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Abstract. 

This paper presents a new node ordering algorithm to 
enhance sparse vector methods. The proposed technique 
locally minimizes the number of non-zero elements of 
the inverse of the table of factors. It uses the 
cardinality of the set of nodes which precede each node 
in the path graph as a tie-break criterion in the 
minimum degree elimination process. Test results are 
included showing that the method performs better than 
previously published methods. 

INTRODUCTION. 

A great deal of Sparse Matrix problems still 
represent a challenge for Electrical Engineers, 
especially if the large scale of these problems and 
real-time requirements are considered. Nowadays, 
advances in computer hardware and development of 
efficient algorithms permit to afford certain problems 
that only a few years ago did not seem to have a 
practical solution. 

Sparse Matrix techniques introduced in the sixties 
[1] had a great transcendence in the efficient solution 
of the power flow problem. More recently, Sparse Vector 
techniques were introduced to speed up a number of 
important power system problems [2]. Two kinds of 
papers can be found in the literature related with 
these topics: Basic developments and applications. 
Among these, reference [3] can be mentioned, where two 
Partial Refactorization methods are applied to Newton 
Load Flow, Fast Decoupled Load Flow and Security 
Analysis. Other recent papers related to applications 
deal with the following problems: Parallel Inversion of 
Sparse Matrices [4), Fault Analysis [5) and Linear 
Contingency Analysis [6]. The first kind of papers are 

devoted to the development of algorithms and basic 
concepts that permit to get better performances when 
these techniques are applied to particular problems [2, 
7-9). 

This paper falls under 
presents a new ordering 
application. 

this category because it 
algorithm of general 

RBVIEV OF SPARSE VECTOR CONCEPTS. 

Consider the solution of the equation: 

(1) 

where A is sparse. If we restrict ourselves, for 
simplicity, to the case in which A is symmetric and 
positive definite (e.g . the matrix B' in the Fast 
Oecoupled Load Flow), then A could be factorized as 
UtU. Once this requisite has been fulfilled, the 
standard forward and backward operations on the 
independent vector give the desired result, x. 

In this paper the attention is focused on two kinds 
of problems: 

a) Solution of (1) when either vector b has only a 
few non-zero elements or a small number of elements in 
the unknown vector x are needed (Sparse Vector 
problem) . 

b) Repeated solution of (1) when matrix A is 
slightly modified (Partial Matrix Refactorization 
problem) • 

It is a common practice to use an undirected graph 
associated to matrix A so that the elimination process 
can be easily visualized. Each time a row in A is 
eliminated, the graph must be updated by deleting the 
corresponding vertex and incident arcs and adding the 
required fill-ins, giving the reduced graph at this 
stage. Also, a filled graph may be associated to the 
matrix U+Ut which depends, obViously, on the ordering 
adopted during the elimination process, i.e., on the 
number of fill-ins generated. 

As an example, consider the 10- node system shown in 
Figure 1. The structure of the resultant U matrix is 
shown in Figure 2, when the Minimum Degree strategy 
(MD) is adopted. The leftmost column indicates the 
order in which the nodes have been eliminated. 
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Fig. 1. 1O-fude Systan. 
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5 1X X 1 

10 2 x x 1 
4 3 xx X 2 
7 4 X 0 X 2 X: Orlginal eleoent 

2 5 XXX x 3 o : Fill-in elEllle!lt 

1 6 XXXX 3 
3 1 XOOX 3 
6 8 xxx 2 
8 9 xx 1 
9 10 X 0 

Fig. 2. Structure of U. 

For both problems formerly 
interesting to introduce, moreover, 
following [2]. 

mentioned it is 
other concepts, 

First of all, 
non-zero element 
singleton is an 
follows: 

a singleton is a vector with only one 
(e.g. in location k). A path for a 

ordered list of rows of U defined as 

1) Include k in the path. If k is the last row of 0, 
exit. 

2) Replace k with the first non-zero column in row k 
of 0, and go to step 1). 

If b is a singleton, then only the rows of its path 
are needed during the forward elimination process. 
Analogously, if only the k-th entry of x is wanted, 
only the rows of this path are strictly required during 
the backward substitution process. In this case the 
path is swept in the reverse order. These processes are 
called the Fast Forward (FF) and Fast Backward (FB) 
processes respectively. Taking into account the analogy 
between factorization and forward elimination 
processes, it is clear that only the rows involved in 
the appropriate path should be updated in 0 when the 
k-th row of A is modified (Partial Matrix 
Refactorization, or simply PHR). 

A path graph may be built by union of all possible 
singleton paths. Figure 3 shows the path graph for 
IlI8trix 0 in Figure 2. 

The appropriate subset of this tree determines the 
rows involved in FF, FB or PMR processes when b has 
several non-zero elements, more than one element is 
wanted in x, or various rows are modified in A 
(provided in this case that the structure of 0 remains 
the saae). Each row of 0 with d non-zero ele~ents 
contributes with d t mult-adds in t~e FF/FB process and 
d

i
(d t +l)/2 in PMR. 

There is an interesting relationship between this 
path graph and the structure of 0-1 which is the key 

-for the development of more efficient orderinf 
algorithms. The non-zero columns of the k-th row of 0-
give the path for the node at k-th position. 
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Fig. 3. Path Graph of the 10-N:x1e Systen. 

Conversely, the non-zero rows of the k-th column of 0-1 

give the subset of the tree' which precedes the node at 

this position. Figure 4 shows the S:tructure of 0-1 for 
the same earlier example

i 
and viSualizes the mentioned 

relationship between 0- and the path graph for the 
case of.node 1 which is numbered at 6th position. 

1234567890 
5 lX' XXXXX 

10 2 X X XXXXX 
4 3 XX XXXXX 
7 4 X XXXXX 
2 5 XXXXXX 
1 6 XXXXX 
3 1 XXXX 
6 8 XXX 
8 9 XX 
9 10 X 

Column 
of node 

Fig. 4. Structure of U-1 
and RelationShip with the Path Graph. 

From the preceding comments it is clear that the 
number of non-zero elements of ur1 is a measure of the 
average singleton path lenfth. Actually, the number of 
non-zero elements iD ur (including the diagonal) 
divided by the number of nodes gives the average 
singleton path length. Also the number of non-zero 
elements of 0 is a measure of the average number of 
mult-adds required to perform the FF/FB or the PKR 
proceSS. Bence, what is required is that both 0 and ur1 

remain as sparse as possible. Sometimes, a less sparse 
o is permissible if this is counteracted by the saving 
achieved in ur1

• 

KOTIVATIOH AND DESCRIPTION OF THE ALGORITBK. 

In order to allow comparisons the KD algorithm (or 
Tinney's second scheme) will be first described. This 
description will be somewhat conventional as the actual 
computer implementation will depend strongly on the 
storage-accessing scheme adopted (e.g., steps 4 and 5 
below could be probably merged into ' only one step). 

For this purpose the next vectors will be used: 

f(i) : Position of node i in the final ordering. 
Initially set to zero; f(i).O means that node i has not 
yet been considered. 
0(1) :. Degree of node i in the reduced graph. Initially 
set to the degree in the original graph. 

Then, for a graph with N nodes: 

Minimum Degree Algorith. (MO): 

1) Let It-!. 
2) Pick up a node i with f(i)=O such that Dei) is 
minimum. The ties are brakeD arbitrarily, although for 
programming convenience, the first or the last eligible 
node in the natural order is usually choseD. Set 
f(i)=k. 
3) If k equals H then stop. 
4) For each j adjacent to i such that f(j)=O, set 
O(j )_O(j)-l. 
5} For each pair of nodes a, n adjacent to i but not 
adjacent to each other, such that f(.)=f(n)=O, create a 
new edge joining a and n, and increase O(m), OeD) in 
one unit. 
6) Set k-k+l and go to. step 2). 

The main weakness of this algorithm is the large 
number of ties which appear in step 2). The way these 
ties are broken may Dot have a strong influence on the 



sparse structure of U [10], but this is not the case 
when U- 1 or, equivalently, the average path length is 
considered. For instance, the average path length for 
the 118-node IEEE test system is 9.46 when the first 
minimum-degree node encountered in the natural order is 
chosen. This value rises to 11.77 when the last 
eligible node is taken. Examples could be found where 
just the opposite would happen. That is, the behaviour 
of the MD strategy, as far as the efficiency of sparse 
veetor methods is concerned, depends strongly on the 
natural order of the nodes, which is not a desirable 
feature (see Comparative Results). 

Reeognizing this faet three st!:ategies were ploposed 
in reference [7] intended to enhance the spa!:sity of 
ur 1 without sacrificing the sparsity of U, by simply 
using a second criterion to break the ties which appear 
during the execution of MD algorithm. Among these 
strategies, Algorithm I (AI) seemed to be the best one. 
When a tie appears, it numbers in the first place the 
node with fewer adjacent nodes which have been already 
elimina ted. More precisely, when more than one node has 
a minimum degree in the reduced graph, the one with a 
minimum degree in the filled graph is first eliminated. 
As an example consider Figure 5. In the reduced graph 
there are 2 nodes with a degree of 3. Node b is first 
chosen by Al because it has 3 adjacent nodes in the set 
of eliminated nodes, against node a which has 4 of such 
nodes. 

More recently [8], a new algorithm has been proposed 
which t!:ies to improve the MD strategy in a similar 
way. This algorithm, which is called Minimum Degree, 
Minimum Length (MD- ML), uses the concept of the depth 
(or the length) of a node in the path graph, which is 
updated very easily. The MD-ML algorithm is also 
described in the discussion and closure of [7] where a 
preliminary and brief comparison is made with AI. 
Figure 6 shows the path graph for the 10-node system 
when the logic of Al is used, while Figure 7 shows the 
same example following the MD-ML strategy. In this 
particular case Al gives a shorter average path (3.2) 

than MD- ML does (3.7), though, in general, the MD-ML 
st!:ategy performs bette!: than AI. 

Once these two algorithms have been revised, the 
rest of the section will be devoted to the new 
algorithm proposed in this paper. Consider once more 
the lO-node system when nodes 1, 8 and 9 remain to be 
eliminated and the other nodes were eliminated in the 
order 5, 10, 4, 7, 2, 6, 3. Figure 8 shows the filled 
graph under this situation. Three fill-ins have been 
generated. Figures 9.a, 9.b and 9.c show how the path 
graph would grow if nodes 1, 8 and 9 respectively were 

5 
10 

4 
7 
2 
6 
3 
9 
8 
1 

eliminated nodes 
\ I 
I I 

) 

f i lled 

graph 

Fig. 5. Sample Illustrating the Logic of AI. 

1234567890 
Ix X 0 
2 X X 0 10 6 
3 XX X 0 
4 X XO 2 
5 X X XX 0 
6 X XXX 0 
7 XXOX 1 
8 XXO 2 
9 XX 5 

10 X 8 

Fig. 6. Struc=e of U and Path Graph Foll~ Al. 

eliminated at this point (the degree of all of them is 
2). In this situation the MD-ML strategy would not be 
useful since the length is 2 in all three cases. The 
squa!:ed nodes are the set of already-eliminated nodes 
which are adjacent to the node in hand, i.e., the 
cardinality of this set is used as a tie-break 
criterion by AI. Hence, node 9 should be chosen firstly 
if this strategy were adopted. Notice that this set of 
nodes represents the non-zero rows in the corresponding 
column of U (see, for instance, the last three columns 
in Figure 6). However, the nodes inside the closed 

1234567890 2 
5 IX X 0 

10 2 X X 0 
4 3 XX X 0 
7 4 X OX 1 
2 5 X XXX 0 
6 6 X XXX 0 
3 7 XXOX 1 
1 8 XXO 2 8 

8 9 xx 3 
9 10 X 4 9 

depth=4 
Fig. 7. Structure of U and Path Gra\Yl FollCllli~ MD-ML. 

Fig. 8. Filled Graj:tlllefore Nodes 1, 8 and 9 Have Been Eliminated. 
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Fig. 9. Growth of the Path Graj:tl under Tht:ee Different Hypothesis. 



,curve represent the non-zero rows in the same column of 
0- (remember Figure 4). Obviously, the squared nodes 
are always included within the closed curve, as the 
structure 'of U is a .subset of the structure of 0-1 • 

Vhat we are proposing is to use. the cardinality of this 
new set, i.e., the set of nodes which precede the node 
under consideration in the: path graph, as a tie-break 
criterion. This i~ equivalent to locally minimize the 
number of nor-zero eleml!!nts in 0-1 and, hence, better 
results are expected. The only drawback of this method 
is that this set is more difficult , to coapute or update 
than the parameters used bY 'competitive algorithms. 

Following this new strategy, nOoe 9, is also the 
first to be eliminated. The ' reSUlting path graph is 
shown in Figure 10 where the precedinJ sets for nodes 1 
and 8 are abo outlined. It is clear that the next node 
to be chosen is node 8, leaving node 1 at .the bottom 
(see' the final resul t in Figure 6) • . 

, A careful analysis of the changes produced from 
Figure 9 to, Figure 10 will provide us with a method to 
update . the preceodiilg set each tille a node is ' 
eliminated . . Let us deUne the foiiowing vectors: 

P(i) : Number , of nodes in the path graph which 
precede node ' 1 (plus one to incl~de 1 itself). 
Initially set to one. ' 

F(i) : Bpolean variable. It is ~ true' if node i is 
the last node added to any connected COmponent of the 
pa th graph, 1. e. , if node i i,s a bordering (or 
frontier) node. Initially set to 'false'. 

The importance of bordering nodes is that it is only 
required to know P(k) for such nodes. For instance, in 
Figure <:I nodes 3, 5, 6 and 7 are bordering nolles and 
P(3)z2, p(5)ml, P(6)=l, P(7):3. , It is immediate to see 
that: ' 

P(1)-P(3)+P(5)+P(6)+P(7)+1-8 
P(8).P(3)+P(6)+P(7)+1_7 
P(9).P(3)+P(6)+1.4 

Let us now retul:n to Figure 10 whel:e node 9 is a new 
bordering nolle and nodes 3 and 6 have left this set of 
nodes. O!>serve that the new values of PO) and peS) can 
be updated as follows: . 

P(1)~P(1)+P(9)-P(3)-P(6)-9 

P(8)_P(B)+P(9)-P(3)-P(6)=B 

These considerations lead finally to the following 
algorithm (see Appendix for a practical 
implementation). For a graph with. nodes: 

Minimum Degree. Klniawa Humber of Predeceossors 
Algorithm (KD-KNP). 

1) Let kat. 
2) Pick up a node i with f(i)~O such that D(i) is 
minimum. Break the ties which appear in this process 
selecting the node with minimum P(i). Set f(i)-k, 
F(i)-'true'. . 
3) If k equals H then stop. 
4) For each j adjacent to i in the filled graph 00 the 
follOwing: 

4.1) If [(j)-O then set P(j).P(j)+P(i), D(j)zO(j)-1. 
4.2) If F(j)-'true' then set F{j)-'false' and for 

each m adjacent to j such that· f(a)_O do 
P(a)=P(.)-P(j) . 
5) For each pail: of nodes a, 0 adjacent to i but not 
adjacent to each other, such that f(a)~f(o)aO, create a 
new edge joining m and D, and increase D(m), 0(0) in 
one unit. . 
6) Set kak+1 and go to step 2). 

Figure 11 shows the, results of applying this 
algorithm to the 10-node system. The SaDe avel:age path 
length as in Al is ·obtained though the resultant 
ordering is different. 

Nodes 
preceding 
node 1 

1 ength=3 

Nodes 
preceding 
node 8 

Fig. 10. Path GIajn Before NodeS 1 and 8 !lave Been Eliminated. 

1234567890 
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5 2 X X 1 10 
4 3 XX X 1 
7 4 x xo' 3 
9 5 x XXX 1 
2 6 it XXX 1 
6 7 XOXX 2 
3 8 XOX 4 
8 9 xx 8 
1 10 X 10 

Fig. 11. Structure of U and Path GraIn Foll~ IO-IH'. 

orDBR POSSIBLE VERSIONS. 

2 

In view of the proposed algorithm, some 
modifications may ' be intuitively introduced which 
should lead eventually to \ further improvements. For 
instance:, instead of using P(i) as a merit factor, 5(i) 
could be used, where SCi) is defined as the addition of 
all possible path lengths from the nodes which precede 
node t, like in Figure 12.&. Figul:e 12.b shows how node 
b should be chosen following this new criterion while 
node a is preferable from the point of view of MD-MNP 
strategy. This version which may be called ' Minimum 
Degree, Minimum Total Path Length (MD-HTP) differs from 
the main version in' what follows: The ties in step 2) 
are brOken by means of S(l) which is initially set to 
zero. In step 4), each time P is updated, 5 must be 
also recomputed, depending on the case, as follows: 

4.1) S(j)_S(j)+(P(i)+5(i» 
4.2) 5(a)=S(m)-(P(j)+S(j» 

That is, this version uses P only as a means of 
easily updating S. 

By using any of the , algorithms described or revised 
until now, a large number of ties still appear in the 
second criterion. In order to decrease such a 1al:ge 
number of draws, it is possible to use the mean path, 
computed as the real value S(i)/P(i), in step 2). 

Another way of decreasing the number of ties could 
be by using a third criterion. Among others, the 
following ones can be mentioned: KP-HNP-ML, HD-HNP- HTP 

(a) (b) 

Fig. 12. Illustration of the It>-M1'P Strategy. 



and MD- MNP-Maximum distance appart from the centre of 
the graph. 

Unfortunately, these more complex strategies have 
not yielded good enough results, when they are applied 
to our networks, to be further considered. 

Finally, a refinement of the MD-MNP strategy stands 
out which is based on the following reasoning: Assume 
you are interested in minimizing the total mult-adds 
required in the FF/FB process. When node k is involved 
in a singleton path it contributes with D(k) mult-adds. 
Considering that node k appears in P(k) paths, its 
overall contribution is D(k).P(k) mult - adds. So it 
seems logical to use the product P.D as a merit factor. 
However, using this product as the main ordering 
criterion causes a large number of fill-ins in U 
because the MD strategy is perturbed. 

It would be interesting, then, to find a compromise 
solution between this strategy and MD-MNP. In this 
sense, MD-MNP could be modified so that a small 
difference in D is less important than a big difference 
in P. Formally: once a minimum degree node k is 
considered as a candidate in step 2), choose a node j 
which satisfies D(j)<D(k)+h and P(j).D(j) is as small 
as possible. When h -ranges from 1 to 4 better results 
are obtained as may be seen in the next section. 
Typically h=3 gives the best results. 

COMPARATIVE RESULTS. 

Appart from the tutorial examples used in previous 
sections, other real systems, including the IEEE test 
systems and several larger Spanish networks, have been 
tested [9]. 

Tables I, II and III summarize some of the results 
obtained with MD, MD- ML and MD- MNP algorithms 
respectively for four selected networks. Each table 
contains the following items from left to right: Size 
of the system (nodes)I number of non- zero off - diagonal 
elements of U and ur , mult-adds required in the full 
factorization process, ordering execution time and, 
finally, the average and standard deviation, for every 
possible singleton, of the path length, mult-adds in 
the FF/FB and mult-adds in the PMR process. Actually, 
the results refer to B' matrix and, therefore, the 
slack node is not included. 

Figures 13 and 14 compare the savings obtained by 
A1, MD-ML and MD-MNP with respect to MD when they are 

50 

-1 Opr. TinE PATH OPffi.FF/Fl 0Pffi. 00 
thI U U Fac. sec. Mean SO Mean SO Mean SO 

118 253 990 425 0.15 9.46 2.6 21.11 7.2 40.09 15.0 
265 549 3622 972 0.63 14.72 3.8 48.84 12.4 132.97 36.1 
448 1189 10667 28!:O 1.96 24.86 6.9 140.68 41.3 563.70 162.4 
661 1851 17638 4972 4.18 27.72 8.6 189.62 72.1 900.90 367.7 

Table I. Results obtained with MD (T-2) method. 

-1Opr. TinE PIilll OPffi. FF IFB OPffi. H1R 
thI U U Fac. sec. Mean SO Mean SD Mean SO 

118 251 893 419 0.18 8.63 2.1 1B.04 6.2 33.37 14.2 
265 549 3002 983 0.80 12.37 3.5 37.74 15.6 99.15 48.2 
448 1180 9475 2755 2.30 22.20 6.7 100.82 37.1 378.53 130.0 
661 1830 15746 4778 4.92 24.86 6.8 152.18 49.4 781.00 1B9.7 

Table ll. Results obtained with MD-ML method. 

-1Opr. TinE PIilll OPffi. FF IFB OPffi. H1R 
lbl U U Fac. sec. Mean SD Mean SO Mean SO 

11B 251 805 419 0.20 7.88 2.1 15.93 6.5 29.01 14.8 
265 548 2870 977 0.83 11.87 2.8 33.71 10.9 83.46 38.7 
448 1179 7667 2761 2.35 18.15 4.6 B3.87 23.7 289.52 86.2 
661 1799 14634 4514 4.83 23.17 5.7 129.14 38.4 518.60 174.9 

Table Ill. Results obtained with MlJ...WI' method. 

applied to these systems. The figures show clearly that 
the method proposed in this paper (MD-MNP) is superior 
to MD-ML which is the best algorithm published up to 
date. 

In table IV the average savings achieved with a 
larger number of networks are presented. Again, it can 
be seen that the proposed algorithm yields better 
results than previous methods for the three items 
considered. Notice that even a slight improvement can 
be attained by using the refined version described 
earlier. Observe also that the largest savings are 

Mean Number Ooerations 
Method Mean Path FF/FB Par t. Re fac t. 

A1 ref. [7] 5.63 12.75 17.28 
MD-ML ref. [8J 12.33 20.89 26.60 
MD-MNP 19.70 32.01 39.71 
Refined MD-MNP 25.66 35.56 40.88 

Table IV. Savings with respect to MD (X). 
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obtained in the PHR process (the rightllOst column) as 
may be expected, since the non-zero elements of any row 
involved in the path contribute quadratically to the 
overall operations count of this process while only 
linearly to the FF/FB process. 

As the number of singletons grows, the advantage of 
using sparse vector methods decreases. When this number 
tends to the size of the system, the average number of 
mult-adds required in the FF/FB approach the second 
column of the tables (i.e., the number of non-zero 
elements in U). This fact may be seen in Figure 15, 
where the proposed algorithm (HD-KNP) is compared to HD 
for as many singletons as approximately a 10% of the 
network's size (in this case the 448-node system). 
Analogously, as the number of modified rows in the 
matrix increases, the use of PMR techniques is less 
useful. Now, the required mult-adds tend to the fourth 
column of the tables (operations count in the full 
process). ,Figure 16 illustrates how tbe HD-KNP method 
behaves compared to MD for the same network. In both 
figures, the operations count was computed from a total 
of 100 trials except, logically, for one singleton. 

As was cOlDIDented in a previous section, the 
behaviour of the MD strategy, as far as the path length 
is concerned, has a strong dependence on the natural 
order of the buses. Consequently, the performance of 
this metbod may be, in certain cases, almost as good as 
that of tbe proposed algorithm and very poor in otber 
cases. However, tbose methods wbicb use a second 
criterion have a more regular behaviour. To prove tbis 
assertion a simple test has been done .consisting in 
generating randomly four ditferent node orderings for 
several networks. Figure 17 shows the results of this 
test for the l18-node system. The black bar refers to 
the natural order while the white ones correspond to 
the four random orders. It is apparent that the 
proposed method (HD-KNP) is quite insensitive to the 
way the nodes are ordered whereas, in the other 
extreme, HDproduces notably disperse results in spite 
of the small size of the test case considered. 

Execution times of the proposed algorithm (Table 
III) are only slightly larger than those of the MD 
algorithm (Table I) though they depend on the 
efficiency of the impleeentations (see Appendix). These 
tiaes were obtained on a pVAX-II. 

Finally, though the aim of this paper is not to 
present specific applications, it aay be interesting to 
point out that about a 15% reduction in the execution 
time has been achieved when MD-HNP is applied to the 
parallel solution of linear equations (e.g. those which 
appear in the Fast Decoupled Load Flow). 
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CORCLUSIORS. 

In this paper a node ordering algorithm to enhance 
sparse vector .. thods is presented. The method proposes 
a way to' break the draws which appear during the choice 
of the pivot in the elimination process when the 
minimua degree strategy is adopted. A vector that 
contains the nmaber of predecessors for each node in 
tbe path graph is used as a second criterion, yielding 
a local minimization of tbe number of non-zero elements 
in uri or, equivalently, of the mean path length. A way 
to compute " this vector which requires a more complex 
logic than other simpler methods is suggested. However, 
the promising results obtained with the test networks 
(above a 35% saving in operations count w.r.t. minimum 
degree) justify its use. 

Further work is necessary to better understand how 
local minimum fill-in strategies interact with local 
minimum path length strategies in a global sense. Vhile 
einieum fill-in strategies (like KD) may eventually 
lead to satisfactory results fro. the point of view of 
path length, the opposite 1s not true. Using HNP as the 
main criterion gives an excessive number of fill-ins 
which, in turn, produce longer paths. This is why KNP 
is only used as a tie-break criterion. Is it possible, 
however, that other combinations of MD and HNP 
strategies lead to better results7 Some data are 
presented in the paper which suggest that the answer is 
affirlll8tive. 

RBPBRBNCBS • 

(11 - Tinney V.F., lIalker J.V.~ Direct Solutions of 
Sparse Network Equations by Optimally Ordered 
Triangular Factorization. Procee. IEEE vol. 55 
pp. 1801-1809, 1967. 

[2) - Tinney II.F., Brandwajn V., Chan S.H., Sparse 
Vector Methods. IEEE Trans. on PAS-I04, pp • 
295-301, 1985 • 

[3) - Chan S.M., Brandwajn V., Partial Hatrix 
Refactorization. IEEE Trans. on PIIRS-1, pp. 
193-200, 1986. 

[4) - Betancourt R., Alvarado F.L., 
Inversion of Sparse Matrices. IEEE 
PIIRS-l, pp. 74-81, 1986. 

Parallel 
Trans. on 

[5) - Brandwajn V., Tinney II.F., Generalized Method 
of Fault Analysis. IEEE Trans. on PAS-104, pp. 
1301-1306, 1985. 



[6) - Brandwajn V., Efficient Bounding Method for 
Linear Contingency Analysis. IEEE/PES 1987 
Yinter Meeting, New Orleans. 1987. 

[7] - G6mez A., Franquelo L.G., Node Ordering 
Algorithms for Sparse Vector Method 
Improvement. IEEE/PES 1987 Yinter Meeting. 

[8] - Betancourt R., An Efficient Heuristic Ordering 
Algorithm for Partial MatriK Refactorization. 
IEEE/PES 1987 Summer Meeting. 

[9] - G6mez A., Franquelo L.G., A Node Ordering 
Algorithm to Speed up the Solution of Sparse 
Matrix and Sparse Vector Linear Equation 
Systems. AMSE Int. Conf. Sept. 1986. 

[10] - Duff 1.5., Erisman A.M., Reid J.K., Direct 
Methods for Sparse Matrices. OKford University 
Press, N.Y., 1986, Chapt. VII. 

APPENDIX: Practical implementation. 

There may be several alternatives to actually 
implement both MD and MD-MNP algorithms, depending 
mainly on the way the graph's structure is stored and 
dealt with. An iml ementation is proposed here which is 
not necessarily the most efficient one but it is only 
intended to show that MD-MNP is not so compleK compared 
to MD as it seems at first glance. 

The usual linked data structure is adopted to store, 
for each node, the set of adjacent nodes. Vector FIRST 
points to the beginnings of these sets. CREATE is a 
routine which inserts a pair of symmetric elements into 
the chain and updates D (degree) provided the elements 
did not already exist. NEXADJ gives the 
currently-pointed adjacent node back and updates the 
pointer (only two statements are required). MINIMUM is 
a function which computes the minimum degree node 
according to step 2 in the main text. Following the 
notation introduced in the paper and assuming all 
vectors and the data structure are properly 
initialized, the MD-MNP algorithm might be as follows: 

BEGIN 
k-l 
while (k<BN) do 

begin 
i=MINIMUM(f,D,P) 
f(i)=k 
F(i)='true' 
pointl=FIRST(i) 
while (point1<>0) do 

begin 
NEXADJ(point1,n) 
if (f(n)~O) then 
begin 
D(n)=D(n) - l 
P(n)=p(n)+P(i) 
point2=pointl 
while (point2<>0) do 

begin 
NEXADJ(point2,m) 
if (f(m)=O) CREATE(n,m,D) 

end 
end 

else 
begin 
if (F(n)='true') then 
begin 
F(n)='false' 
point2=FIRST(n) 
while (point2<>0) do 

begin 
NEXADJ(point2,m) 
if (f(m)=O) P(m)=P(m)-P(n) 

end 
end 

end 
end 

k=k+1 
end 

END 

$ 

* 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Note that step 4 has been embedded into step 5 in 
order to avoid duplicated accesses to the structure. By 
omitting P in the line marked with '$' and all of the 
lines marked with' *' the MD algori thm is obtained. 
Since the MD algorithm is very well known, its 
computational compleKity is not going to be discussed 
here [10). Rather it will serve as a reference to 
compare the proposed method. 

Each time a tie appears in the searching of the 
minimum degree node an additional comparison is 
required to break it. The resultant number of 
comparisons is unknown "a priori" but they are peculiar 
(inherent) to any method which eKploits a second 
criterion. 

The other major difference appears in the logic that 
updates vectors F (frontier) and P (predecessors). 
Every node becomes a bordering node when it is 
eliminated. Later, it leaves forever the boundary when 
any of its adjacent nodes is eliminated. Hence, at the 
end of the ordering process the condition F(n)='true' 
has been realised N-l times, once for each node (eKcept 
the last one). This means that only one extra swept of 
the graph's overall structure is required, compared to 
MD. In addition, 2b updatings of F and P are carried 
out, where b is the number of nonzero elements in U. 

It is clear from the above paragraph that the 
overhead introduced is not very significant. 
Furthermore, since the proposed method gives usually 
less fill-in, the resultant time is even better than 
was eKpected, mainly because CREATE, which has an 
involved logic, is called fewer times. Other refined 
versions commented in the paper maybe, however, more 
time- consuming. Due to space limitations they will not 
be analyzed here. 
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