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The Mad package described here facilitates the evaluation of first derivatives of multi-dimensional
functions that are defined by computer codes written in MATLAB. The underlying algorithm is

the well-known forward mode of automatic differentiation implemented via operator overloading

on variables of the class fmad. The main distinguishing feature of this MATLAB implementation is
the separation of the linear combination of derivative vectors into a separate derivative vector class

derivvec. This allows for the straightforward performance optimisation of the overall package.

Additionally by internally using a matrix (two-dimensional) representation of arbitrary dimension
directional derivatives we may utilise MATLAB’s sparse matrix class to propagate sparse direc-

tional derivatives for MATLAB code which uses arbitrary dimension arrays. On several examples

the package is shown to be more efficient than Verma’s ADMAT package.
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1. INTRODUCTION

In the standard reference for the subject, Griewank [2000] states that,

Algorithmic, or automatic differentiation (AD) is concerned with the
accurate and efficient evaluation of derivatives for functions defined by
computer programs.

AD uses the systematic application of the chain rule of differentiation applied to
the floating point representation of a variable’s value and its derivatives. Unlike
the finite-difference approximation, no discretisation or cancellation errors are in-
curred, and the resulting derivative values are accurate to within floating-point
round-off. Since only floating point values are used (unlike differentiation within
symbolic algebra packages such as Mathematica or Maple) good efficiency may be
obtained. Additionally, AD permits the use of control structures (loops, branches
and sub-functions) common to modern computer languages but not easily amenable
to symbolic differentiation.
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1.1 Forward and Reverse Mode AD

There are two fundamental algorithms or modes of AD for calculating first deriva-
tives – forward and reverse [Griewank 2000, Chap. 3].

Forward, or Tangent(-Linear), Mode AD involves enhancing the original
function code so that a variable’s directional derivatives are calculated along with its
value. For example, if we set the values of scalar variables x1 and x2 and their scalar
derivatives Dx1 and Dx2, then a variable defined by the statement y = x1*x2 must
have its derivatives Dy calculated via the product rule as Dy = x1*Dx2+Dx1*x2.
Clearly, if we initialise Dx1 = 1 and Dx2 = 0, for arbitrary, initialised values of x1
and x2, we obtain the value of the directional derivative of y in the x1 coordinate
direction. If we define Dx1 and Dx2 to be vectors of length 2 with Dx1 = (1,0) and
Dx2 = (0,1), and interpret Dy = x1*Dx2+Dx1*x2 as a vector statement, the calcu-
lated Dy is the gradient of y for the supplied values of x1 and x2. By systematically
performing such derivative operations for all the necessary floating point operations
in the original function code, following the control flow (through branches, loops,
sub-functions) as dictated by the values of variables, then gradients of all variables
may be calculated.

Reverse, or Adjoint, Mode AD is a two stage process. First the original func-
tion code is run, perhaps augmented by statements to store data to enable the code
to be run a second time in reverse, propagating the sensitivities of the function’s
output to each calculated variable. Such sensitivities are termed adjoints.

Griewank [2000] presents a computational complexity analysis for the run time,
time(Jf(x)), to calculate the Jacobian Jf(x) of a function f(x) ∈ IRn → IRm

by both forward and reverse mode AD. For the forward mode, time(Jf(x)) =
ωfwd × time(f(x)), where time(f(x)) is the run-time for the original function.
The coefficient ωfwd ∈ [1 + n, 1 + 1.5n] is dependent on machine characteristics
(e.g., relative time for memory access compared to floating point operation). In
a similar manner for reverse mode AD time(Jf(x)) = ωrev × time(f(x)) with
ωrev ∈ [1+2m, 1.5+2.5m] again dependent on machine characteristics. The larger
coefficients in the bounds for ωrev compared to ωfwd reflect the extra memory
operations in the reverse mode’s reverse pass to recover values stored in its forward
pass. Such operations are not needed in the single pass forward mode.

If m � n, i.e. the gradients of a small number of function outputs are required
with respect to a large number of function inputs, then reverse mode is to be
preferred. Examples of such cases typically arise in large-scale optimisation.

1.2 Implementation of AD

AD is implemented in one of two ways: operator overloading or source transforma-
tion [Griewank 2000, Chapter 5].

The operator overloading approach takes advantage of the facility to define
new classes (or types) within modern computer languages such as Fortran 95, C++
or MATLAB. Objects of the new AD class are defined to have a component which
stores their value and components to store derivative information. Arithmetic and
intrinsic functions are extended to the AD class making use of operator and function
overloading. In typed languages such as Fortran or C++, all that remains is for
the user to redefine the classes of all relevant objects within the function and all
ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.
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sub-functions to that of the AD class, initialise appropriate values and derivatives,
invoke the function, and then extract the values of the derivatives. Representative
examples of such implementations are the packages ADO1 [Pryce and Reid 1998]
and ADOL-C [Griewank et al. 1996].

The alternative source transformation approach requires the development of
sophisticated compiler-type software to read in a computer program, determine
which statements require differentiation, and then write a new version of the original
program augmented with statements to calculate derivatives. Such sophisticated
AD source transformation packages exist for languages such as Fortran [Bischof
et al. 1996; FastOpt 2003; Tapenade 2003] and C [Bischof et al. 1997].

1.3 AD in MATLAB

Rich and Hill [1992] provided a limited facility for MATLAB that enabled AD of
simple arithmetic expressions defined by a character string. Such strings, together
with necessary values of variables were passed to an external routine, written in
turbo-C, for differentiation. However, the first significant work was that of Cole-
man and Verma [1998b; 1998a],[Verma 1998b] who, in a monumental coding ef-
fort, produced an operator-overloading AD package named ADMAT that provides
facilities for forward and reverse mode AD for both first and second derivatives
and runtime Jacobian sparsity detection. These authors also interfaced ADMAT
with ADMIT [Coleman and Verma 2000], a package for efficient sparse Jacobian
calculation via various colouring algorithms. Recently the ADiMat hybrid source-
transformation/operator overloading AD tool [Vehreschild 2001] has been devel-
oped, and comparisons [Bischof et al. 2003; Bischof et al. 2002] show its forward
mode to be more efficient than that of ADMAT. It would appear that while AD-
MAT’s operation count is in agreement with AD theory (see for example the opera-
tions counts in [Borggaard and Verma 2000]), its run time is not. We have encoun-
tered similar experiences leading to development of the Mad AD package [Forth
2001].

1.4 The Mad AD Package

Our aim in developing the Mad AD package is to implement in MATLAB the var-
ious AD algorithms in a careful, step-wise manner, taking care to ensure efficiency
and ease of extension at each stage. The first AD algorithm to be implemented
was, as described in this paper, the standard forward mode for first derivatives.
This immediately provided a facility for calculating derivatives accurate to float-
ing point round-off. Such derivatives are required for Newton-based algorithms for
both nonlinear equation solution and optimization. In the absence of AD such
derivatives are more conventionally approximated by finite differencing (FD). In
order to replace FD as the default method for derivative evaluation, we must show
that AD has comparable efficiency for derivative evaluation and further that its
inherent accuracy yields greater overall efficiency and robustness when used within
derivative-exploiting algorithms.

An early decision, based on expedience, was to adopt an operator-overloading
implementation. Programming overloaded classes, operations and functions allows
for a rapid coverage of most commonly used MATLAB functionality. Indeed, the
first version of the forward mode was written, debugged and facilitating improved
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statistical data fitting [Ringrose and Forth 2002] for less than a man-month’s effort.
The alternative source-transformation approach would be far more time-consuming.

We describe our operator-overloaded implementation of forward-mode AD for
a single-directional derivative through the fmad class in Section 2. Our imple-
mentation of the derivvec class for storing and manipulating multiple directional
derivatives, described in Section 3, allows us to enhance the fmad class to propagate
an arbitrary number of directional derivatives. This separation of the storage and
manipulation of directional derivatives to within the derivvec class allows us to
greatly optimize overall performance by optimizing performance of the small num-
ber of functions of the derivvec class. To ensure efficiency the functions of the
derivvec class only use high-level array operations [The MathWorks Inc. 2003,
Section 22]. Also, internal to the derivvec class we use a 2-dimensional array
(i.e., a matrix) for storing directional derivatives associated with arrays of arbi-
trary dimensions. This allows us to use matrices of MATLAB’s sparse class to
store sparse directional derivatives with commensurate reduction in run-time and
memory-requirements for many large calculations. Section 4 describes how to use
the fmad class for Jacobian evaluation using dense, sparse and compressed storage of
directional derivatives. Several examples in Section 5 demonstrate the effectiveness
of our approach. Section 6 concludes and gives plans for future work.

2. FORWARD MODE AD FOR A SINGLE DIRECTIONAL DERIVATIVE

It is straightforward to implement forward mode AD for a single directional deriv-
ative via operator overloading in MATLAB. In Section 2.1 we briefly outline how
this is achieved since in Section 3 we will re-use essentially the same MATLAB
functions to handle arbitrary numbers of directional derivatives. Although the im-
plementation of this section is extremely simple, it is of immediate practical use for
differentiating functions of a single variable as seen in Section 2.2 or conceivably
in the matrix-free iterative solution of large-scale nonlinear systems [Nocedal and
Wright 1999, p285].

2.1 Implementation of the Forward Mode

The forward mode is implemented via a MATLAB class fmad. A MATLAB class
consists of a set of functions that create and manipulate objects of that class. Here
the manipulations that concern us are extending the arithmetic operations of MAT-
LAB to those that calculate both an object’s value and an associated directional
derivative.

Use of the fmad class to calculate directional derivatives of a user’s MATLAB
function or statements is straightforward. The user first initialises value and deriv
components of objects of fmad class corresponding to those variables we need deriv-
atives with respect to using the fmad constructor function of Section 2.1.2. Then the
user’s MATLAB function or statements are executed to propagate both values and
directional derivatives via overloaded arithmetic operations and intrinsic functions
as described in Sections 2.1.3 and 2.1.4. Values and derivatives associated with
fmad objects are obtained using the extraction functions described in Section 2.1.5.

2.1.1 fmad Objects. fmad objects have two components, value and deriv. The
value component stores an object’s value as a class double or sparse array. The
ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.
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function xad=fmad(x,dx)

% Set value component

switch class(x)

case {’double’,’sparse’}

xad.value=x;

case ’fmad’

xad.value=x.value;

otherwise

error(’FMAD: first argument must be class double, sparse or fmad’)

end

sx=size(xad.value);

% Set deriv component

if nargin==2

switch class(dx)

case ’derivvec’

xad.deriv=reshape(dx,size(xad.value));

case {’double’,’sparse’}

sd=size(dx);

if prod(sx)==prod(sd)

xad.deriv=reshape(dx,sx);

else

xad.deriv=derivvec(dx,size(xad.value));

end

otherwise

error([’FMAD/FMAD: argument dx of illegal class’,class(dx)])

end

xad=class(xad,’fmad’);

else

error(’FMAD: must supply 2 arguments’)

end

Fig. 1. Constructor function for the fmad class.

deriv component stores directional derivatives associated with the object. This
component may be of class double, sparse or, in the case of multiple directional
derivatives, class derivvec. Throughout this section we restrict our description to
a single directional derivative, and thus the value and deriv components are of the
same size1 and of class double or sparse. Variables of fmad class are created via
the fmad constructor function which necessarily resides in the @fmad sub-directory.

2.1.2 The fmad Constructor Function. In Figure 1, we show the fmad construc-
tor function with, as will be our practice in this paper, some comments removed for
brevity. This function takes two inputs, x and dx, and returns an object xad of fmad
class. Generally a user will supply an array x of values of class double or sparse,
and an associated directional derivative dx also of class double or sparse. In such
cases x is assigned to the value component xad.value of the function output xad.
Assuming the second argument to fmad is also of class double or sparse then, if
it has the same number of elements as the value, it is reshape’d to the same size
as the value before being assigned to the deriv component of the output xad.

1Here we use the term size in the MATLAB sense that the two have the same number of dimensions
and number of elements in each dimension
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Fig. 2. The times function of the fmad class for

element-wise multiplication.

function z=times(x,y)

if isa(x,’fmad’)&isa(y,’fmad’)

z.value=x.value.*y.value;

z.deriv=x.deriv.*y.value...

+x.value.*y.deriv;

elseif isa(x,’fmad’)

z.value=x.value.*y;

z.deriv=x.deriv.*y;

else

z.value=x.*y.value;

z.deriv=x.*y.deriv;

end

z=class(z,’fmad’);

Fig. 3. The sin function of the fmad class

function y=sin(x)

xval=x.value;

y.value=sin(xval);

y.deriv=cos(xval).*x.deriv;

y=class(y,’fmad’);

We also see that if the first input is already of fmad class then the function
may be used to change just the derivative deriv component. Should the second
argument dx correspond to multiple directional derivatives then this is handled via
the derivvec class, discussion of which is postponed until Section 3.

2.1.3 Propagating Derivatives Via Operator and Function Overloading. Once
fmad objects have been initialised then values and derivatives must be propagated
by invoking overloaded versions of all intrinsic arithmetic operations and functions
that comprise a user’s MATLAB code.

In Figure 2, we show the coding of the times function of the fmad class invoked
to calculate the element-wise multiplication of two arrays z=x.*y when one or more
of x and y are of fmad class. As the function’s coding indicates, first the MATLAB
intrinsic function isa is used to determine which of x and y are of fmad class. If
both are of fmad class, then the value component of each is used to determine the
appropriate value component for the output z.value=x.value.*y.value. Then
the output’s directional derivative component is determined by the product rule
z.deriv=x.deriv.*y.value+x.value.*y.deriv using both the values (x.value,
y.value) and derivatives (x.deriv, y.deriv) of the inputs x and y. If just one of
x or y is of fmad class then the appropriate branches are correspondingly simpler.
Finally, the output z is cast to be of fmad class using the class intrinsic function.
On grounds of efficiency, and following Verma [1998a], we have adopted this casting
approach to ensure z is of fmad class, rather than use the class constructor fmad
function as advocated by the MATLAB documentation [The MathWorks Inc. 2003,
Section 21].

In a similar manner, and using undergraduate level calculus, we may overload
other arithmetic operations: addition (+), subtraction (-), matrix multiplication
(*), element-wise division (./). We may also overload intrinsic functions, such as
sin, as shown in Figure 3.

ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.
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function x=subsref(y,s)

x.value=subsref(y.value,s);

x.deriv=subsref(y.deriv,s);

x=class(x,’fmad’);

Fig. 4. The subsref function of the fmad class

2.1.4 Dealing with Array Indexing. A major difference between operator over-
loading in MATLAB and that in traditional programming languages such as Fortran
is in the handling of arrays. In Fortran arrays are regarded as an ordered collec-
tion of their scalar components. Consequently the referencing of components via
subscripts is built into the language and, even for derived types (c.f., objects in
MATLAB), need not be coded. In MATLAB all objects are arrays, and program-
mers must provide functions to deal with array subscripting.

In Figure 4, we show the subsref function invoked for array subscript ref-
erencing of fmad objects. For example, if y is of fmad class then x=y(1:5,:)
invokes the function call subsref(y,s), where s is a MATLAB structure with
components s.type=’()’, and s.subs = {1:5,’:’}. The s.type indicates the
type of subscripting, with the string () indicating conventional array indexing
as opposed to cell array subscripting or structure component referencing. The
s.subs = {1:5,’:’} component gives the actual indexing to be applied to y. As
is seen from Figure 4, the fmad version of subsref simply uses two calls to the
intrinsic subsref to perform equivalent subscripting on the value and deriv com-
ponents of an fmad object.

Subscript assignments of, for example a(1:5,:)=b, assign an array (here b)
to a subscript defined sub-region of another array (here a(1:5,:)). For single-
directional derivatives an fmad class subsasgn function may be written in a similar
manner to that for subsref.

Usually when designing a new MATLAB class we would provide a function
double to convert an object of fmad class to intrinsic class double. We have pro-
vided such a function, but it always produces an error message and halts execution
of a user’s MATLAB function or script. We have taken this step since if a variable,
a say, is already of class double and we assign an fmad variable b to a component
of it, for example a(1)=b, then MATLAB will use the fmad class’s double function
to convert b to class double before the assignment. This will prevent the correct
propagation of derivative information and, unknown to the user, the derivatives
produced will be incorrect. By trapping this situation as a run-time error the user
may take the appropriate action (ensuring a is of class fmad) so that derivative
propagation proceeds correctly.

To minimise the number of instances in a user’s code for which we would assign
an fmad object to a component of a non-fmad array we have adopted a technique of
Verma [1998b]. In MATLAB arrays are frequently created using the ones or zeros
intrinsics, for example to initialise an array a to be of the same size of an object b
but consist of all zero entries the statement a=zeros(size(b)) could be used. In
Mad we ensure that if b is an fmad object then: size(b) returns an fmad object;
zeros(size(b)) returns an fmad object; consequently a is an fmad object, and we
may subscript assign other fmads to it, e.g., a(1)=b(1). The difference between
Verma’s implementation of this technique and ours is that whereas ADMAT uses
an empty matrix for the derivatives of the object returned by the size function,

ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.



8 · Shaun A. Forth August 23, 2006

fmad stores the derivatives as zeros; this trivial memory overhead in our approach
is more than compensated for by the reduction in complexity obtained by never
having to test if a derivative component is empty.

2.1.5 Extracting Values and Derivatives. Functions getvalue and getderivs
are provided that extract the value and deriv components of an fmad variable.

2.2 Use of the fmad Class

Trivially the fmad class may be used to obtain the derivative of a function of a
single variable. For example, consider the function y = x2 + x. If we require the
derivative at x = 2 then we may simply type at the MATLAB prompt,

x=fmad(2,1);
y=x^2+x;
dy=getderivs(y)

to get the output

dy =
5

In Section 3 we consider extending the fmad class to calculate multiple directional
derivatives with the aid of the derivvec class.

3. DERIVATIVE VECTORS

In Section 2, we have seen how forward mode AD calculates objects’ values and their
derivatives as the source code is executed. We see that the derivatives are calculated
as linear combinations of derivatives previously calculated. In order for AD to
calculate the derivative of one or more outputs with respect to one scalar input
requires a single derivative value to be calculated for each scalar value calculated in
the code. Usually, calculation of nderivs directional derivatives requires either the
propagation of nderivs directional derivatives (or nderivs runs of the AD code
for a single directional derivative). Exceptions to this are when the calculation
possesses some intrinsic sparsity which may be exploited [Griewank 2000, Chapters
6,7] or [Coleman and Verma 1998b], in which case a number less than nderivs
might be used.

In order to calculate multiple directional derivatives simultaneously and effi-
ciently, we aimed to optimise the operations associated with linear combinations
of derivative vectors. Additionally we wished to exploit MATLAB’s sparse matrix
operations [Gilbert et al. 1992] to reduce memory requirements and improve per-
formance for large scale calculations that exhibit sparsity in their Jacobians. Many
Fortran AD tools, such as ADIFOR [Bischof et al. 1996] and TAF [FastOpt 2003],
utilise Fortran’s efficiency for array operations to calculate multiple derivatives.
ADIFOR may also use the SparseLinC library [Bischof et al. 1996] to propagate
sparse derivatives. Our aim was to emulate these capabilities in MATLAB. To do
this the derivvec class was designed and implemented.

3.1 Design of the derivvec Class

The derivvec class was designed after studying features of the intrinsic MATLAB
double and sparse classes. Key features of these intrinsic classes are:
ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.
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—In MATLAB an array is a fundamental object. Whole array operations are
optimised, and access to individual elements is relatively slow.

—The lowest rank arrays in MATLAB are rank 2 (i.e. matrices), and array indexing
is column major, i.e., an increment of one in the first index alone refers to the
next element as stored in memory (fast access times).

—MATLAB can handle arbitrary rank (≥ 2) arrays of class double.
—MATLAB’s sparse matrices are strictly matrices, not arrays, and hence of rank 2.

Consider a D dimensional n1× n2× . . .×nD MATLAB array representing values,
say A(1:n1,1:n2,...,1:nD). A natural way to store the derivatives would be to
append an extra dimension to give an array DA(1:n1,1:n2,...,1:nD,nderivs).
We would choose to append (rather than prepend) the dimension since then the ith

directional derivative DA (1:n1,1:n2,...,1:nD,i) is then readily available and
contiguous in memory. As we shall see in Sections 3.2–3.4, this property is crucial
in allowing use of high-level, efficient MATLAB matrix operations. We shall refer to
this way of storing multiple directional derivatives as the external representation
of the derivative vector, since we shall ensure that all functions external to the
derivvec class may access the derivatives assuming this multi-dimensional array
structure.

Unfortunately, with the simple approach sketched in the previous paragraph, we
cannot seamlessly use MATLAB’s sparse matrices to store derivatives for arbitrary
dimension arrays. To circumvent this problem we chose to have an internal rep-
resentation of the derivative vectors in terms of an unrolled matrix. We then
explicitly handle the interface of such objects and their interaction with arbitrary
rank arrays. In order to do this we explicitly store the size and number of deriva-
tives associated with a derivative object. Objects of the derivvec class therefore
have the following components:

nderivs. number of derivatives,
shape. row vector [n1,n2,...,nD] storing size of corresponding value array,
derivs. reshaped matrix of derivatives =reshape(DA,[prod(shape) nderivs]).

In this way the derivatives derivs are stored as a two-dimensional full or sparse
matrix. The use of full or sparse storage is determined by the user when they provide
a full or sparse matrix as the second, derivative argument dx to the fmad constructor
function of Figure 1. The derivative dx is passed to the derivvec constructor
function to form the derivs component of the derivvec object. We now explain
how representative arithmetic operations may be performed on derivvec objects.

3.2 Addition

Figure 5 contains the coding of the plus function of the derivvec class invoked
when two derivvec objects, a and b, are added together to form a third c. We
see that the first action of the plus function is a deep copy of the input argument
a to the output c, ensuring that c is of class derivvec. In MATLAB addition
must be between two arrays that either have an identical size, or else one of the
arrays must be a scalar. Consequently, the local variables ssa and ssb are set
to be the product of the shape component of a and b, respectively. If they have

ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.
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Fig. 5. The plus

function of the
derivvec class.

function c=plus(a,b)

c=a; % deep copy of a

ssa=prod(a.shape);

sb=b.shape;

ssb=prod(sb);

if ssa==ssb % a,b No. elements equal so simply add

c.derivs=a.derivs+b.derivs;

elseif ssa==1 % a is scalar

c.shape=sb; % adopt shape of b

% replicate a.derivs to have ssb rows

if issparse(a.derivs)

% use sparsity to replicate a.derivs

[i,j,val]=find(a.derivs); %row vectors i,j,val

nentry=length(j);

nd=a.nderivs;

i=(1:ssb)’; % create i for each row needed

i=i(:,ones(1,nentry)); % replicate i for each entry

pad=ones(ssb,1); % need to replicate j,val ssb times

j=j(pad,:);

val=val(pad,:);

c.derivs=sparse(i,j,val,ssb,nd)+b.derivs;

else

% replicate a ssb times before adding

c.derivs=a.derivs(ones(1,ssb),:)+b.derivs;

end

elseif ssb==1

% omitted for brevity

.

.

.

end

the same value a.derivs and b.derivs may be safely added together. If one
of ssa or ssb take the value one the corresponding fmad operation must be the
legitimate addition of a scalar to an array. Consider first ssa==1 corresponding to
a being the row vector of derivatives for a scalar fmad object. We must add this
row vector to each row of b.derivs. Such an addition could be performed by a
loop but might compromise performance. Instead we replicate a.derivs ssb times
forming a matrix of the same dimensions as b.derivs before adding. As indicated
in the code of Figure 5, if a.derivs is a sparse matrix we extract the (i, j) indices
and values of its entries, explicitly replicate them, and use them to form a sparse
matrix that is added to b.derivs. If a.derivs is full a simpler indexing operation
is used to perform the replication. A similar sequence of operations is performed
if b corresponds to a scalar (omitted from Figure 5). There are no loops of any
kind in the plus function of Figure 5, and the presence of any derivatives stored
as sparse matrices is fully exploited. These properties are crucial to consistently
achieving good performance.

The use of array operations rather than loops might be regarded as unnecessary
since the release of MATLAB version 6.5 for which the just-in-time (JIT) accelerator
capabilities often enable fast performance of operations on arrays performed in
loops. This capability was not available during much of code development and,
ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.
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function c=times(a,b)

if isa(b,’derivvec’);

c=b; % pick out b as derivatives

mults=a;% pick out a as multipliers

else

c=a; % pick out a as derivatives

mults=b; % pick out b as multipliers

end

ssd=prod(c.shape);

sm=size(mults);

ssm=prod(sm);

mults=mults(:);

% make everything conformable

if ssd==ssm

derivs=c.derivs;

% check for sparsity

if issparse(derivs)

% only need multipliers corresponding to

% entries of c.derivs

[i,j]=find(derivs);

nd=c.nderivs;

c.derivs=sparse(i,j,mults(i),ssd,nd).*derivs;

else

c.derivs=mults(:,ones(1,c.nderivs)).*derivs;

end

elseif ssd==1

c.shape=sm;

c.derivs=mults*c.derivs;

elseif ssm==1

c.derivs=mults.*c.derivs;

end

Fig. 6. The times function
of the derivvec class

since many of our users employ earlier versions of MATLAB, we do not wish to
rely on it. Note that ADMAT’s use of cell arrays prevents JIT acceleration under
MATLAB version 6.5.

3.3 Element-Wise Multiplication

As a second example of the use of high-level MATLAB matrix operations within
the functions of the derivvec class consider the element-wise multiplication of a
matrix with a derivvec class object as coded in the times function of Figure 6.
This function is invoked from fmad functions with just one of the inputs a or b of
derivvec class. First the function determines which argument is of derivvec class,
makes a deep copy of it for the function result c, unrolls the non-derivvec class
input, and stores it as the local column vector mults. Then local variables ssd
and ssm are used to store the number of elements corresponding to the derivvec
input and the number of elements in the multiplier mults, respectively. If ssd is
equal to ssm the multiplier is conformable with a single directional derivative and
so must be replicated, taking account of sparsity, to be of nderivs columns before
an element-wise multiplication calculates the c.derivs component. If ssd==1 the
derivvec input is recognised as corresponding to a scalar, and the shape of the
output c is given by that of the multiplier. Now c.derivs is given as a matrix with
ith row given by the single row of the derivvec input multiplied by the ith element
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function b=subsref(a,s)

b=a; % deep copy of a

sa=a.shape;

ssa=prod(sa);% get total number of elements for each directional derivative

ind=reshape((1:ssa),sa);% form an indexing array

newind=subsref(ind,s);% grab required indexes using subscripting

s=size(newind); % use size of newind to get size of result

b.shape=s;

newind=newind(:); % reshape newind to column vector

b.derivs=a.derivs(newind,:); % use indices to grab derivatives

Fig. 7. The subsref function of the derivvec class

of the unrolled mults. Such a matrix is easily obtained by the matrix-multiplication
of mults and c.derivs. Finally, if the multiplier is scalar ssm==1 we multiply all
rows of the input derivvec argument, currently stored as c.derivs, by the scalar.

3.4 Subscript Referencing

To facilitate subscript referencing for multiple directional derivatives in the fmad
class we must supply a derivvec class subscript referencing function so that the
fmad subsref function of Figure 4 operates correctly when y.deriv is of derivvec
class. At first sight, this is is somewhat problematic to code efficiently given the
internal, unrolled storage chosen for the derivatives. One approach would be to
reshape the internal representation of the derivatives to match the external repre-
sentation, append a ‘:’ to the array of indices (c.f. Section 2.1.4), and then perform
a subscript reference. This is undesirable since it precludes the use of sparse matrix
storage for the derivatives. Instead, as shown in Figure 7, we form an indexing array
corresponding to the elements of the external representation of DA and ignoring the
derivatives. This array is then acted upon by the intrinsic subscript referencing
function to return the required rows of the internal representation of the derivative
vector, which may then be trivially accessed. The coding of Figure 7 illustrates
the elegance of this approach with the use of high-level operations again ensuring
efficiency.

A similar strategy is used to code the transpose function, invoked as A.’, of the
derivvec class. First an indexing array is formed, it is then transposed, and the
resulting array used to index the rows of the internal representation of the input
array of derivatives to form the rows of the output array of derivatives.

3.5 Extracting Derivatives

Function getderivs of Section 2.1.5 can be used to extract derivatives from fmad
objects with derivatives stored internally as derivvec objects. The derivatives are
returned in the external representation of Section 3.1 with dimension one degree
higher than the value. Derivatives stored internally as (2-dimensional) sparse
matrices are first converted to full arrays since sparse arrays can only be 2-
dimensional. Since this would prevent users accessing the sparse data structure
crucial for efficiency in large problems a function getinternalderivs is provided
to return the matrix internal representation of an fmad object’s derivatives.

Having described both Mad’s fmad and derivvec classes we present a simple
ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.
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function J=FmadFullJac(t,y0,N)

% uses full storage in fmad

y=fmad(y0,eye(2*N));% initialise y

dydt=f(t,y,N);% calculate F

J=getinternalderivs(dydt);% grab Jacobian

Fig. 8. Calculating the Jacobian of the

Brusselator problem using full storage of

derivatives.

example in Section 4 to demonstrate their use.

4. USING THE FMAD CLASS

In this section we describe how to use the fmad class to calculate Jacobians taking
as an example the Brusselator test problem. We defer detailed discussion of the
relative efficiencies of these techniques until Section 5.

The Brusselator ODE problem [Hairer and Wanner 1991] is supplied as a test case
(file brussode.m) for the ode15s stiff differential equation solver in MATLAB [The
MathWorks Inc. 2003, Section 14]. It corresponds to a method-of-lines discretisa-
tion of a 2-species reaction-diffusion equation on a 1-D mesh of N points, giving
an ODE in standard form y′ = f(t,y) with n=length(y)= 2N . To facilitate the
embedded quasi-Newton solver of the BDF-like ode15s, the sparse n× n Jacobian
Jf = ∂f/∂y must be evaluated. The interface to the function is,

function dydt = f(t,y,N)

where t is the scalar time, y is the solution vector and N is the number of mesh
points.

We now describe how to calculate the Jacobian of the Brusselator function us-
ing the fmad class with derivatives stored and manipulated using full, sparse or
compressed matrix storage.

4.1 Full Storage

The use of full (dense) storage is illustrated by the function FmadFullJac of Fig-
ure 8. For y0 supplied to FmadFullJac the vector y is initialised to be of fmad
class with value given by y0 and derivatives given by the 2N × 2N identity matrix
eye(2*N). Consequently element y(j) of y has directional derivative given by the
jth column of eye(2*N), that is the vector with entry one in position j and zeros
elsewhere. Consequently the jth directional derivative corresponds to derivatives
with respect to y(j). The function f is then called with the fmad object y as an
argument. The overloaded operators and functions of Sections 2 and 3 then com-
pute the function’s value and derivatives. The derivatives are then extracted from
the function’s return value dydt using the fmad function getinternalderivs and
are returned in the full storage matrix J such that the ith row of J comprises the
derivatives of f(i), and since the jth derivatives are with respect to y(j) we see
that

J(i,j) =
∂fi

∂yj
.

4.2 Sparse Storage

The use of sparse storage is illustrated by the function FmadSparseJac of Figure 9.
The only difference compared to the code of Figure 8 is that the derivatives are
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Fig. 9. Calculating the Jacobian of
the Brusselator problem using sparse

storage of derivatives.

function J=FmadSparseJac(t,y0,N)

% uses sparse storage in fmad

y=fmad(y0,speye(2*N));% initialise y

dydt=f(t,y,N);% calculate F

J=getinternalderivs(dydt);% grab Jacobian

Fig. 10. Determin-
ing sparsity pattern,

coloring, and seed

matrix for com-
pressed storage of

derivatives.

sparsity_pattern=jpattern(N); % sparsity pattern

color_groups=MADcolor(sparsity_pattern); % coloring

seed=MADgetseed(sparsity_pattern,color_groups); % seed

Fig. 11. Calculating

the Jacobian of the

Brusselator problem
using compressed

storage of derivatives.

function J=Fmadcmpjac(t,y0,N,... sparsity_pattern,color_groups,seed)

% uses compressed fmad

y=fmad(y0,seed);% initialise y

dydt=f(t,y,N);% calculate F

Jcomp=getinternalderivs(dydt);% grab compressed Jacobian

J=MADgetcompressedJac(Jcomp,...

sparsity_pattern,color_groups);

initialised using the MATLAB function speye(2N), which returns a sparse identity
matrix. In the ensuing overloaded fmad calculations all derivatives are stored and
manipulated as sparse matrices, and the extracted Jacobian J will be returned in
sparse format.

4.3 Compressed Storage

Here a two stage process is used.

(1) The first stage, shown in Figure 10, involves determining information on the
Jacobian’s sparsity pattern and how to perform the compressed Jacobian cal-
culation. Provided the Jacobian’s sparsity pattern is fixed, or is safely over-
estimated, then this stage need only be performed once, and the information
determined reused for multiple Jacobian calculations. For given problem size
N the function jpattern, supplied by MATLAB within the file brussode.m,
returns the Jacobian’s sparsity pattern. The sparsity pattern is a matrix of
the same size as the Jacobian but with unit entry in position (i, j) if J(i,j) is
nonzero and zero otherwise. Given the sparsity pattern, the function MADcolor
determines a group, or color, for each element of the function’s vector of inputs
y such that those in the same group do not affect the same rows of the Jacobian.
Like MATLAB’s numjac function [Shampine and Reichelt 1997], MADcolor uses
the most effective of first-fit and first-fit after reverse column minimum degree
orderings. The function MADgetseed uses the coloring to construct a seed ma-
trix with seed(i,k) taking the value one if y(i) is in color group k. Note that
sparsity pattern is an argument to MADgetseed solely as a device to supply
the Jacobian size.

(2) The second stage of the calculation is shown in Figure 11. First the seed matrix
is used to initialise the derivatives of y. Then, after propagating y through
the calculation of the function f, the compressed Jacobian Jcomp is extracted,
and the MAD function MADgetcompressedJac is used, in conjunction with the
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sparsity pattern and coloring, to return the Jacobian in sparse format.

Recently we have automated the use of the fmad class within ODE and optimi-
sation solvers using high-level interface functions [Forth and Ketzscher 2004] and
by directly coding fmad function calls into the solvers [Shampine et al. 2005; Forth
and Edvall 2004].

In the following section we compare the performance of the fmad class with
the existing ADMAT automatic differentiation package [Verma 1998b] and finite-
differencing.

5. TEST CASES

In this section we present several test cases all performed using MATLAB version
6.5 on a PC running Windows XP Professional on a 3.0 GHz Pentium IV processor
with 512 MB of RAM. Testing was also performed on a SUN Blade 1000 workstation
running UNIX and a Pentium IV PC running Linux. Results on these two platforms
are qualitatively similar to those presented here and, in particular, the rankings of
different differentiation techniques are the same. Application of Mad to several
boundary value problems may be found in Shampine et al. [2005]. Our Mad package
is constantly being updated with new functionality; the version used here was that
as of December 2004.

5.1 Polynomial Data Fitting

This problem concerns the calculation of the coefficients of the m-degree polynomial
p(x) = p1 + p2x+ p2x

2 + . . .+ pmxm−1 that best fits the points (xi, di), i = 1, . . . , n
in the least squares sense. This leads to the over-determined linear system Vp = d,
where V is the well-known Vandermonde matrix,

V =


1 x1 x2

1 . . . xm−1
1

1 x2 x2
2 . . . xm−1

2
...

...
...

1 xn x2
n . . . xm−1

n

 .

The problem of calculating the derivatives of the m coefficients p with respect to
the n abscissas x has been considered previously [Bischof et al. 2002] via the hybrid
source-transformation/overloaded MATLAB AD tool ADiMat. These authors pro-
vided a short MATLAB function to calculate p and showed that ADiMat-generated
derivative code executed with a similar efficiency to one-sided finite-differencing.
Though competitive for N < 100, forward mode ADMAT was uncompetitive for
larger n.

Here we effectively repeat the calculation of [Bischof et al. 2002] but using the
fmad class and also MATLAB’s numjac finite-difference Jacobian function. The
numjac function approximates the Jacobian via one-sided finite-differencing with
automatic adjustment of the step-size to ensure accuracy of the larger elements in
each column of Jf [Shampine and Reichelt 1997]. In Table I we show the ratio of
Jacobian to function CPU times for this problem; function timings may be found
in Table VII of Appendix A. For n ≥ 40 we see that fmad(full) with full storage for
derivatives has comparable performance to numjac. Using sparse derivative storage
with fmad(sparse) improves performance further, outperforming numjac for n ≥ 40
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Table I. Ratio CPU(Jf)/CPU(f) of Jacobian to function CPU times for the Polyno-

mial Data Fitting problem with m = 4. Jacobian and function calculations were timed
over loops of 7680/n and 25600 evaluations respectively, and this process was repeated

10 times to give an average CPU time. Further information is given in Table VII of

Appendix A.

CPU(Jf)/CPU(f) for problem size n
Method 10 20 40 80 160 320 640 1280

numjac 19.2 31.6 56.9 106.6 202.4 393.0 823.2 1528.8

fmad(full) 42.9 40.8 46.9 75.0 167.0 403.1 802.0 1704.2

fmad(sparse) 44.1 39.0 34.3 32.4 33.6 71.1 127.2 257.2
ADMAT(full) 44.1 60.4 97.8 175.3 888.9 7220.0 30399.3 128588.1

ADMAT(sparse) 47.6 63.0 94.3 150.9 265.9 623.4 922.6 1806.9

Table II. Ratio CPU(Jf)/CPU(f) of Jacobian to function CPU times for the

Brusselator problem. Jacobian and function calculations were timed over loops

of 1000 and 5000 evaluations respectively, and this process was repeated 10 times
to give an average CPU time. Further information is given in Table VIII of

Appendix A.

CPU(Jf)/CPU(f) for problem size n

Method 20 40 80 160 320 640 1280 2560

numjac(comp,vect) 5.4 6.1 6.7 8.0 8.2 8.4 9.7 9.7
fmad(sparse) 71.8 72.7 67.1 60.2 51.2 41.7 43.1 35.8

fmad(comp) 64.8 64.2 54.8 46.8 35.7 25.1 19.8 15.2

ADMAT(comp) 101.4 98.5 84.0 70.1 51.4 35.1 25.9 18.1

and for n ≥ 160 being five times more efficient. Although the Jacobian ∂p/∂x is
full, sufficient intermediate values (in particular the Vandermonde matrix V itself)
have sparse derivatives that the use of sparsity is very beneficial. We see that use
of ADMAT’s forward mode with full storage is reasonably efficient for n = 10, but
its apparent quadratic growth of CPU time with n [Bischof et al. 2002] makes it
uncompetitive for all other n. Use of sparse derivatives in ADMAT is beneficial,
but at best has comparable efficiency to fmad’s full storage.

As observed by Bischof et al. [2002], although m = 4 � n for this prob-
lem, ADMAT’s reverse mode is less efficient than forward, e.g. for n = 40,
CPU(Jf)/CPU(f) = 14241.

5.2 The Brusselator

For this test case, described in Section 4, the sparse n × n Jacobian Jf = ∂f/∂y
must be evaluated. By default, MATLAB’s stiff ODE solver ode15s uses the
MATLAB-supplied numjac function. If the Jacobian’s sparsity pattern is supplied,
then numjac uses Jacobian row compression techniques [Shampine and Reichelt
1997], [Griewank 2000, Chap. 7]. For this example, Jacobian compression enables
construction of the Jacobian from just four Jacobian-vector products which, by de-
fault, are approximated by one-sided finite differencing. If the user indicates that
the function f(t,y) is vectorizable, which is the case here, then the four extra func-
tion evaluations may be performed in a single call of the function f(t,Y), where Y
is a matrix whose columns are the perturbed y’s.

In Table II, we present the ratio of average Jacobian to average function CPU
times CPU(Jf)/CPU(f) for various sparsity-exploiting Jacobian calculation tech-
niques. The technique numjac(comp,vect), uses sparse finite differencing via Jaco-
ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.



Efficient Forward Mode AD in MATLAB · 17

Table III. ODE solution CPU time for the Brusselator problem. Each integra-

tion was performed in a loop 10 times, and this process was repeated 10 times to

get an average CPU time.

CPU(ODE solve) for problem size n (s)
Method 20 40 80 160 320 640 1280 2560

numjac(comp,vect) 0.07 0.08 0.11 0.15 0.24 0.42 0.93 2.49

fmad(sparse) 0.09 0.10 0.13 0.17 0.24 0.45 0.80 1.67

fmad(comp) 0.10 0.11 0.13 0.17 0.25 0.46 0.80 1.70
fmad(comp,recolor) 0.10 0.11 0.14 0.18 0.27 0.50 0.98 2.45

ADMAT(comp) 0.11 0.12 0.14 0.18 0.26 0.44 0.81 1.75

ADMAT(comp,recolor) 0.11 0.12 0.15 0.19 0.28 0.49 0.99 2.43

bian compression and vectorisation. Rows labelled fmad(sparse) and fmad(comp)
correspond to use of the fmad class with use of dynamic sparsity and Jacobian
compression, respectively. The row labelled ADMAT(comp) corresponds to use of
forward mode ADMAT with compression. Use of dynamic sparsity with ADMAT
failed for this test case due to the use of two-dimensional array indexing in the
vectorized coding of f .

From Table II, we see that compressed finite differencing is the most efficient
Jacobian calculation technique, though for large values of n both compressed AD
techniques (fmad(comp) and ADMAT(comp)) are only about two to three times
slower.

In Table III, we show the effect of Jacobian technique on CPU times taken to
solve the Brusselator ODE problem, as defined in [The MathWorks Inc. 2003, Sec-
tion 14]. For all integrations, only two Jacobian evaluations are performed. For
large n fmad(comp) and ADMAT(comp) outperform numjac(comp,vect), despite
the fact that Table II indicates that they should not. This is because at the start
of integration ode15s always re-computes the coloring required to use compression
with numjac. If we force such a recomputation when using fmad(comp) and AD-
MAT(comp) (rows fmad(comp,recolor) and ADMAT(comp,recolor) of Table III),
then we see the pre-eminence of numjac(comp,vect) over the AD compressed tech-
niques restored. Note also that fmad(sparse) (which requires no coloring) is ap-
proximately as fast or outperforms numjac(comp,vect) for this problem.

5.3 Coleman & Verma’s Arrowhead Function

This function [Griewank 2000, Section 7.4], with x → f(x) and x, f(x) ∈ IRn,

f1 = 2x2
1 +

∑n
i=1 x2

i

fi = x2
1 + x2

i , i = 2, . . . , n

}
,

has sparse Jacobian with one full row, one full column and a full diagonal, e.g., for
n = 7 the Jacobian has sparsity pattern,

Jf(x) =



• • • • • • •
• •
• •
• •
• •
• •
• •


,
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Table IV. Ratio CPU(Jf)/CPU(f) of Jacobian to function CPU times for the

Arrowhead problem. Jacobian and function calculations were timed over loops of
500 and 500, 000 evaluations respectively, and this process was repeated 10 times to

give an average CPU time. Further information is given in Table IX of Appendix A.

CPU(Jf)/CPU(f) for problem size n

Method 20 40 80 160 320 640 1280

numjac(vect) 20.8 35.0 124.6 507.1 3394.5 17898.0 113879.5
fmad(sparse) 90.6 90.5 100.4 102.8 124.0 168.6 235.7

ADMAT(sparse) 192.4 326.1 619.9 1160.9 2427.7 5206.9 15443.1

ADMIT 285.2 274.5 280.7 264.5 272.3 288.2 313.0

where the • symbols denote non-zero entries of the Jacobian. Such a sparsity
pattern prohibits row or column compression techniques. An effective strategy
is bi-coloring [Coleman and Verma 1996], [Griewank 2000, Section 7.4]: finding
and using combinations of Jacobian-vector products evaluated via forward mode
and vector-Jacobian products via reverse mode to evaluate the Jacobian. For the
Arrowhead function two Jacobian-vector products can calculate the full column and
diagonal, and one vector-Jacobian product calculates the full row. The bi-coloring
technique is available in MATLAB via the ADMIT Toolbox [Coleman and Verma
2000].

In Table IV, we show the ratio of Jacobian to function CPU times for the Ar-
rowhead function for various problem sizes n and several Jacobian evaluation tech-
niques. We use Verma’s original function coding for this problem with the exception
of row numjac(vect), where we use a slightly modified version to allow for vectorized
finite differencing. Although most efficient for small n, numjac(vect)’s inability to
exploit sparsity makes it two orders of magnitude slower than fmad(sparse) and
ADMIT for the largest n. We see that fmad(sparse) clearly out-performs AD-
MAT(sparse) and even the sophisticated ADMIT technique.

The results for this problem contradict the conventional wisdom [Griewank 2000,
p137] that an effective compression should outperform sparse forward mode due
to the latter’s overheads arising from manipulating sparse data structures [Gilbert
et al. 1992]. In Appendix B we show that fmad’s sparse mode requires just 7n + 2
floating point operations to propagate derivative information compared to the
12n + 3 floating point operations required by ADMIT. So sparse forward mode
may use fewer flops than a bi-coloring approach (it always uses fewer flops than
compressed forward mode [Griewank and Reese 1991]). Also ADMIT itself has
substantial overheads: the computation and necessary values of variables must be
taped [Griewank 2000, Chap. 3], the tape traversed in both forward and reverse
directions to propagate derivatives and adjoints, and the Jacobian must be assem-
bled from the propagated derivatives and adjoints. For ADMIT there is also the
one-off effort of determining the sparsity pattern and a suitable coloring, although
this is not included in the timings of Table IV. We note that previous articles on
bi-coloring [Coleman and Verma 1998b; 2000] have demonstrated that it is possible
to get a good coloring for a given sparsity pattern but contain no timings of Ja-
cobian calculation via ADMAT; the single timed example in Coleman and Verma
[1998b] uses an ADOL-C [Griewank et al. 1996] tape for the Jacobian calculation.
ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.
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Table V. Ratio CPU(Jf)/CPU(f) of Jacobian to function CPU times for Large-Scale Examples

from MATLAB Optimization Toolbox. Jacobian and function calculations were timed over loops
of 10 and 1000 evaluations respectively, and this process repeated 10 times to give average CPU

times. Further information on these problems is given in Table X of Appendix A.

CPU(Jf)/CPU(f) for given technique

Problem Hand-
coded

sfd(nls) fmad-
(sparse)

fmad-
(comp)

ADMAT-
(sparse)

ADMAT-
(comp)

ADMAT-
(rev)

nlsf1a 5.1 43.2 41.1 21.1 996.1 29.4 -

brownf 3.9 1123.2 12.2 - 281.7 - 84.5

brownfg 3.8 6.4 12.6 5.1 390.6 6.3 -
tbroyf 4.7 898.5 18.9 - 397.5 - 121.9

tbroyfg - 14.6 25.8 13.4 26891.9 19.5 -

5.4 Large-Scale Examples from MATLAB Optimization Toolbox

In Table V, we give Jacobian to function CPU time ratios for test problems of
the MATLAB Optimization Toolbox [The Mathworks Inc. 2003]; we include two
Hessian calculations regarding them as the Jacobian of hand-coded gradients. For
problem brownfg (obtaining the Hessian of the gradient of the Brown problem), the
MATLAB supplied hand-coded Hessian was incorrect. With the aid of MATLAB’s
Symbolic Toolbox, it took about half a day to correctly derive Hessian code (denoted
Hand-coded in Table V), while all the AD techniques were coded in just a few
minutes. We made just two changes to the supplied MATLAB code to enable
automatic differentiation. For the Brown brownfg problem some two-dimensional
array indexing x(i+1,1) was changed to one-dimensional x(i+1) to enable use of
ADMAT’s sparse forward mode, and in tbroyfg initialisation of a vector z was
changed from,

n=length(x); j=1:(n/2); z=zeros(length(j),1);

to

n=length(x); j=1:(n/2); z=zeros(n/2,1);

to force z to be of fmad class, c.f., Section 2.1.4.
The one technique used in Table V we have not yet met is sfd(nls), referring

to MATLAB’s Optimization Toolbox sparse finite-difference functions sfdnls for
Jacobians/gradients (using function evaluations) and sfd for Hessians (using gra-
dient evaluations). Both use compression if the Jacobian/Hessian sparsity pattern
is supplied but, unlike numjac, neither take advantage of vectorization.

From Table V, we see that in all cases for which hand-coding is available it
out-performs all other techniques. For the sparse Jacobian (nlsf1a) and Hessian
calculations (brownfg, tbroyfg) we see that fmad(comp), Mad’s forward mode AD
with compression, out-performs both compressed finite-differencing (sfd(nls)) and
ADMAT’s forward mode with compression (ADMAT(comp)). For the gradient cal-
culations (brownf, tbroyf), then after hand-coding fmad(sparse) is most efficient
and out-performs ADMAT’s reverse mode. It is also 50 to 100 times faster than
finite-differencing since there is sparsity in the gradient calculation (the functions
are partially value separable [Griewank 2000, p206]), but the function gradient itself
is dense (preventing sfd(nls) using compression).

Table VI shows the effect of varying the derivative calculation technique on the
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Table VI. CPU time (CPU(calculated technique)) for optimization of the Large-Scale Examples

from the MATLAB Optimization Toolbox. For each problem, its type, the MATLAB optimization
function used and how derivatives are calculated is specified. Each optimization was timed over

a loop of 10 evaluations, and this process repeated 10 times giving an average CPU over 100

evaluations.

CPU(calculated technique)(s)
Problem Hand-

coded

sfd(nls) fmad-

(sparse)

fmad-

(comp)

nlsf1a Nonlinear solve (fsolve: calculated

Jacobian)

0.46 0.79 0.58 0.52

brownf Minimisation (fminunc: calculated

gradient, sfd(nls) Hessian)
1.19 - 2.59 -

brownfg Minimisation (fminunc: hand-coded
gradient, calculated Hessian)

0.62 1.15 1.92 0.85

tbroyf Constrained minimisation (fmincon:

calculated gradient, sfd(nls) Hessian)

1.22 - 4.71 -

tbroyfg Constrained minimisation (fmincon:

hand-coded gradient, calculated
Hessian)

- 1.30 1.35 1.07

run-times of various optimization problems. Hand-coding gives fastest overall opti-
mization times. For the sparse Jacobian/Hessian cases (nlsf1a, brownfg, tbroyfg)
fmad’s compressed forward mode (fmad(comp)) outperforms sparse-finite differenc-
ing (sfd(nls)). For the two gradient cases (brownf, tbroyf) fmad’s sparse forward
mode (fmad(sparse)) gives very acceptable performance, far better than would be
expected from finite-differencing (c.f., sfd(nls)in Table V).

6. CONCLUSIONS

Sections 2 and 3 of this paper detail the implementation of forward mode AD for
first derivatives in the Mad package. A major feature of our fmad class for first
derivatives is that it uses object components of intrinsic classes double or sparse for
single directional derivatives and our derivvec class for multiple directional deriv-
atives. Internal to the derivvec class multiple directional derivatives are stored
as matrices (2-D arrays) using MATLAB’s intrinsic full or sparse matrix classes.
By making careful use of MATLAB’s high-level matrix operations we have heavily
optimised functions of the derivvec class. As seen in Section 4, use of the fmad
class is straightforward.

The results of Section 5 demonstrate the effectiveness of our approach. For the
dense Jacobian polynomial data fitting case of Section 5.1, although the finite-
differencing of numjac is most efficient for small problem size n, fmad’s sparse
forward mode is five times faster than numjac for large n. Compressed vectorized
finite-differencing outperforms Mad in evaluating Jacobians for the Brusselator
problem of Section 5.2, although when solving the associated stiff ODE fmad’s
sparse mode outperforms numjac for large n since it does not need to calculate an
expensive coloring. For small n, numjac is the fastest technique for the arrowhead
Jacobian of Section 5.3, but fmad(sparse) is 450 times faster for n = 1280. For the
three sparse Jacobian/Hessian problems from the MATLAB Optimization Toolbox
of Section 5.4 fmad’s compressed mode just outperforms the Toolbox’s sparse-finite
differencing functions sfd/sfdnls. For the two gradient calculations fmad(sparse)
is some 50 and 100 times faster than finite-differencing. When these techniques
ACM Transactions on Mathematical Software, Vol. , No. , Accepted Aug. 2005.
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were applied to the five optimization calculations of Table VI then in three cases
an fmad technique was seen to outperform finite-differencing, and for the other two
finite-differencing was so expensive it was not even tried (c.f., Table V)!

In all the test problems considered one of either fmad(sparse) or fmad(comp)
outperformed comparable, or even more sophisticated, techniques (reverse mode,
bi-coloring) from the ADMAT/ADMIT package. For large numbers of directional
derivatives ADMAT’s forward mode performs poorly compared to fmad because its
derivative manipulation operations use loops over each directional derivative. This
is not as efficient as the matrix operations of the derivvec class and gives fmad a
clear superiority in efficiency. When only a small number of directional derivatives
are required, for example when Jacobian compression is used, this superiority of
fmad is reduced. Performance may have been further improved because: in fmad
we never test to see if an fmad object has an empty derivative component whereas
ADMAT does (see Section 2.1.4); also fmad’s runtime switching between code for
one or multiple directional derivatives is performed by the MATLAB system based
on the class (double or derivvec) of the derivatives rather than ADMAT’s use of
branching. Additionally ADMAT may only use MATLAB’s sparse matrix class for
storing multiple directional derivatives of vector objects and even then ADMAT’s
internal use of loops degrades performance. The derivvec class enables fmad to
use such sparse matrix storage for arbitrary dimension array objects with excellent
efficiency. This is particularly apparent for partially separable functions such as
brownf and tbroyf of Table V, and even the Arrowhead problem of Table IV for
which previous authors [Coleman and Verma 1998b; 2000] have suggested that more
sophisticated algorithms such as bi-coloring are needed.

The capabilities of Mad are currently being extended in three areas.

Source Transformation. For compiled languages source-transformation AD tools
tend to produce differentiated code that out-performs its operator overloaded coun-
terpart [Tadjouddine et al. 2001]. When differentiating MATLAB code contain-
ing array operations, as for the examples of Section 5, we have observed good
performance as the problem size increases. We are now developing a source-
transformation tool for MATLAB which, in preliminary tests, has demonstrated im-
proved performance over the fmad class, particularly for smaller problems [Kharche
2004]. Some work has already been done in this area [Vehreschild 2001; Bischof
et al. 2003; Bischof et al. 2002].

Reverse Mode. We are presently implementing the reverse mode of AD for first
derivatives using a taping approach [Griewank 2000, Chapter 3]. Our implementa-
tion reuses the derivvec class for storing and propagating multiple adjoints.

Automatic Sparsity Detection. Results from Sections 5.2 and 5.4 demonstrate
the effectiveness of Jacobian compression which requires a safe over-estimate of the
Jacobian sparsity pattern. We are working on this sparsity estimation problem and
aim to provide more robust and efficient capabilities than those of Verma [1998b].

In the longer term we hope to include elimination AD based approaches [Griewank
2000, Sections 8.1-8.2], [Naumann 1999; 2004] into Mad, since for Jacobian calcula-
tions it has theoretical efficiency advantages over conventional forward and reverse
modes and may be implemented in the source-transformation framework [Forth
et al. 2004].
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Table VII. Function CPU times for the Polynomial Data Fitting Problem.

Problem size n 10 20 40 80 160 320 640 1280

Function CPU (ms) 0.066 0.076 0.096 0.133 0.204 0.342 0.657 1.206

Table VIII. Function CPU times for the Brusselator

Problem size n 20 40 80 160 320 640 1280 2560

Function CPU (ms) 0.145 0.151 0.183 0.227 0.329 0.521 0.918 1.885

Table IX. Function CPU times for the Arrowhead Problem

Problem size n 20 40 80 160 320 640 1280

Function CPU (ms) 0.021 0.022 0.022 0.024 0.025 0.027 0.030

Finally, Mad’s performance and reliability is sufficient for it to be distributed
commercially (after a free evaluation period a small license fee is payable) [Forth
and Edvall 2004] for both stand-alone use and in-conjunction with the TOMLAB
optimisation package [Holmström and Edvall 2004; Holmström et al. 2004]. Several
TOMLAB users, both academic and industrial, together with colleagues at Cran-
field University have used Mad to differentiate involved MATLAB functions for
applications such as race car trajectory optimization [Bradshaw 2004] and nonlin-
ear response surface fitting [Ringrose and Forth 2004; 2004]. With just one excep-
tion, whenever fmad failed to compute correct derivatives and the user submitted a
bug report we have either extended fmad to deal with the user’s code or suggested
a simple change to the user’s code (e.g., ensuring arrays are of fmad class before
subscript assignments as described in Section 2.1.4, or removing non-differentiable
branches such as if abs(x)<=1e-6; x=0; end) to enable differentiation. The ex-
ception was a case with one million independent variables and for which reverse
mode would appear necessary.

APPENDIX

A. FUNCTION CPU TIMES

Tables VII to IX give function CPU times for the test cases of Sections 5.1 to 5.3.
As well as function CPU times, Table X gives problem types, sizes and Jacobian
information for the Optimization Toolbox problems of Section 5.4.

B. COMPLEXITY ANALYSIS FOR THE ARROWHEAD EXAMPLE

Coleman and Verma’s [1996] coding for the arrowhead example of Section 5.3 is
shown in Figure 12. For the purposes of analysis we consider an evaluation pro-
cedure [Griewank 2000, Chap. 2] of statements with scalar left hand-sides and
right-hand sides that could be written as a single MATLAB statement. Such an
evaluation procedure for the arrowhead problem is given in the first column of Ta-
ble XI. Following the notation of [Forth et al. 2004] we see we have n independent
variables vi, i = 1, . . . , n, m = n dependent varables vi, i = 2n + 4, . . . , 3n + 3 and
p = n + 3 intermediate variables vi, i = n + 1, . . . , 2n + 3. The second column
of Table XI gives the local derivatives ci,j = ∂vi/∂vj for each statement. We see
that we have N|c|=1 = 2n + 2 trivial local derivatives with value |ci,j | = 1, and
N|c|6=1 = 2n + 1 nontrivial local derivatives with |ci,j | 6= 1, 0.

Forth et al. [2004] show that, provided local derivatives ci,j have already been
determined, the cost in floating point operations of propagating q directional deriv-
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Table X. Problem type, size (m, n), maximum number of entries in Jacobian row

n̂, number of directional derivatives for compression p and function CPU times for
large scale problems of the MATLAB Optimisation Toolbox of Table V

Problem Problem Type (m, n) n̂ p CPU(f)(ms)

nlsf1a Function Jacobian (1000,1000) 3 3 0.35

brownf gradient from function (1,1000) 1000 1000 1.57

brownfg Hessian from gradient (1000,1000) 3 3 5.74
tbroyf gradient from function (1,800) 800 800 1.16

tbroyfg Hessian from gradient (800,800) 6 8 4.27

function f=arrowhead(x,extra)

% arrowhead function taken from Coleman & Verma ADMIT

f=x.*x;

f(1)=f(1)+x.’*x;

f=f+x(1)*x(1);

Fig. 12. Coding of the

IRn → IRnarrowhead func-
tion

Table XI. Evaluation trace for the IRn → IRn arrowhead example

operation local derivatives sparsity pattern χi

vi = xi, i = 1, . . . , n χi = ei

vi = vi−n ∗ vi−n, i = n+1, . . . ,2n ci,i−n = 2vi−n χi = ei−n

v2n+1 =
∑n

j=1
vj ∗ vj c2n+1,j = 2vj , j = 1, . . . , n χ2n+1 = {1, 1, . . . , 1}

v2n+2 = vn+1 + v2n+1 c2n+2,j = 1, j = n+1, 2n+1 χ2n+2 = {1, 1, . . . , 1}
v2n+3 = v1 ∗ v1 c2n+3,1 = 2v1 χ2n+3 = e1

v2n+4 = v2n+2 + v2n+3 c2n+4,j = 1, j = 2n+2, 2n+3 χ2n+4 = {1, 1, . . . , 1}
vi = vi−n−3 + v2n+3, i = 2n+5, . . . , 3n+3 ci,j = 1, j = i−n+3, 2n+3 χi = e1 + ei−2n−3

atives by forward mode AD is q(2N|c|6=1 +N|c|=1−p−m) floating point operations
and of propating q adjoints by reverse mode AD is q(2N|c|6=1 + N|c|=1 − p − n).
Since ADMIT calculates the Jacobian of the arrowhead problem using two direc-
tional derivatives and one adjoint the cost will be 12n + 3 floating point operations
above those needed for the function and local derivatives.

Now let us consider the case of forward propagation of directional derivatives
stored as sparse vectors as used by fmad’s sparse forward mode. The sparsity
pattern of each variable in the calculation is given in the third column of Table XI
to assist in determining floating point operations counts. We start with derivatives
for the first n variables initialised to rows of the n× n identity matrix,

∇vi = ei, i = 1, . . . , n.

Now we consider in turn each set of operations given in Table XI.

—For i = n + 1, . . . , 2n we have ∇vi = ci,i−n∇vi−n for a cost of n multiplications
since the ∇vi−n correspond to derivatives of the independents, each of which has
only one entry.

—For i = 2n + 1 we have∇v2n+1 =
∑n

j=1 c2n+1,j∇vj for a cost of n multiplications,
since each ∇vj corresponds to derivatives of the independents which have only
one nonzero entry, and n additions as each multiplied ∇vj is added to a dense
working vector [Gilbert et al. 1992]. The resulting ∇v2n+1 is full.

—For i = 2n + 2 we have ∇v2n+2 = ∇vn+1 +∇v2n+1 which, since ∇v2n+1 is full
but ∇vn+1 has one entry, incurs (n+1) additions as they are accumulated in the
working vector. The resulting ∇v2n+2 is full.
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—For i = 2n + 3 ∇v2n+3 = c2n+3,1∇v1 incurs just one multiplication since v1 has
just one entry and one addition in the sparse accumulation.

—For i = 2n + 4, ∇v2n+4 = ∇v2n+2 +∇v2n+3 incurs n + 1 additions since ∇v2n+2

is full but ∇v2n+3 has just one entry.
—For i = 2n+5, . . . , 3n+3, the (n− 1) derivative combinations ∇vi = ∇vi−n−3 +
∇v2n+3 each incur two additions, giving a total of 2(n− 1), since both ∇vi−n−3

and ∇v2n+3 have just one entry.

Thus sparse propagation of derivatives requires just 7n+2 floating point operations.
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