
\IIJ\

NASA TECHNICAL
MEMORANDUM

NASA TM X-52,103

AN EFFICIENT PARALLEL ALGORITHM FOR THE SOLUTION

OF A TRIDIAGONAL LINEAR SYSTEM OF EQUAnONS

Harold S. Stone

Ames Research Center
Moffett Field, Calif. 94035

and

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University, Stanford, Calif. 93045

N72-17131

Unclas
14874

--)
J- - -------

I
I

G3/08
)

PARALLEL
rfRIDIAGONAL

stone
CSCL 09B

-

,---~-- - - ..

(NASA-TM-X-62103) AN EFFICIENT
I,
, ALGORITHM FOR THE SOLUTION OF A

LINEAR SYSTEM OF EQUATIONS H.S.
I

:rli (NASA) Dec. 1971 22 p

lr,... l

December 1971 Reproduced by]
NATIONAL TECHNICAL
INFO~~~!J,~~ ~2~~VICE

AN EFFICIENT PARALLEL ALGORITHM FOR THE SOLUTION

OF A TRIDIAGONAL LINEAR SYSTEM OF EQUATIONS

by

Harold s. Stone*

NASA~AmesResearchCenter

Moffett Field, California

and

Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Abstract

Tridiagonal linear systems of equations can be solved on conventional

serial machines in a time proportional to N, where N is the number of

equations. The conventional algorithms do not lend themselves directly to

parallel computation on computers of the ILLIAC IV class, in the sense that

they appear to be inherently serial. An efficient parallel algorithm is

presented in which computation time grows as log2 N. The algorithm is

based on recursive doubling solutions of linear recurrence relations, and

can be used to solve recurrence relations of all orders.

* NASA/Stanford ASEE Summer Fellow, 1971

- 1 -

I Introduction

The trend in large-scale high-speed computers today clearly points to

the use of internal parallelism to obtain significant increases in speed.

For example, the ILLIAC IV computer can perform N simultaneous computations

where N = 64, 128, 256, or 512. We expect that highly efficient computations

performed on a computer of the ILLIAC IV class will execute N times faster

than on a serial computer of the same inherent speed. Actually,

inefficiencies due to overhead and constraints on data communicat~on among

processors will reduce the speed increase to kN where k lies in the interval

o ~ k ~ 1. Efficient algorithms have k near unity.

Unfortunately, many parallel algorithms do not lend themselves to

efficient parallel computation. We can exhibit examples of algorithms for

which computation time decreases rather slowly as we increase the number of

processors, and for some pathological examples the computation time is

independent of the number of processors. An efficient parallel algorithm

has the property that computation time decreases proportionally to liN as N,

the parallelism factor, increases.

In this paper we examine the solution of tridiagonal systems of linear

equations. It is well known that such systems can be solved using a

conventional serial computer in a time proportional to N where N is the

number of equations. We present an algorithm for solving the equations in

a time proportional to log2 N by using a computer With N-fold parallelism.

Computation in this case decreases as. (logZ N) IN as N increases ,which is

greater than but very close toliN, the desired rate of decrease. A different

parallel algorithm for this problem which exhibits a similar time behavior has

been developed by Buneman [1967], and analyzed in the literature [Buzbee, et

al., 1970].

- 2 -

In Section II, we state the problem and indicate conventional serial

methods for solution. These methods are inherently serial in that each

computation depends on the result of the immediately preceding computation.

In Section III we show how to perform a forward and backward sweep in

log2 N steps when given the LU decomposition of the original matrix. In

Section IV we show how to obtain the LU decomposition in log2 N steps.

This particular computation is of general interest because it is an

efficient method for evaluating partial fraction expansions and linear

difference equations in parallel.

II Statement of the problem

We wish to solve the tridiagonal system of equations

A x b.,.,.,...... ""'"

where

A =
~

e
N

_
l

d
N

_
l

f
N

_
l

eN dN

In the remainder of this paper we assume that N is a power of 2, but

this is not an essential assumption.

There are a number of related methods for solving this system serially

in a time proportional to N. The parallel algorithm presented here is

based upon one such algorithm, the LU decomposition. [cf. Forsythe and

Moler, 1967J In this algorithm we find two matrices, ~, and .£' such that

(i)

(ii)

(iii)

- 3 -

L.TT :::: A.. ¥,'\

L is a lower bidiagonal matrix with lIs on its principal diagonal

~ is an upper bidiagonal matrix.

When A is non-singular, its LU decomposition is unique. In fact, it-
is easily shown that

U ::::
"1M

u
N-l

where f., 1 ~ i ~ N-l, is the upper diagonal of A, and
1.

u
l

:::: d
l

d.
e. f. 1 for i > 1-u. == 1. 1.- ,

1. 1. u
i

_
l

The lower bidiagonal matrix, L, is then given by-
1

1

1
L ::::
~

1

1

where

m
2

:::: eidl

e. for i > 2m. 1. ,
1.

d. 1 - f. 2m. 11.- 1.- 1.-

, for i ~ 2
u
i-l

(1)

(2)

- 4 -

After computing Land U, it is relatively straight forward to solve

the system of equations. The solution is a two-step process.

Letting y = y~, we have
"II\;

A x = LUx = L Y= b
r , &I"'V ..¥o- i1'V'>

I The equation L y = b is easily solved for y since
iN\. JA,v /A.Iv ""'-'v

Then we solve U x = y for x. This equation is solved by a backward sweep
,...~ io\oo\.. l".Af

since

xi = Yi - xi+lf i
u.

1

(4)

Note that the recurrence formulae (1), (2), (3) and (4) constitute a

complete algorithm for the solution of A x = b. Since each computation in_....

this algorithm depends on the results of the previous computation, the

algorithm is satisfactory for serial computation but quite unsatisfactory

for parallel computation. In the following sections we derive equivalent

formulae that are well-suited for parallel computation.

III Parallel evaluation of the forward and backward sweeps

The model of a parallel processor that lies behind the development of

these parallel algorithms is based upon the ILLIAC IV computer. In this

computer there are N processors with independent memories, but only one

instruction stream. All of the processors operate synchronously, executing

the same instruction on N different operand pairs, where N can be 64, 128,

256, or 512. For added flexibility, there is a mask associated with each

processor that enables or disables the processor. Hence, if a processor's

mask is on, the processor executes the current instruction, otherwise the

processor remains idle.

- 5 -

Data can be communicated among the.processors in one of two ways.

One datum can be broadcast to all processors simultaneously, or a vector

of N items can be shifted cyclically among the processors. As an example

of the latter case, suppose that the vector ~ = (bl ,b
2
,b

3
, ••• bN) is stored

with b. in the i
th

processor. Then the vector can be shifted j places
1.

cyclically so that b. is routed to processor (i+j) mod N for all i.
1.

In this section, we shall show how to solve (3) by a technique called

recursive doubling. The idea is to rewrite (3) so that Y2i is a function

of Yi. Thus, in successive iterations we can compute Yl'Y2'Y4'Y8' etc.,

and YN can be computed in 10g2 N iterations. Since (4) is of the same

form as (3), the backward sweep can be done using the same algorithm, and

it also requires 10g2 N iterations.

To begin the derivation, we rewrite (3) in the form

b1.0 + (-m.)y. 1
1. 1.-

(3')

This change is necessary because we shall make use of the associativity of

addition.

Substituting for y. 1 in (3') we find1.-

Y2 = b
2 + (-m2)· bl

Y3 = b
3

+ (-m).b + (-m).(-m).b
3 2 321

i i

Yi = L: b. n (-~)
j=l J k=j+l

where a vacuous product of ~'s is interpreted as the constant 1.

The last formula in (5) shows the explicit dependence of y. on each of
1.

the coefficients of m and b. Our goal is to derive a recurrence in which
'\'WV """

Y2i is a function of Yi • To anticipate the answer, momentarily consider

- 6 -

what happens when all of the components of m are equal to -1. In this......

case yi is the sum of the first i components of .,e. Then if y.(b.,b. 1' ••. ':1. J J-

b) is defined to be the sum of b. through b .. l' we have
j-i+l J J-:1.+

(6)

Equation (6) holds for all i ~ 1. This recurrence has the recursive

doubling form that we seek, and therefore is the basis for a parallel

algorithm. The recursive doubling relation above suggests that we look for

a general solution in terms of functions Y
l

, Y
2

, .•• , Y
N

where each Yi is a

function of i components of band m. We shall use the notation Y.(J·) as an
. - "". :1.

abbreviation for the more cumbersome notation

Y.(b.,b. l,·.·,b. ·+l,m.,m. l,···,m. '+1):1. J J- J-:1. J J- J-:1.

That is, Y.(j) is a function of i consecutive components of band m, with:1. - _

the jth component being the highest component.

The following theorem establishes the relation we desire.

Theorem 1: Let Yi(j) satisfy the recurrence relation

Yi+l(j) = Yl(j) + Yi(j-l).(-mj) for i, j ~ 1

with the boundary conditions

Y
l
(j)

Y. (j):1.

Y. (j):1.

Then

(i)

= b. for j ~ 1
J

= a for j ~ a

= a for i ~ a

for s ~ 2, Y.(j) satisfies the recurrence relation:1.
j

Yi+s(j) = Ys(j) + Yi(j-s) n (-~) for i ~ 1, j ~ s. (8)
k=j-s+l

for i ~ j ~ 1(ii)

(iii)

- 7 -

j j

Y.(j) = ~ Yl(k) n (-m)
1 k=l s=k+l s

for i ~ j ~ 1, Y.(j) = y., where y. is the jth component of the
1 J J

unique solution of (3).

Proof:

To prove part (i), we use induction on s.

Basis step, s = 2.

From (7) we have

= Yl(j) + Y. l(j-l).(-m.)
1+ J

= Yl(j) + Yl(j-l).(-m.) + Y.(j-2)·(-m.).(-m. 1)
J 1 J J-

But using (7) again we also have

Hence,

Yi +2(j) = Y2 (j) + Yi (j-2).(-m
j

).(-m
j

_ l)

which is recurrence relation (8) with s = 2. This proves the basis step.

Induction step. We assume that (8) hold for all s in the interval

2 ~ s ~ n-l, and we show it holds for s = n.

From the induction hypothesis we have
j

Y.+ (j) = Y l(j) + Y. l(j-n+l)~ n (-~)
1 n n- 1+ k' 2 k=J-n+

j

= Yn-l(j) + Yl(j-n+l). n (-~)
k=j-n+2

j
+ Y.(j-n). n (-~)

1 k=j-n+l

But from the induction hypothesis it follows that

- 8 -

Hence,
j

= Y (j) + Y.(j-n). n (-~)
n 1 k' 1 k=J-n+

which is the same recurrence as (8) with s replaced by n. This proves

part (i).

TO prove part (ii), we use induction on i.

Basis step. From the theorem hypothesis we have

Then applying the boundary condition Yl(O) = 0, we obtain

Y2 (1) = Yl(l)

Y2(2) = Yl (2) + Yl (1).(-m2)

These equations satisfy (9), thus proving the basis step.

Induction step: We assume that (9) holds for all i in the interval

2 ~ i ~ n-l, and we prove that it holds for i = n. Using (8) we have

for 2 ~ j ~ n

Y (j) = Yl(j) + Y l(j-l)'(-m.)n n- J

Using the induction hypothesis to substitute for Yn_l(j-l) yields

Yn(j) = Y
l
(j) +[j~l Y, (k) jii' (-msll. (-m

j l for 2 S j S n
k=1 s=k+l J

j j

~ Yl(k) n (-m)
k=l s=k+l s

(10)

The interval 2 ~ j ~ n for which the equations above are valid arises from

the application of the induction hypothesis to Yn_l(j-l) for 1 ~ j-l ~ n-l.

Since (10) has the same form as (9), it is only necessary to show the

validity of (10) for j = 1 to complete the proof. From the theorem

hypothesis,

Since the same result is obtained by setting j = 1 in (10), the interval

in (10) may be changed to 1 ~ j ~ n. This proves part (ii) of the theorem.

- 9 -

Part (iii) is a direct consequence of the fact that with the boundary

condition Yl(j) = bj , (10) is identical to the solution to (3). This

completes the proof of the theorem.

Corollary:

for i, j ~ 1 (11)

Proof: Follows directly from part (i) of Theorem 1 by replacing s

by i.

The corollary of Theorem 1 provides the recursive doubling algorithm

for the solution of (3). The product term in (11) appears to be difficult

to evaluate because the number of factors in the product doubles with each

iteration. Fortunately, we can also use recursive doubling to compute the

product term.

Let M.(j) be defined to be
1

j
Mi (j) = n (-~) for j ~ i

k=j-i+l

j (12)

= n (-~) for j < i
k=l

Then (11) can be rewritten as

Y2 .(j) = Y.(j) + Y.(j-i)'M.(j)
1 1 1 1

for i,j ~ 1

The recursive doubling computation of Mi(j) is provided by the formula

= -m
j

M2 .(j) = M.(j).M.(j-i)
111

with the boundary conditions

M
l
(j)

Mi(j) = 1

Mi(j) = 1

for i,j ~ 1

for j ~ 1

for j ~ 0

for i ~ 0

(14)

- 10 -

The parallel algorithm for the solution of (3) is simply the iterative

application of (13) and (14). It is given below in an ALGOL-like language.

In the program, when an interval of the form (1 ~ j ~ N) appears after a

statement, that statement is assumed to be executed simultaneously for all

indices in the interval.

begin
~

~l~ Y[l:N], M[2:N]j

~ ~y b[l:N], m[2:N]j

comment Y and M are the arrays in which equations (13) and (14)
~

are evaluated. Arrays band m are the arrays that give the

coefficients of (3). These arrays may utilize the same

storage space as the arrays Y and M, respectively;

initialize:

Y[j] = b[j], (1 ~ j ~ N)j

M[j] = -m[j], (1 ~ j ~ N)j

~r i : = 1 ~ i ~l N/2 ~

begin
~

Y[j] = Y[j] + Y[j-i] X M[j], (i+l ~ j ~ N)j

M[j] = M[j] X M[j-i], (i+l ~ j ~ N)j

end'
"""""' '
At the completion of each iteration, the array Y contains Y.(j), and

1.

M contains Mi(j). From Theorem 1, YN(j) = Yj for 1 ~ j ~ N, so that Y
N

is

the solution to (3). Since i doubles during each iteration, 10g2 N

iterations are required for the computation. The vector operations

indicated in the program are easily carried out in an ILLIAC IV type of

computer since masking operations can be used to establish the interval

- 11 -

for the index j, and cyclic shifting of components of a vector can be used

to align Y[jJ with Y[j-iJ. The parallel algorithm is also suitable for

efficient operation in vector processors of the pipeline class such as the

CDC STAR computer.

For the solution of the backward sweep, Equation (4), the body of the

iteration should be modified as indicated below:

begin
~

y[jJ: = Y[j] + Y[j+iJ X M[j], (1 ::;; j ::;; N - i);

M[j] : = M[j] X M[j+i], (1 ::;; j ::;; N - i);

end'
""'"" '

IV Calculation of the LU decomposition by recursive doubling

We now focus attention on the efficient calculation of (1) and (2).

Again we use recursive doubling to compute the coefficients u = (ul ,u
2

, ••• ,u
N

)

and m = (m2,m3,·· .,~).
The approach we use is to solve (1) by recursive

doubling, then compute m. = e./u. 1 simultaneously for 2 ::;; i ::;; N to solve (2).
J. J. J.-

Since (1) is a partial fraction expansion, it is convenient to cast it

into a linear form which is suitable for a recursive doubling algorithm. It

is well known [cf. Wall, 1948J that every partial fraction expansion is

associated with a linear second order recurrence relation. In particular,

if we define the quantities q., 0 ::;; i ~ N, by the recurrence relation
J.

qi = d.q. 1 - e.f. lq· 2 i ~ 2
J. J.- J. J.- J.-

with the boundary conditions

qo = 1

ql = dl

then it is easily shown that

u. = q./q. 1 for i ~ 1
J. J. J.-

(16)

u .•
J

or equivalently,

i

n
j=l

- 12 -

To solve (1) efficiently, we have only to solve (15) efficiently,

because after calculating q., 0 ~ i ~ N, we can evaluate (16) in a single
1.

operation carried out simultaneously on N processors. Equation (15) is

somewhat more difficult to solve than (3) because it is of second order,

whereas (3) is of first order. However, we can make use of an artifice to

reformulate (15) as a matrix recurrence relation of first order. In

particular, it follows from (15) that

-e.f. 1]1. 1.-

o
=

Note that we can substitute A. 1 (q. 2 q. 3)T for (q. 1 q. 2)T above,
-1.- 1.- 1.- 1.- 1.-

and can continue this substitution repeatedly until we obtain

=

This formulation of the problem is ideal for recursive doubling. Since

matrix multiplication is associative, we can evaluate the product

A.A. 1 ••• A
2

in exactly the same way that we evaluate a product of scalars.
-1.~1.- ..

In fact, we have encountered this problem before in (12), and the recursive

doubling solution is the schema of (14). Then to solve (15) for all q.
1.

simultaneously, requires 10g2 N iterations, in which the i
th

iteration

involves the 2N-
i

simultaneous calculations of the product of two 2 X 2

matrices.

- 13 -

It is rather interesting to investigate the properties of the functions

qi because it is possible to exploit their characteristics and obtain a

parallel algorithm slightly more efficient than the solution to (17)

described above. Fortunately, a great deal is known about these functions.

One important property is well illustrated by the first few q .•
1

qo = 1

ql = d
l

q2 = d
2

dl - e
2

f
l

q3 = d
3

d
2

d
l

- d
3

e
2

f
l

- e
3

f
2

d
l

~
d4d

3
d

2
dl - d 4d

3
e

2
f l - d4e

3
f

2
d l

- e4f
3

d
2

d l + e4f
3

e
2

f l

Knuth [1971J attributes to Euler [1748J the observation that q.
1

contains the term d.d. l ••• d
l

, together with every term that can be
1 1-

constructed by replacing d.d. 1 by -e.f. 1 for all possible combinations of
J J- J J-

such pairs. This property follows directly from the recurrence relation

The first product in (15), d.q. l' creates terms in q. for which
1 1- 1

adjacent d-pairs are deleted from among only the coefficients d
l

, d
2

, •.• ,

d. 1 in all possible ways, and thus produces every possible way there can
1-

be terms containing d .• The second product in (15) replaces d.d. 1 by
1 1 1-

-e.f. l' and combines this with every possible way d-pairs can be eliminated
1 1-

among the coefficients dl , d
2

, ••• , d
i
_

2
• This produces every possible term

without die

We can obtain factorizations of the q. functions that correspond to the
1

intermediate results in the evaluation of (17). To arrive at these

factorizations, let us define Qi(j) for j ~ i to be the function qi with the

subscripts of its arguments increased systematically so that the leading

subscript is j. For j <i, we define Q.(j) = Q.(j). Some examples of Q.(j)
1 J 1

- 14 -

should clarify ambiguities in the definition.

Ql(l) = d
l

Q2(1) = d1

Q3(3) = d3d2dl-d3e2fl-e3f2dl

Q3(Ld = d4d3d2-d4e3f2-e4f3d2

Q3(2) = Q2(2) = d2dl -e2f l

From this definition it now follows directly that the Q. functions
1

satisfy the recurrence

(18)

for j ~ s, i ~ 1

with the boundary conditions

Ql (j) = d. for j ~ 1
J

Qi (j) = 1 for j ~ 0, i :s; °
~ (j) I for j :s; 0, i ~ °
e j +l • f. = 0 for j

:s; °J

This recurrence formulation is also well-known, with citations in the

literature at least as early as 1853. [Sylvester, 1853; Perron, 1913J.

The validity of (18) can be verified by an intuitive argument. To

find all possible ways of eliminating adjacent d-pairs in a sequence of

i+s coefficients, combine every possible way of eliminating pairs in the

first s coefficients with every possible way of eliminating pairs in the

last i coefficients. This accounts for the first term of (18). However,

one d pair contains the last coefficient from the set of s coefficients and

the first coefficient from the set of i coefficients. The first term in

(18) does not account for any of the ways this pair can be eliminated. We

see that the second term in (18) accounts for all such ways, because

e. If. replaces the pair and this replacement is combined with every
J-s+ J-S

- 15 -

possible way of eliminating pairs in the first s-l coefficients and in the

last i-I coefficients, From (IS) we obtain the recursive doubling formulae,

Theorem 2: Qi(j) satisfies the recurrence relations

Q2·(j) = Q.(j)Q.(j-i) + (-e. i+lf . ·)Qi l(j)Q· l(j-i-l)
1 1 1 J- J-1 - 1-

Q2' l(j) = Q.(j)Q. l(j-i) + (-eo o+lf ..)Q. l(j)Qi 2(j-i-l) (19)
1- 1 1- J-1 J-1 1- -

Q2i-2(j) = Qi_l(j)Qi_l(j-i+l) + (-ej_i+2fj_i+l)Qi_2(j)Qi_2(j-i)

Proof: These formulae follow directly from (IS),

The first of the equations in the corollary above is a recursive

doubling formula which shows that Q2i depends on both Qi and Qi-l' Hence,

to compute Q4i we need to compute both Q2i and Q2i-l' To compute Q4i-l we

have to compute Q2i-2' Since ~i-2 depends on the same quantities as Q2i

and Q2i-l' we need only the three equations (19) in a recursive doubling

algorithm. Since we have to compute Q2i-l and Q2i-2 anyway, it is slightly

more efficient to compute Q
2i

by the formula

Q2·(j) = d.Q2i l(j-l)+(-e.f. 1)Q2' 2(j-2.),
1 J - J J- 1-

The complete algorithm to compute q., 1 ~ i ~ N is given below in an
1

ALGOL-like language. The initial conditions establish the values of ~, Ql'

and Q2' The first iteration computes Q2' Q3' and Q4' the second iteration

computes Q6' ~, and QS' and the last iteration computes ~-2' ~-l' and ~.

begin
""v-.J

~l ~ay E[2:N], F[l:N-l], D[~:N], EF[l:N],

TEMP[l:N], QI[l:N], QIMl[O:N], QIM2~1:N];

comment the arrays hold the quantities indicated below,
"""--

E The lower diagonal of the tridiagonal matrix A.

F The upper diagonal of A.--
D The major diagonal of A..-

EF This holds products of the form -e.f. l'
1 1-

- 16 -

TEMP A temporary array.

QI

QIMI

QIM2

Holds Q. (j) •
1.

Holds Q. l(j).
1.-

Holds Qi-2(j).

The computation begins by initializing EF, QI, QIMl, and QIM2;

initialize:

EF[iJ := - E[iJXF[i-lJ, (2 =::; i =::; N); EF[l] := O',

QIM2[iJ := 1, (1 :=;; i :=;; N);

QIMl[iJ := D[iJ, (l:=;;i:=;;N); QIM1[O] := 1;

QI[iJ := D[iJxn[i-lJ + EF[iJ, (2 :=;; i :=;; N);

QI[lJ := D[lJ;

~t the last three lines initialize the arrays to Qo, Ql' and Q2'

respectively;

for i := 2 step i until N/2 do.,.....,... "'-"" ~ ,..,.-'

begin
-,\-",

TEMP[j] := QIMl[jJXQIMl[j-i+lJ + EF[j-i+2JXQIM2[jJXQIM2[j-iJ,

(i-l:=;;j:=;;N);

c~t TEMP contains ~i-2. It cannot be written over Q. 2 yet
1.-

since Q. 2 is needed in the next line;
1.-

QIMl[jJ := QI[jJXQIMl[j-iJ + EF[j-i+lJXQIMl[jJXQIM2[j-i-lJ,

(i =::; j :=;; N);

QIM2[jJ := TEMP[jJ, (i-I:=;; j :=;; N);

QI[jJ := D[jJXQIMl[j-lJ + EF[jJXQIM2[j-2J, (i+l :=;; j =::; N);

end;
""'-"" .

At the termination of the algorithm, QI[iJ will contain q. for
1.

1 :=;; i :=;; N. We use (16) to compute the diagonal of U from the q. 's. This_ 1.

clearly can be done in parallel by dividing the vector QI by a shift of

- 17 -

itself. Finally, to compute the sUbdiagonal of~, we note that (2) indicates

that this computation can be done by one parallel division.

In executing the algorithm on an ILLIAC IV class of computer, the

vector alignment required for the calculation is done by cyclically shifting

vectors among the processors. Since the algorithm requires that

QIMl[j] = QIM2[j] = 1 for j ~ 0, we can avoid storing these quantities by

changing the cyclic shift of these vectors to an end-off shift in which the

integer 1 is shifted into each of these vectors. Similarly,

EF[j] = 0 for j ~ 1, so that O's are always shifted into EF[2] when the EF

vector is aligned.

The ranges indicated for each statement in the basic iteration show the

positions of the vectors which change when that statement is executed. The

algorithm will work correctly when all ranges are replaced by the full

range 1 ~ i ~ N since values that do not change are recomputed at each step.

It is somewhat more efficient to use the full range for a calculation than

the ranges given, although redundant recomputation of values may be

accompanied by greater round-off error.

The serial solution of a tridiagonal system of equations, when done as

outlined in Section II, requires 3(N-l) of each of the operations division,

multiplication, and subtraction. The parallel computation has three loops,

each executed 10g2 N times. The loop that computes the LU decomposition

requires eight multiplications and three additions per iteration, whereas

the forward and back substitutions each require two multiplication and one

addition per iteration. Apart from the computations within loops, there

are at least four divisions, two multiplications and one addition applied

to N elements simultaneously.

- 18 -

Hence the operation count for the parallel algorithm (exclusive of

overhead computations) is

12 log2 N + 2 multiplications

5 log2 N + 1 additions

4 divisions.

The reduction in the number of divisions is particularly important for

computers which take much longer to divide than to multiply. (On the

ILLIAC IV computer division is approximately five times longer tha~

multiplication) •

At this writing the stability of the algorithm has not been thoroughly

investigated. Clearly, the algorithm is unstable if any q. vanishes.
1.

i
Since q. = IT u., q. vanishes if and only if one of the u. coefficients

1. .lJ 1. 1.
J=

vanishes. However, if the A matrix is diagonally dominant and non-singular,
WN

every u. is bounded away from zero [Isaacson and Keller, 1966J.
1.

We conjecture that the error bounds for the parallel algorithm are

comparable to those of the serial algorithm.

- 19-

Summary and conclusions

The parallel algorithm for the solution of tridiagonal systems of

linear equations really consists of two different algorithms. One

algorithm is the parallel evaluation of first order difference equations

of the form

x. = b.x. 1 + c.
1. 1. 1.- 1.

where the b. and c. are constants.
1. 1.

The second algorithm solves second order equations of the form

Since partial fraction expansions are associated with second order

(20)

difference equations, the second algorithm may also be used to compute

partial fraction expansions. The form of the solution obviously general-

th
izes to linear recurrence relations of arbitrary m order, still requiring

log2 N iterations, where each iteration involves simultaneous multiplications

of m X m matrices.

It is well known that a straightforward serial evaluation of (20) can

be unstable [Gautschi, 1967J, although it is not unstable when the

coefficients are obtained from diagonally dominant matrices. The stability

of the parallel algorithm in such cases has not been investigated, but it

too is undoubtedly unstable. Since (20) can be solved by backward

recursion when forward recursion is unstable, we expect that backward

parallel recursion would also be stable.

- 20 -

Acknowledgment

The author expresses his appreciation to Wm. Prichard Jones and

David Galant of the ILLIAC IV Project Office NASA-Ames Research Center for

their many conversations, comments, and criticisms which materially aided

the research. He is also grateful to Donald Knuth of Stanford University

for pointing out the early contributions to the factorization of second

order recurrence relations. The recursive doubling algorithm for solving

first order recurrence relations was discovered independently by Harvard

Lomax of NASA-Ames Research Center and by Robert Downs of Systems Control,

Inc. Gene Golub of Stanford University pointed out Buneman's algorithm as

an alternative method for solving tridiagonal systems in a time proportional

to log2 N.

- 21 -

References

Buneman, Oscar, 1969. "A compact non-iterative Poisson solver,"
Report 294, Stanford University Institute for Plasma Research,
Stanford, California, 1969.

Buzbee, B. L., G. H. Golub, and C. W. Nielson, 1970. "On direct methods
for solving Poisson's equations," SIAM J. Numer. Anal., vo1.7,
No.4, December 1970.

Euler, Leonhard, 1748. Introductio in Analysin Infinitorum, Lausanne,
Section 359, 1748.

Forsythe, G. E. and C. B. Moler, 1967. Computer Solution of Linear
Algebraic Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

Gautschi, Walter, 1967. "Computational aspects of three-term recurrence
relations," SIAM Review, Vol. 9, No.1, pp. 24-82, Jan. 1967.

Isaacson, E., and H. B. Keller, 1966. Analysis of Numerical Methods,
John Wiley and Sons, New York, 1966.

Knuth, D. E., 1971. "Mathematical analysis of algorithms," Report
Stan-CS-71-206, Stanford Computer Science Department, March 1971.

Perron, 0., 1913. Die Lehre von den Kettenbruchen, Leipzig, 1913.

Sylvester, J. J., 1853. Philosophical Magazine, 6, pp. 297-299, 1853.

Wall, H. s., 1948. Analytic Theory of Continued Fractions, Van Nostrand,
Princeton, N. J., 1948.

