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An efficient method for optimizing single-determinant wave functions of medium and large systems

is presented. It is based on a minimization of the energy functional using a new set of variables to

perform orbital transformations. With this method convergence of the wave function is guaranteed.

Preconditioners with different computational cost and efficiency have been constructed. Depending

on the preconditioner, the method needs a number of iterations that is very similar to the established

diagonalization–DIIS approach, in cases where the latter converges well. Diagonalization of the

Kohn–Sham matrix can be avoided and the sparsity of the overlap and Kohn–Sham matrix can be

exploited. If sparsity is taken into account, the method scales as O(MN2), where M is the total

number of basis functions and N is the number of occupied orbitals. The relative performance of the

method is optimal for large systems that are described with high quality basis sets, and for which the

density matrices are not yet sparse. We present a benchmark calculation on a DNA crystal

containing 2312 base pairs, solvent and counter ions ~2388 atoms!, using a TZV(2d ,2p) basis

~38 688 basis functions! and conclude that the electronic structure of systems of this size can now

be studied routinely. © 2003 American Institute of Physics. @DOI: 10.1063/1.1543154#

I. INTRODUCTION

The calculation of the electronic structure with density

functional or Hartree–Fock theory amounts to the minimiza-

tion of the electronic energy with respect to the orthonormal

one-particle orbitals. These orbitals are used to construct the

one-particle density matrix of the system. One of the most

efficient methods that is commonly used to perform this op-

timization is diagonalization combined with a direct inver-

sion in the iterative subspace ~DIIS!.1 Diagonalization–DIIS

requires often only 10 to 20 Kohn–Sham matrix construc-

tions and hence has become the method of choice for many

electronic structure calculations. However, in some cases

diagonalization–DIIS might not converge to any solution.

Methods with guaranteed convergence are therefore of sig-

nificant interest, especially if they achieve convergence in

approximately the same number of iterations as DIIS in the

favorable cases.2,3 Another deficiency of the diagon-

alization–DIIS approach is that the solution of the general-

ized eigenvalue problem needs O(M 3) time and becomes the

computationally dominant part of the calculation for large

systems.

The reason for this is that efficient and accurate methods

exist to compute the energy and to construct the Kohn–Sham

matrix in O(M 2) or even O(M ) time for large systems.4

These methods take advantage of the sparsity of the overlap

matrix and the Kohn–Sham or Fock matrix, and employ fast

methods to compute the Coulomb potential. Already rather

small systems can be in the linear scaling regime since the

sparsity of the Kohn–Sham matrix is related to the spatial

extent of the atomic orbitals. In order to exploit the efficient

Kohn–Sham matrix construction in an electronic structure

program, it is essential to use fast methods to construct the

density matrix of these systems. One possible approach is to

exploit that the density matrix of a very extended system can

be sparse. For such systems, matrix diagonalization can be

avoided and the construction of the density matrix can be

performed in linear scaling time.4 However, the sparsity of

the density matrix is usually much less pronounced than the

sparsity of the Kohn–Sham or overlap matrix,5 especially if

large basis sets are used. If accurate calculations have to be

done, the density matrix cannot be treated as if it were a

sparse matrix, and a molecular orbital calculation is appro-

priate. Thus, there exists a wide range of systems where di-

agonalization dominates the computational cost, but where a

linear scaling construction of the density matrix is not yet

possible.

Using high quality basis sets for large condensed sys-

tems is important to describe liquids or delicately hydrogen

bonded systems such as proteins, DNA and RNA. The orbital

transformation based minimizer presented in this paper is

well suited for these systems. It needs relatively few itera-

tions, is guaranteed to converge, and every iteration is sig-

nificantly faster than a standard diagonalization–DIIS step.

Furthermore, since the orbital transformation method makes

computations on even larger condensed phase systems pos-

sible, it might provide results against which the efficiency

and accuracy of linear scaling methods can be judged. For

large systems with N occupied orbitals and M basis func-

tions, the computational cost of the method scales as

O(MN2) with a small prefactor. The memory requirements

are O(MN). Since the resources needed scale linearly in the

number of basis functions, substantial improvement over the

standard diagonalization–DIIS method is to be expected

whenever large basis sets are employed. In particular, the

method could be well suited for plane wave bases.

The orbital transformation method has been imple-
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mented in the program Quickstep. Quickstep is available as

part of the CP2K suite of programs.6 CP2K is freely avail-

able and comes with a GPL license.7 It is based on a mixed

Gaussian and plane wave scheme in which the wave func-

tions are described using a Gaussian basis, but an intermedi-

ate plane wave basis is employed for the density.8 Quickstep

allows for a very fast, parallel and linear scaling construction

of the Kohn–Sham matrix and is thus well suited for testing

the orbital transformation method on large systems. Several

possible preconditioners for the minimizer are tested on liq-

uid water configurations, and the electronic structure of a

DNA crystal has been computed to test the feasibility of

accurate electronic structure calculations of condensed phase

systems containing thousands of atoms.

II. ORBITAL TRANSFORMATIONS

We express N occupied orthonormal wave functions

c i(r) as a linear combination of M basis functions fm(r)

using an M3N matrix c of orbital coefficients cmi . The

calculation of the electronic structure involves the minimiza-

tion of the electronic energy E(c) with respect to c subject to

the constraint that c
T
Sc5I. The constraint enforces the or-

thonormality of c i(r). S is the overlap matrix @Sab

5*fa(r)fb(r)dr# and I the identity matrix. New variables

to describe c, inspired by the form of the exponential

transformations9 as given in Ref. 10, are introduced. Re-

cently, we became aware of a minimization procedure also

related to this exponential transformation that is similar to

our minimization scheme.2 However, in our scheme the new

variables x are linearly constrained according to

x
T
Sc050.

The constant initial vectors c0 fulfill c0
T
Sc05I. c is related to

x by the following transformation:

c~x!5c0 cos~U!1xU
21 sin~U!,

where the matrix U is defined as

U5~x
T
Sx!1/2.

The functions of the symmetric matrix x
T
Sx are defined as

functions of its eigenvalues. It can be verified that

c
T(x) S c(x)5I for all choices of x. The variables x can be

used to optimize the energy E(c(x)) using any standard

minimization algorithm, e.g., conjugate gradients. This is

possible because x is linearly constrained which implies that

the space of allowed x is a linear space. Therefore, a finite

step along the gradient will produce a new point that still

fulfills the constraint condition exactly. Hence, it is unneces-

sary to follow a curved geodesic during minimization, as is

appropriate for variables that are constrained nonlinearly

such as c.2,11 Using any globally convergent minimizer12

convergence of the wave function is guaranteed. This is a

desirable property that is not achieved with DIIS.2,3

The gradient of the energy with respect to the new vari-

able x is given by

]E~c~x!!1tr~x
T
S c0 L !

]x
5

]E~c!

]c

]c

]x
1S c0L ,

L52@~S c0!T
S c0#21~S c0!T

]E

]x
,

where L is the matrix of Lagrangian multipliers that guaran-

tees that the gradient fulfills the constraint condition. In order

to compute the new term ]c/]x it is advantageous to use a

Cauchy representation of the matrix functions since it pro-

vides a simple way to compute the derivative

f ~A!52

1

2pi
R f ~z !

1

A2zI
dz ,

] f ~A!

]x
5

1

2pi
R f ~z !

1

A2zI

]A

]x

1

A2zI
dz .

The gradient is given by

]E

]x
5~Hc!U

21 sin~U!1~Sx!~R~K
T
1K!R

T!

K5~R
T~~Hc!T

x!R! ^ D
1
1~R

T~~Hc!T
c0!R! ^ D

2.

The notation ^ is used for the direct matrix product (A

^ B) i j5A i jB i j , Hc represents ]E/]c , R is the matrix of

eigenvectors of x
T

S x, and D
1 and D

2 are given by

D i j
1

5

sin~AL i!

AL i

2

sin~AL j!

AL j

L i2L j

,

D i j
2

5

cos~AL i!2cos~AL j!

L i2L j

,

where L i is the eigenvalue corresponding to the ith column

of R. The calculation of the gradient involves the computa-

tion of sparse matrix–full matrix products in order to com-

pute Hc and Sx, and several full matrix–full matrix products

such as (Hc)T
x or xf (U). For large systems, they have a

computational cost of O(MN) and O(MN2), respectively.

Notice that the full matrix products run almost with peak

performance on modern computers, and that they are well

parallelized. Good performance of the method, both in serial

and parallel can therefore be expected for large systems. It is

more difficult to obtain peak performance and good parallel

performance for the sparse matrix–full matrix multiply. In

case the matrices H and S are not yet sparse the cost of

computing Hc and Sx is O(M 2N). For the special case of a

plane wave basis S5I and Hc can be computed in O(MN),

independent of the system size. The diagonalization of the

N3N matrix x
T

S x, which is needed to compute the ma-

trix functions efficiently, costs only a small fraction of the

total CPU time.

For a practical application it is important to precondition

the minimization. Insight in the structure of the precondi-

tioner is gained with a simple but important model system,

i.e., the generalized eigenvalue problem. The function to be

minimized is then

E~c~x!!5Tr~c~x!T
H c~x!1x

T
S c0 L !,
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where H does not depend on c and c
T

S c5I is satisfied. To

simplify the analysis, we assume that x is small so that a

second order expansion of the functional can be used, and we

assume that (c0
T

H c0) i j5e i
0d i j . In this case the Hessian is

given by

]2E

]xai]xb j

52Habd i j22Sabd i je i
0.

This Hessian is symmetric and positive definite @i.e.,

xai (]2E/]xai]xb j) xb j.0 for all x that satisfy (x
T
Sc0

50)] if c0 is close to the minimum. It can be observed that

it would be optimal to use as a preconditioned gradient (H

2Se i
0)ab

21 (]E/]Xbi). Notice that every vector i of the gradi-

ent is multiplied with a different matrix. In practice, a single

symmetric positive definite matrix P is constructed so that

P(H2Se)x2x'0. Since introducing a preconditioner is

equivalent to a change in variables x→APx the Lagrangian

multipliers have to be adapted accordingly. The precondi-

tioner is similar to the forms suggested in Refs. 13 and 14.

Finally, a locking technique for orbital transformations based

minimization, in which additional or only selected vectors

are optimized, can be easily obtained by extending the con-

straint matrix (C0) with a set of fixed vectors. This is useful

to obtain LUMOs or could be employed during the SCF

calculation to focus computational effort on a few slowly

converging states.

III. RESULTS

We have implemented orbital transformation based mini-

mization in the program Quickstep and tested conjugate gra-

dient and DIIS based minimizers. For the line search algo-

rithm used in the first scheme quadratic interpolation ~two

points: one gradient, two energies! is sufficient in most cases,

but a bracketing and golden section line search is available in

order to guarantee convergence of the conjugate gradient

minimizer in difficult cases. The DIIS scheme, using the pre-

conditioned gradient as an error vector, needs generally

about the same number of iterations as the conjugate gradient

scheme needs line searches. Hence, DIIS is more efficient in

terms of the number of function evaluations. However, con-

vergence of DIIS to a minimum is not guaranteed and DIIS

might fail for more difficult systems. Additionally, for large

systems, the low memory requirements of the conjugate gra-

dient algorithm make it the method of choice. All tests were

initialized using the result from a minimal basis set calcula-

tion. The reference orbitals c0 were constructed by projection

of the minimal basis on the full basis set. Such a calculation

has a small cost as compared to the calculation with the full

basis set. In Fig. 1 results for a periodic system of 32 water

molecules for two different basis sets and four different pre-

conditioners are presented as well as the result without pre-

conditioner ~stars in Fig. 1!. In all cases, a preconditioner has

been constructed only once, even though the optimal precon-

ditioner might change with the iterations. This is a good

strategy for the large systems we are interested in, since the

cost of constructing a preconditioner can be large compared

to the cost of a few extra iterations. However, for small sys-

tems, where the cost of the construction of the Kohn–Sham

matrix is still dominant, it might be useful to update the

preconditioner at every step in order to reduce the number of

Kohn–Sham matrix evaluations. The most effective precon-

ditioner ~diamonds in Fig. 1! is based on a diagonalization

and inversion of H2e0
S. e0 is a constant that must be simi-

lar to the values of the eigenvalues of the occupied subspace.

We use the highest eigenvalue of c0
T
Hc0 as an estimate. In

order to guarantee a positive definite Hessian, all negative

and small eigenvalues ~corresponding to the occupied states,

or due to nearby saddle points! are replaced with a positive

constant that is similar to the expected gap of the system. As

we show below, the cost of constructing this preconditioner

~similar to the cost of a single DIIS step in the standard SCF

scheme! can be prohibitive for large systems. The construc-

tion of this preconditioner cannot exploit the sparsity of the

matrices H and S, and diagonalization based inversion is

expensive. Computationally more efficient methods have

therefore been developed. One simple preconditioner ~tri-
angles in Fig. 1! uses the same diagonalization based inver-

sion as described before, but only for diagonal blocks of H

2e0
S. The diagonal blocks in our test are atom based. One

advantage of this method is that the preconditioner is very

sparse and can be computed easily. Applying this precondi-

tioner is O(MN), whereas the current implementation of the

other preconditioners presented uses matrix products that do

not exploit the sparsity of the preconditioner and hence are

O(M 2N). However, it can be observed that this strategy is

only moderately successful for the smaller basis and per-

forms poorly for the larger basis. The latter is most likely due

to the significant overlap of basis functions on different at-

oms, so that the quality of the preconditioner would increase

if larger blocks are considered. To really remedy the problem

one should fully take the overlap matrix S into account. One

FIG. 1. Convergence of the total energy per molecule for a periodic system

of 32 water molecules for different preconditioners using a conjugate gra-

dient minimizer. Upper panel: DZV(d ,p) basis 736 functions; lower panel:

TZV(2d ,2p) basis 1280 functions. The different symbols represent the dif-

ferent preconditioners: diamonds, diagonalization; circles, overlap and ki-

netic energy matrix inversion; squares, overlap matrix inversion; triangles,

diagonal atom block diagonalization; stars, none.
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possible solution is to use S
21 as a preconditioner ~squares in

Fig. 1!. This preconditioner seems to work reasonably well.

One significant advantage of this preconditioner is that it can

be computed using a Cholesky factorization based inversion

since the matrix is positive definite. Such an inversion is

significantly faster than a diagonalization ~by a factor of 5 to

10!. A preconditioner that preforms better than just S
21

should take into account some of the information contained

in H. One simple way that maintains the sparse and positive

definite character is to use (T1eS), where T is the kinetic

energy matrix ~circles in Fig. 1!. This preconditioner per-

forms nearly as good as the preconditioner based on the di-

agonalization of the full Hamiltonian if the number of itera-

tions is considered, but might outperform it on larger systems

if the total time is considered. This is shown in Fig. 2 where

the performance of these two preconditioners is shown to-

gether with the standard diagonalization–DIIS method. We

notice that the orbital transformation based methods are sig-

nificantly faster than the diagonalization based scheme and

that this difference becomes larger for larger systems. Con-

structing the preconditioner for this system takes 550 and

4200 s, respectively. Tests with a 512 water molecule system

~20 480 basis functions! indicate that the full matrix product

needed to apply the preconditioner becomes the bottleneck

whereas the Cholesky factorization based inversion is rather

fast ~42 and 11% of the total time!. We plan to use either

linear scaling techniques for computing the solution of

sparse positive definite linear systems15 or fast direct inver-

sion methods for sparse positive definite systems.16 Further-

more, a whole range of other approximate preconditioning

methods such as, e.g., incomplete Cholesky factorization

could be employed. These techniques would reduce the cost

of preconditioning to O(MN). Notice that for a plane wave

basis set the efficient kinetic energy preconditioner can be

computed in O(MN), independent of the system size.

A last benchmark is the computation of the electronic

structure of a DNA crystal. The system, which is based on a

x-ray structure of synthetic DNA, has been studied before by

Gervasio et al. ~Ref. 17! and we refer to this paper for a

detailed description of the system. However, the system has

been doubled so that 2312 base-pairs, solvent and counter

ions have been described, a total of 2388 atoms. A semi-core

pseudopotential for sodium has been employed. A 350 Ry

density cutoff has been employed in order to describe the

semi-core states of sodium. The system has a total of 3960

occupied orbitals and DZV(d ,p) and TZV(2d ,2p) bases

~22 596 and 38 688 basis functions! have been tested. A den-

sity mapping accuracy of 10212 has been chosen and ele-

ments of the overlap matrix have been neglected if they were

estimated to be less than 10210. The sparsity pattern of the

overlap matrix has also been used for the Kohn–Sham ma-

trix. The wave functions have been optimized using the or-

bital transformation method with a conjugate gradient mini-

mizer and a kinetic energy based preconditioner. A minimal

basis set has been used to initialize the wave function. The

calculations have been performed on 32 CPUs of an SP4

~Power4 CPUs, 1.3 GHz!, and needed about 2.5 and 5 h to

converge. The time needed for a single two point line search

was 675 and 1100 s for DZV(d ,p) and TZV(2d ,2p), respec-

tively. We notice that these timings reflect accurately the ef-

fective linear scaling in the number of basis functions. Four-

teen line searches were necessary to reach convergence

~gradients 231025). Interestingly, even for a system of this

size, the cubically scaling part is not yet fully dominant. For

the TZV(2d ,2p) system, 45, 43, and 8% of the total time is

spent in the cubic, the quadratic and the linear part, respec-

tively. In part, this is an effect of the superior parallel effi-

ciency of the cubic part. The timing for the cubic part in-

cludes the time needed for constructing and applying the

preconditioner, 10 and 15% of the total time, respectively.

Another observation of relevance is related to the sparsity of

the density matrix. As shown in Fig. 3, over 60% of the

atomic blocks of the density matrix are nonzero if a tolerance

of only 1025 is used. Even if such a moderate accuracy is

demanded, linear scaling methods that rely on the sparsity of

the density matrix cannot be efficient.

IV. CONCLUSIONS

The orbital transformation method presented here is a

fast method for accurate SCF calculations of medium to

large systems. It is guaranteed to converge, and typically

does so in less than 20 iterations. The computationally ex-

pensive part of these iterations are matrix–matrix products,

FIG. 2. Convergence of the total energy per molecule for a periodic system

of 256 water molecules @TZV(2d ,2p), 10 240 basis functions# vs elapsed

time on four CPUs of a SUN ultra SPARC ~750MHz!. Circles, kinetic en-

ergy based preconditioner; diamonds, diagonalization based preconditioner;

crosses, standard diagonalization and DIIS.

FIG. 3. The fraction of nonzero blocks of the density matrix ~squares! and

the overlap matrix ~circles! is shown for the DNA system @DZV(d ,p)]

described in the text.
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which reach near peak performance on many computers and

scale well. We have shown that the electronic structure of

systems containing a few thousand atoms can be calculated

with an accuracy that is otherwise only common for smaller

compounds. For large systems with a sparse Kohn–Sham

and overlap matrix there is still potential to improve execu-

tion speed of the method. We expect that fast parallel sparse

matrix–full matrix multiply and a preconditioning scheme

that exploits the structure and sparsity of the Kohn–Sham

matrix could increase the efficiency of the current implemen-

tation by factors 2 to 5.
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