditions in 

an oxygen atmosphere [34]. A turn over frequency (TOF) of 520 h-1 and a lactic acid 

selectivity up to 86% at 30% glycerol conversion was reported. Ir/CaCO3 catalysts have also 

been reported for the conversion of glycerol to lactic acid in water. A lactic acid yield of 18% 

was obtained at 453 K after 6h in the presence of 1 M NaOH in an inert atmosphere [35].  

In this paper, we report the one pot conversion of glycerol to lactic acid in water under 

oxidative conditions using monometallic and bimetallic Au and Pt based catalysts on a nano-

ceria support. This support was selected as it is known that Au on nano-crystalline CeO2 is an 

efficient oxidation catalyst for alcohols to aldehydes and ketones [36]. The high efficiency of 

nano-crystalline CeO2 compared to regular (non-nanoparticulated) CeO2 is supposed to be 

related to its ability to stabilise O2 as superoxide and peroxide species [37]. Recently, 

Hutchings et al. showed the potential of bimetallic Au-Pd on nano-ceria for the oxidative 

esterification of 1,2 propanediol in methanol to methyl lactate upto a selectivity of 70-75% at 

30-39% conversion [38]. 
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However, catalysts based on the combination of nanoceria and noble metals like Au and Pt 

have not been explored for glycerol conversion in aqueous media in the presence of oxygen. 

In this study, the effect of the catalyst composition  on lactic acid yields have been determined 

and relevant by-products have been identified. A reaction mechanism is proposed based on 

the experimentally observed activity and selectivity trends supported by literature data. 

2. Experimental Section  

 

2.1 Materials 

HAuCl4.3H2O (≥ 99.9 %), K2PtCl4 (99.99%), Ceria (nano powder < 25 nm, product code: 

544841; 47 m2/g and 0.169 cm3/g), polyvinyl alcohol (PVA) (Mw 13.000-23.000), NaBH4 (≥ 

98%) and NaOH (≥ 98%) were procured from Sigma-Aldrich. Activated carbon was obtained 

from Norit (SX1G, 854 m2/g and 0.642 cm3/g) and TiO2 (P25, 50 m2/g and 0.352 cm3/g) was 

a gift from Evonik. Bulk CeO2 was obtained from the Boreskov Institute for Catalysis, Russia 

(21 m2/g and 0.009 cm3/g). Oxygen (99.995 %) was obtained from Linde Gas Benelux B.V., 

the Netherlands and hydrogen (9.86 vol% in nitrogen) from Praxair, Belgium.  

2.2 Catalyst characterisation 

Scanning Transmission Electron Microscope (STEM) images were recorded on Philips 

Tecnai F20 FEG electron microscope fitted with an X-ray EDS system operating at 200 kV. 

The images were acquired with Fischione High Angle Annular Dark Field (HAADF) detector. 

Catalyst samples were finely powdered and dispersed in ethanol. A small droplet of this 

dispersion was deposited on a copper grid coated with carbon. Particle size distributions of the 

catalysts were determined from the transmission electron micrographs by measuring the 

dimensions of a number of particles.  

Pore volumes and BET surface areas were experimentally determined by N2 physisorption at -

196 oC in an ASAP 2420 instrument. 

X-ray photoelectron spectroscopy (XPS) was used to study the chemical composition and the 

oxidation state of the elements on the catalyst surface. The XPS instrument, a VG Escalab 200 

R spectrometer with a MgKα X-ray source (hν = 1253.6 eV), was equipped with a pre-

treatment chamber with controlled atmosphere and temperature in which the catalyst samples 

could be treated under various conditions.  
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ICP analyses to determine the amount of metal in the solid catalyst were performed using a 

Perkin Elmer optima 7000 DV instrument.  

 

2.3 Product analyses 

Reaction mixtures were analysed using a Waters high pressure liquid chromatography 

(HPLC) instrument equipped with an Alltech IOA-1000 column maintained at 90 °C using 

H2SO4 (3 mM) in ultra-pure water as the eluent with a flow rate of 0.4 ml/min. The 

components were identified using an UV (210 nm) and an RI detector by comparison with 

authentic samples. Concentrations were determined using calibration curves obtained by 

injecting standard solutions of known concentrations. Conversion and selectivity of various 

products are calculated on the basis of carbon mass. Carbon mass balance closures up to 99-

100 % were obtained. 

2.4 Synthesis of monometallic (Au or Pt) catalysts on nanoceria by colloidal deposition: 

Monometallic Au or Pt colloids were prepared by NaBH4 reduction method described in the 

literature.[39] [12] 

 HAuCl4.3H2O (0.042 mmol) or K2PtCl4 (0.042 mmol) was dissolved in 140 mL of milli-Q 

water containing polyvinyl alcohol (2 wt % solution, 1.9 mL) as the protecting agent. 

Subsequently, NaBH4 (2.0 mL of a 0.1 M solution) was added and the pH of was adjusted to 

2.5 using 0.2 M H2SO4. The resulting suspension was added to a suspension of nanoceria in 

water (2 g in 20 mL milli-Q water, sonicated for 30 minutes) under vigorous stirring for 3.5 h 

using a mechanical stirrer. The support intake was such to obtain a final metal loading of 0.4-

0.5 wt% of Au or Pt in the case of monometallic nCeO2 catalysts and a final total metal 

loading of 1 wt% in the case of bimetallic (Au-Pt) nCeO2 catalyst. The catalyst was separated 

by centrifugation and washed thoroughly with deionised water. Finally, the catalyst was dried 

under vacuum (0.5-2 mBar) at 323 K in the presence of a desiccant (Sicapent) for 18 h. The 

catalysts are designated as Au/nCeO2 and Pt/nCeO2 for Au on nanocrystalline ceria and Pt on 

nanocrystalline ceria, respectively. 

Au on carbon (Au/C, 0.8wt% Au), Au on titania (Au/TiO2, 1wt% Au) and Au on bulk ceria 

(Au/CeO2, 0.55wt%) were prepared by immobilising a gold colloid (prepared by the method 

described above) on carbon, titania and bulk ceria respectively. 
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2.5 Synthesis of bimetallic Au-Pt on nanoceria: Au/nanoceria (2 g) was suspended in 240 

mL milli-Q water containing K2PtCl4 (0.0130 g) and a PVA solution (0.44 ml 2 wt %). 

Hydrogen gas (9.86 vol % in nitrogen) was bubbled through this slurry at a flow rate of 150 

ml/min at atmospheric pressure and at room temperature for 6 h. The slurry was stirred 

overnight (16 h). The catalyst was isolated by centrifugation and subsequently washed with 

deionised water and finally dried at 323 K under vacuum (0.5-2 mBar) in the presence of 

desiccant (Sicapent) for 18 h. This catalyst is designated as Au-Pt/nCeO2  

 

2.6 Catalytic experiments 

Catalytic experiments were performed in 75 ml Hastelloy C-276 autoclaves (Parr Series 5000 

Multiple Reactor System). The autoclave was charged with a glycerol solution (3.4 mMol) in 

deionised water (20 mL) followed, when appropriate, with the predetermined amount of 

NaOH. Subsequently, the catalyst was added (glycerol to metal ratio of 680 mol/mol) and the 

autoclave was closed, flushed with oxygen and finally pressurized with oxygen. The reactor 

contents were heated to the desired temperature under stirring with a magnetic stirring bar 

(600 rpm). A heating time of 10 minutes was required to reach the reaction temperature of 

373 K (the heating time was not considered for TOF calculations). A typical reaction time 

was 30 minutes. After the specified reaction time the reactor was cooled immediately to room 

temperature using an ice water bath, depressurised and samples were taken for HPLC 

analyses. 

3. Results and Discussion 

3.1 Catalyst synthesis and characterisation 

Monometallic and bimetallic catalysts were prepared by a colloidal deposition method. 

Relevant properties of the catalysts are given in Table 1.  

Table 1. Relevant properties of the monometallic and bimetallic Au and Pt on various 

supports. 

Entry Catalyst Metal loading (wt%) a 
 Mean metal 

particle size (nm) b 

1 n CeO2 - - 

2 Au/nCeO2 0.4 3.7 

3 Pt/nCeO2 0.50 3.7 
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4 Au-Pt/nCeO2 0.4 (Au), 0.3 (Pt) 3.9 

5 Au/CeO2 0.55 4.2 

6 Au/TiO2 1.0 4.0 

7 Au/C 0.8 4.4 
aDetermined by ICP-OES bDetermined using STEM-HAADF 

The catalysts were characterised using bright-field transmission electron microscopy (BF-

TEM), scanning transmission electron microscopy (STEM), high angle annular dark field 

(HAADF) imaging and energy dispersive X-ray spectroscopy (XEDS). Representative STEM 

and XEDS spectra for the monometallic catalysts are given in Figure 1 (Au/nCeO2) and 2 

(Pt/nCeO2), and Figure 3 for the bimetallic catalyst (Au-Pt/nCeO2). The average metal 

particle sizes for the nano ceria supported catalysts are small and all between 3.7 and 3.9 nm.   

 

 

Figure 1. STEM image of (A) Au/nCeO2 (Scale is 10 nm ) (B) Particle size distribution (C) 

Representative XEDS spectrum for an individual Au particle.  

 

 

Figure 2. STEM image of (A) Pt/nCeO2 (Scale is 20 nm) (B) Particle size distribution (C) 

Representative XEDS spectrum for an individual Pt particle.  
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A number of particles of the bimetallic (Au-Pt/nCeO2) catalyst were analysed using XEDS. 

Local composition of individual metal particles was obtained when the electron beam was 

converged to nanometer size. It showed the existence of both the metals in a single phase 

(Figure 3 B) which is indicative of a close interaction. It is reasonable to assume that an alloy 

has been formed based on previous studies by Wang et al [23] and Dimitratos et al [40] on 

Au/Pd and later by Shen et al [34] for Au/Pt based on lattice spacing calculations. To confirm, 

High resolution-TEM measurement of Au-Pt/nCeO2 catalyst was performed, showing a lattice 

spacing of 0.229 nm, in between characteristic Au (111) and Pt (111) planes (Fig.4) [34, 41]. 

 

 

Figure 3. (A) STEM-HAADF image for Au-Pt/nCeO2 (scale is 20 nm) (B) Representative 

XEDS spectrum taken for an individual single Au-Pt particle on nCeO2 (C) particle size 

distribution of Au-Pt/nCeO2 (D) XPS spectrum of Au-Pt/nCeO2 catalyst. 
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Figure 4. High-resolution TEM at different magnifications (a, b) showing the ceria and Au/Pt 

particles and (c) Atomic-resolution TEM image of a bimetallic cluster indicating the lattice 

spacing. 

X-ray photoelectron spectroscopy (XPS) was used to study the chemical composition and the 

oxidation state of the elements at the catalyst surface. The XPS spectrum of the monometallic 

Au/nCeO2 shows three doublets for the Au 4f core level corresponding to  Au3+, Au+, and Au0 

(Figure 2 in supporting information); the major contribution was Au0 (85 %). The bimetallic 

Au-Pt/nCeO2 catalyst showed the presence of Au and Pt in both the cationic as well as in the 

metallic state (Figure 3D). The occurrence of cationic gold species confirms the interaction 

between nCeO2 and Au nanoparticles, which is expected to lead to Ce3+ and oxygen deficient 

sites in the ceria. The XPS spectrum of the ceria matrix also clearly shows the Ce 3d core 

level having Ce3+ in the Au/nCeO2 and Au-Pt/nCeO2 catalysts (Figure 4). In the bimetallic 

catalyst, the major contribution for the metal species are Au0 (48%) and Pt0 (24%), both in 

close interaction as derived from the EDS analysis. 
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Figure 4. XPS spectra showing the Ce 3d core level of Au/nCeO2 (A) and Au-Pt/nCeO2 (B) 

 

3.2 Catalyst screening experiments 

The one pot conversion of glycerol to lactic acid was studied in a batch reactor set-up. The 

reactions were typically carried out in water using at a temperature of 373 K and an oxygen 

pressure of 5 bar using a 30 min batch time in the presence of a base (NaOH to glycerol mol 

ratio of 4). The glycerol to metal intake was set at 680 mol/mol. The reactions were 

performed using monometallic Au and Pt as well as bimetallic Au-Pt on a nanocrystalline 

CeO2 support (nCeO2). For the monometallic Au based catalysts, catalyst performance was 

compared with Au supported catalyst on conventional supports (ceria, titania and activated 

carbon). The results for the various experiments are summarised in Table 2.  
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Table 2. Conversion of glycerol to lactic acid using supported monometallic (Au and Pt) and 

bimetallic Au/Pt catalystsa 

 

Entry 

 

Catalyst 

 

Conv. 

(%) 

 

Selectivity (%) 
TOF(c) 

h-1 
Lactic 

acid 

Glyceric  

acid 

Glycolic 

acid 

Oxalic  

acid 

Formic  

acid 

Tartronic 

acid 

Acetic 

acid 

1 None 4 <1 25 50 - 24 - - - 

2 Au/nCeO2 76 60 18 6 5 6 2 4 1040 

3 Pt/nCeO2 82 68 13 7 4 5 1 2 1120 

4 Au/CeO2 60 52 23 8 8 6 1 2 820 

5 Au/TiO2 71 45 30 2 5 2 12 4 970 

6 Au/C (d) 83 26.5 50 5 0.5 3 12 3 1131 

7 Au/C 93 24 21 11 4 4 32 5 1260 

8 nCeO2 25 16 49 13 7 10 3 2 - 

9 nCeO2 
b 10 16 57 11 8 7 <1 - - 

   10 Au-Pt/nCeO2 (d) 86 78.5 13.5 3.4 1 1.5 1 1            1172 

11 Au-Pt/nCeO2 99 80 10.5 4 2 2 <1 1 1350 

12 
Au/nCeO2  

+ Pt/nCeO2 (d) 
76.5 66 16.5 6.5 3.5 4.0 1.6 1 1043 

13 
Au/nCeO2 

+ Pt/nCeO2 
90 65 15 7 5 5 2 2 1220 

a Reaction conditions: glycerol (0.17 M). NaOH/glycerol = 4 mol/mol, glycerol/total metal intake = 680 mol/mol, 373 K, P 

(O2) = 5 bar, 30 min. b Experiment with recycled material  cTOF in mmol of glycerol converted per total mmol of metal per h. 

d Reaction time 20 min. 

Glycerol conversion is below 5 % in the absence of a catalyst (Table 2, Entry 1), indicating 

that a hydrothermal reaction by the action of a base is not occurring to a large extent at the 

prevailing reaction conditions. The products, though present in minor amounts, are oxidation 

products like glyceric-, glycolic- and formic acid.    

Initial experiments with the monometallic Au and Pt catalysis on nCeO2 (Table 2, entry 2 and 

3) resulted in about 80% glycerol conversion, corresponding with a catalyst TOF of about 

1100 mol/(mol.h-1). The selectivity for lactic acid was 60% for Au and 68% for Pt, main by-

products were glyceric acid (13-18 mol %), glycolic acid (6-7 mol %), oxalic acid (4-5 mol%) 

and formic acid (5-6 mol %), see eq 2. The formation of the latter three products is indicative 

for the occurrence of undesired C-C splitting reactions.  

  



13 
 

  

(eq 2) 

The catalytic activity of the monometallic Au/nCeO2 was compared to Au on regular (non-

nanoparticulated) CeO2 (Au/CeO2). The mean metal particle sizes on both supports are 

essentially similar (3.9 vs 4.2 nm, see Table 1 for details). Catalyst performance for the nCeO2 

support was considerably better (c.f. entry 2 and 4 in Table 2) indicating that the nanoceria 

supports (5-25 nm particle sizes by HR-TEM, Figure 3, supporting information) is a better 

choice than the regular, larger sized ceria support (> 50 nm by HR-STEM, Figure 4, 

supporting information).  

Other catalyst supports (activated carbon, TiO2) were also tested for the monometallic Au 

catalysts. Glycerol conversions for Au on TiO2 are slightly lower than for the nCeO2 support 

(71 versus 76%). The selectivity to lactic acid is also reduced considerably when using TiO2, 

mainly due to the formation of larger amounts of glyceric acid (up to 30 mol%). Glycerol 

oxidations using Au/TiO2 have been reported in the literature. For instance, at 50 ºC in basic 

aqueous media, glyceric acid is reported to be the main product [14] (69 % selectivity at 90% 

glycerol conversion) and lactic acid formation is not mentioned. In contrast, Shen et al. 

reported that lactic acid is the main product (74% at 30% glycerol conversion) for the 

Au/TiO2 catalysed conversion of glycerol in water in the presence of a base at 90°C. 

Apparently, our data are consistent with the data published by Shen [34]. The use of a carbon 

support for Au resulted in high glycerol conversions (93%), though the main product in this 

case was tartronic acid (32 mol %) and lactic acid was formed in only 24% yield. Thus, 

remarkable support effects are observed on product selectivity and the nCeO2 support gives 

the best catalyst performance for monometallic Au catalysts when lactic acid is the product of 

choice.   

The presence of Au or Pt is essential for good catalytic performance and the use of the nano 

ceria support alone gave much lower glycerol conversions (25 mol%) and mainly glyceric 

acid as the product (49 mol%) (Table 2, Entry 8). This confirms that ceria contains 

stoichiometric oxidation sites for alcohols, involving the Ce4+/Ce3+ redox couple. When 

subjected to a subsequent run, the activity was considerably reduced (10% conversion) (Table 

2, Entry-9), indicating a depletion of catalytically active cerium sites. This is in line with 
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literature that the regeneration of catalytic sites in ceria is not occurring in the absence of 

metal species [36]. 

The use of the bimetallic Au-Pt/nCeO2 catalyst gave a considerable improvement compared to 

the individual mono metallic catalysts, a clear indication for synergic effects. The selectivity 

towards lactic acid increased up to a very promising 80% at near quantitative glycerol 

conversion (Table 2, Entry 11). The synergic effect was further proven by comparing catalyst 

performance of the bimetallic catalyst with a physical mixture of the two monometallic ones 

(Table 2, Entry 12). The physical mixture gave a lower glycerol conversion and a substantial 

lower selectivity towards lactic acid (65 versus 80 mol %) than the Au-Pt/nCeO2 catalyst 

indicating a synergistic effect due to the co-existence of Au0 and Pt0 mixed clusters as 

evidenced by the XEDS and XPS.  

 

3.3 Reaction pathways 

A reaction network consistent with the observed product distribution and literature data is 

given in Scheme 1.  

 

 

 

 

Scheme 1. Proposed reaction pathway for the conversion of glycerol to lactic acid and 

byproducts 

The network involves the initial oxidative dehydrogenation of glycerol to glyceraldehyde. In 

basic conditions, glyceraldehyde is in equilibrium with dihydroxyacetone [42, 43]  It is well 

known that trioses like glyceraldehyde and dihydroxyacetone undergo rearrangement into 

lactic acid under alkaline conditions. As early as 1930 Shaffer and Friedmann proposed this 

conversion to be a base catalysed dehydration-rearrangement-rehydration, involving 

pyruvaldehyde (methylglyoxal) as an intermediate [44]. Kishida et.al proposed 

glyceraldehyde as the intermediate in the hydrothermal conversion of glycerol into lactic acid. 

Recently, homogeneous metal salts have also been reported to catalyse this transformation 
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[45, 46]. A parallel undesired pathway involves the catalytic oxidation of 

glyceraldehyde/dihydroxyacetone to glyceric acid and subsequently to further oxidation and 

C-C splitting products like tartronic acid, glycolic acid, oxalic acid, acetic acid and formic 

acid. An optimal catalyst for the conversion of glycerol into lactic acid therefore should have 

a strong oxidative dehydrogenation capacity under mild conditions and at the same time being 

a highly inefficient oxidation catalyst for the conversion of glyceraldehyde into glyceric acid 

and subsequent oxidation products.  

The presence of a base leads has a positive effect on glycerol conversion levels (Table 3). The 

base is expected to deprotonate glycerol, which is known to have a positive effect on catalytic 

performance in metal catalysed oxidation reactions [6]. The addition of a base also enhances 

the selectivity to lactic acid at the expense of glyceric acid. This is in line with the proposed 

reaction network, where lactic acid formation from glyceraldehyde is catalysed by a base 

whereas the subsequent oxidation of glyceraldehyde is a metal catalysed oxidation reaction 

(Scheme 1). Of interest is also the presence of glyceraldehyde and pyruvaldehyde in the 

reaction mixtures when the reaction was performed in the absence of a base. This is a strong 

indication that both compounds are indeed reactive intermediates in the conversion of 

glycerol to lactic acid.  

 

Table 3. Effect of amount of base on catalyst performance for the bimetallic Au-Pt/nCeO2  catalyst a 

a 0.17 M glycerol; glycerol to metal ratio of 680 mol/mol, 373 K, P (O2) = 5 bar, 30 min. 

 

3.4 Effect of process conditions on catalyst performance  

The effect of oxygen pressure on product selectivity was determined and the results are given 

in Table 4. Reactions performed in oxygen free conditions gave only 10% glycerol conversion 

after 3 h, yet with a 99% selectivity towards lactic acid. It is well possible that the initial 

oxidation of glycerol to glyceraldehyde, the initial step in the catalytic process, is catalysed by 

the nano-ceria support (vide supra). An increase in oxygen pressure from 0 to 5 bar resulted in 

Entry NaOH/ 

glycerol 

(mol/mol) 

Conv 

(%) 

   Selectivity (%) 

Glycer-

aldehyde 
Lactic 

acid 

Glyceric 

acid 

 
Glycolic 

acid 

Oxalic 

acid 

Formic 

acid 

Tartronic 

acid 

Acetic 

acid 

Py

val

d

1 0 25 55 19 21  < 1 - - - - 

2 2 60 2.0 65 15  7 3.5 3.5 1 1.5 <

3 4 99 < 1 80 10.5  4 2 2 <1 1 <
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enhanced glycerol conversion rates and quantitative glycerol conversion is possible within 30 

min at 5 bar and 1 h at 3 bar. Surprisingly, the lactic acid selectivity is within a narrow range 

(74-80 mol%) when oxygen is present. The lactic acid selectivity is determined by the relative 

rates of the two parallel reactions of glyceraldehyde to i) lactic acid and ii) glyceric acid 

(Scheme 1). When considering the proposed reaction network, the rate of the undesired 

pathway from glyceraldehyde to glyceric acid is expected to be enhanced by higher oxygen 

pressures, leading to higher selectivities to glyceric acid and thus a reduced lactic acid 

selectivity at higher oxygen pressures. This is not observed experimentally. A possible 

explanation is that the oxidation reaction of glyceraldehyde to glyceric acid is zero order in 

oxygen pressure, however, further detailed kinetic studies will be required to support this 

explanation.     

Table 4. Effect of oxygen pressure on catalyst performance for the bimetallic Au-Pt/nCeO2 

catalysta 

 

Entry P(O2) Time  

(h) 

Conv. 

(%) 

Selectivity (%) 

Lactic 

acid 

Glyceric 

acid 

Glycolic 

acid 

Oxalic 

acid 

Formic 

acid 

Acetic 

acid 

1 0 3.0 10 99 < 1 0 0 0 < 1 

2 1 1.0 55 77 12 6 3 2 < 1 

3 3 0.5 53 76 12 5 2 4 1 

4 3 1.0 99 74 13 5 4 3 1 

5 5 0.5 99 80 11 4 2 2 1 
a Reaction conditions: 0.17 M Glycerol; NaOH/glycerol = 4 mol/mol, glycerol/metal = 680 mol/mol, 

373 K  

The selectivity for lactic acid formation is a function of the relative rates of the base catalysed 

reaction pathway to lactic acid and the oxidation pathway to glyceric acid (Scheme 1) and as 

such the temperature is expected to affect the selectivity of the reaction. This was also 

demonstrated experimentally by performing three experiments at standard conditions (30 min 

reaction time) with the bimetallic Au/Pt on nano-ceria catalyst at different temperatures (333, 

353, 373 K), see Table 5 for details. As expected, the glycerol conversion after 30 min 

increased at higher temperatures, from 56% at 333 K to quantitative conversion at 373 K. The 

lactic acid selectivity is improved at higher temperatures, viz 47% at 333 K and 80% at 373 

K. These data imply that the reaction rate of the glyceraldehyde-lactic acid pathway has a 

stronger temperature dependence than the glyceraldehyde-glyceric acid pathway.  
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Table 5. Effect of temperature on catalyst performance for the bimetallic Au-Pt/nCeO2 

catalyst a 

Temperature 

K 

Conversion (%) Selectivity (%) 

Lactic 

acid 

Glyceric 

acid 

Glycolic 

acid 

Oxalic 

acid 

Formic 

acid 

Tartronic 

acid 

Acetic 

acid 

333 56 47 33 6 3 7 3 1 

353 98 58 24 5 2.5 5 4 1.5 

373 99 80 10.5 4 2.0 2 0.5 1 

a Reaction conditions: 0.17 M. NaOH/Glycerol= 4 mol/mol, Glycerol/Metal= 680 mol/mol, 30 min. 

 

3.5 Reactivity of intermediates 

The proposed reaction intermediates (glyceraldehyde, pyruvaldehyde) were only detected in 

considerable amounts in the product mixtures when the reactions were performed in the 

absence of a base (Table 3). To further assess the possible involvement of the two 

components in the proposed reaction sequence (Scheme 1), experiments with either 

glyceraldehyde or pyruvaldehyde were performed at standard conditions (373 K, NaOH (4 

mol/mol substrate)) but in the absence of a catalyst and oxygen. For glyceraldehyde, full 

conversion of glyceraldehyde after 0.5 h and a lactic acid selectivity up to 65-70% was 

observed. By products such as glycolic acid (4%), formic acid (4%) were also observed along 

with some unidentified products. Thus, the formation of lactic acid from glyceraldehyde 

indeed involves a base catalysed pathway without the necessity for an oxidation catalyst. 

Experiments starting with pure pyruvaldehyde, in the presence of NaOH (NaOH to 

pyruvaldehyde mol ratio of 4) resulted in quantitative conversion of pyruvaldehyde within 5-8 

minutes at room temperature to lactic acid in quantitative yields.  

The formation of over oxidation and C-C scission products like tartronic acid, glycolic acid, 

acetic acid and formic acid were observed for all catalytic experiments. To gain insights 

whether these are formed in the glyceric acid or lactic acid pathway (Scheme 1), catalytic 

experiments were performed with glyceric acid and lactic acid as the starting materials. The 

results are depicted in Table 6.  
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Table 6. Catalytic experiments with glyceric acid and lactic acid using the bimetallic Au-

Pt/nCeO2 catalyst a 

Entry Substrate Time(h) Conv.(%) Selectivity 

   Lactic 

acid 

Glyceric 

acid 

Glycolic 

acid 

Oxalic 

acid 

Formic 

acid 

Tartronic 

acid 

Acetic 

acid 
1 Glyceric 

acid 

0.5 38 0 0 6 10 3.5 76 3 

2 Lactic 

acid 

0.5 0 - - - - - - - 

3 Lactic 

acid 

3.5 5.0 0 1 0 15 0 26 52 

a Reaction conditions: 0.17 M substrate, NaOH/substrate= 4 mol/mol, 373 K, P (O2) = 5 bar, substrate/Metal = 

680 mol/mol. 

Lactic acid conversion was not observed after 30 min reaction, a typical reaction time for a 

catalytic experiment with glycerol. Extended times (3.5 h) resulted in 5% lactic acid 

conversion to acetic acid, oxalic acid and tartronic acid. Thus, lactic acid is prone to further 

oxidation reactions, though the conversion is negligible at standard reaction time (30 min) for 

the glycerol oxidation reaction due to low reaction rates. Experiments with glyceric acid at 

standard conditions for glycerol experiments resulted in 38% conversion after 30 min, the 

main products being tartronic acid as well as scission products such as glycolic acid, oxalic 

acid, acetic acid and formic acid. Apparently, glyceric acid is not stable at reaction conditions 

and is the major source of other (smaller) organic acids.   

3.6 Heating time 

A reaction was performed using Au-Pt/nCeO2 to check the conversions and selectivities 

during the heating time. The reaction was quenched after 10 minutes by immersing the reactor 

in an ice bath and the reaction mixture was analysed for HPLC. During the 10 minutes of 

heating time, a 14 % glycerol conversion was obtained with lactic acid (70 %), Glyceric acid 

(21.5 %), Tartronic acid (1.5%), glycolic acid (4 %), oxalic acid (1%) and formic acid (2%) 

The significant glyceric acid selectivity can be attributed to the low temperature oxidation of 

glyceraldehyde to glyceric acid at the heating stage. 

3.7 Optimization of catalyst performance 

Lactic acid is a typical bulk chemical product with high production volumes. Novel routes 

should comply with the green chemistry and technology principles and as such, catalyst 

stability and reduction of solvent usage are of pivotal importance. The catalyst stability for the 

bimetallic Au-Pt/nCeO2 catalyst was tested by performing a number of recycle runs in the 

batch set-up. After each reaction, the catalyst was recovered by centrifugation, washed with 
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an excess of water and dried (50°C in vacuum for 16 h in the presence of sicapent). The 

results are shown in Figure 5. Catalyst stability is good and loss of activity and selectivity was 

not observed after 4 recycle runs. In line with these findings is the absence of Au and Pt in the 

liquid phase after reaction (ICP-OES), indicating that catalyst leaching does not occur to a 

significant extent. The cumulative TON was 3400 mol/mol metal intake.  
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Figure 5. Recycle experiments for Au-Pt nCeO2 (conditions for each experiment: 0.17 M glycerol,  

NaOH to glycerol mol ratio of 4, glycerol to metal mol ratio of 680, 100°C, P (O2) = 5 bar, 30 min) 

 

To reduce solvent usage, a number of experiments was performed at higher glycerol 

concentrations (Table 7), while all other reaction conditions (including metal intake) were at 

standard values.  

Table 7. Effect of glycerol concentration on performance of the Au-Pt/nCeO2 catalyst 
a  

 

Entry 
Glycerol 

con. (M) 

Time 

(h) 

Conv. 

(%) 

 Selectivity (%) 

Lactic 

acid 

Glyceric 

acid 

Glycolic 

acid 

Oxalic 

acid 

Formic 

acid 

Tartronic 

acid 

Acetic 

acidT  

TOF 

h-1 

1 0.17 0.5 99 80 10.5 4 2 2 <1 1 - 

 

2 0.34 

0.5 56 79 9 5 2 3 1 1 1523 

1.0 99 77 6 6 3 4 1.5 1.5 - 

 

3 0.6 

0.5 24.5 81 4 6 1 4 1.5 2.5 1333 

2.0 

 
75 77 9 5 2 4.5 1.5 1 1020 

a Reaction conditions: Deionised water (20 mL), NaOH/Glycerol= 4 mol/mol, 373K, P(O2) = 5 bar, 

glycerol/metal ratio for entry 1= 680 mol/mol, entry 2= 1360 mol/mol, entry 3=2720 mol/mol. TOF in mmol of 

glycerol converted/total mmol of metal/h. 

Based on the data, it can be concluded that the Au-Pt/ nCeO2 catalyst remains active even at 

high concentration of glycerol without a significant drop in the selectivity towards lactic acid.  
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In table 7, entry 2 and 3 also shows the selectivity of lactic acid as a function of glycerol 

conversion, which essentially remain same. 

4. Conclusions  

Monometallic Au and Pt based catalyst on a commercially available nanocrystalline CeO2 

support are efficient catalysts for the one pot oxidative conversion of glycerol to lactic acid. 

For Au, the nano-ceria support shows better performance than non-nanoparticulated CeO2, 

activated carbon and TiO2. Further improvements are possible by the application of bimetallic 

Au-Pt/nCeO2 catalysts. Lactic acid yields of up to 80% were obtained at a TOF of 1172 

mol/(mol.h); main byproducts are glyceric acid and subsequent oxidation products (such as 

tartronic acid, glycolic acid, formic acid and acetic acid). The Au-Pt/nCeO2 catalyst was 

shown to be reusable without loss in activity and lactic acid selectivity for 5 successive batch 

runs. A reaction pathway is proposed and the involvement of intermediates is supported by 

additional experiments with pure intermediates.  
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