
An efficient parallel approach to reduce

sparse matrices with invariant entries

M.P. Bekakos, O.B. Efremides

Department of Informatics, Athens University of Economics

and Business, Athens, Greece

Abstract

This paper investigates an efficient parallel technique for reducing sparse
matrices that can be applied to analysis tables. This kind of matrices take up
a great amount of memory space by the zero entries and, hence, a subtle
compaction scheme is necessary. The benefit of the parallel approach intro-
duced herein is that a very compact form results which will contribute to a
greatly reduced time when accessing the given data structure.

1 Introduction

Some sequential techniques have been proposed in Knuth[3] and Aho[l] only
for the nonzero entries to be represented as list data structures. However,
although these methods are quite suited to insert a new entry and delete a
redundant one in the matrix, they are not always effective because of the
considerable amount of time required to access a random entry.
Various reduction methods for analysis tables have been proposed in Aho[2],
Aoe[5, 6], and Joliat[7].

In this work, three parallel algorithms are proposed for reducing static sparse
matrices, which can be applied to any analyses tables. Through the first
algorithm the number of the connected entries is decreased. The second
algorithm indirectly reduces the huge space of the matrix by replacing only
the connected entries of each row with one-dimensional array. The last
parallel algorithm consists of the retrieval algorithm of the stored entries in
the array. Through the experimental results obtained it is proved that the
final data structures are of very reasonable size and that the time to access
them has been greatly reduced.

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

12 High-Performance Computing in Engineering

Finally, this reduction scheme can be effectively applied to sparse matrices
met in circuit analysis, graph theory, etc.

2 Definitions and notations

Let M be an (nxn) static sparse matrix. M(a,b) represents the entry of M cor-
responding to the ath row and the bth column. Conventionally, the similar
definitions, procedures, and so forth, associated with both the row and the
column of M are described only on the row. In the first place, the essential
terms for M are defined in Aoe[6].

Definition I

Let a%, a2,..., â be the entries of the ath row of M. We say that, â ,â +i, ..., a<,,

for 1 < r < s < m, are C (connected)-entries of the ath row, if for these entries
the following conditions hold:

(1) &i = a% = ... = a,.j = 0,
(2) a,+i = a,+2= ... =as=0,
(3) a, ̂ 0, and
(4) a, * 0.

A string a^ â +i... ̂ is called a CE (connected entries) - string of the ath
row (denoted by S(a)). The set of the CE-strings corresponding to all the rows
of M is denoted by P^. Each zero entry in the CE-string is called a CZ
(connected zero)-entry and N(a) represents the number of the CZ-entries in
the ath row.

Definition 2

For a given (nxn) matrix M, we define the following sets:

(l)F(a) = {b|M(a,b)*0},
(2)UM = {F(a)|l<a<n},
(3) Let, QJ, Q% ... ,Qt , for t > 1, be disjoint sets, where the element of q± ,
for 1 < i < t, is the column number of M. The ordered-sets-sequence

R = [QbQa ... ,Qtl

and the union is denoted by

TOTAL(R) = Qi U Q% U ... U QT .

3 A new parallel compaction approach

Herein, a different strategy to compact a sparse matrix is introduced. Ac-
cording to this new approach the initial matrix M is partitioned into four
sub-matrices Mj, for i= 1,2,3,4, as is described in Figure 1. The parallel scheme
for compaction presented is based on the three sequential algorithms pro-
posed in Aoe[6]. All of these sequential algorithms are executed in parallel
for each one of the four blocks of the initial matrix.

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

High-Performance Computing in Engineering 13

Note that, for the implementation of this new strategy a simulation
software tools environment, (rf. Lester[4]), has been utilized, where a time
unit of the simulated time is approximately equivalent to one microsecond of
the real execution time on a general purpose multiprocessor.

More analytically, the sequential algorithm A described in Figure 2 is
executed, in parallel, for each one of the related sub-matrices. The new paral-
lel algorithm A decreases the number of CZ-entries for every submatrix Mj
by permuting the columns; it consequently generates four ordered-sets-
sequence R. Depending on these R's the new arrangements of the column (of
each sub-matrix) are determined. Finally, a new matrix M is produced. This
matrix includes all the four submatrices and has the C-strings compacted in
each of the four blocks.

Parallel Algorithm A
Input: UM
Output: R's and, finally, the new matrix M
Method : Described in Figure 5.

This algorithm eventually produces twice as fast timing results, even
when it runs on a single processor, as compared with the sequential algorithm,
which is executed for each block, when it is utilized to compact the initial
matrix M without any partitioning. The results obtained for small matrices
are depicted in Tables 1 and 2.
Note that, the number of utilized processors always equals the number of the
matrix partitions.

Table 1. Sequential Algorithm Enhancement

Matrix
Size
6x6
8x8
10x10
12x12
14x14

Serial time for
sequential algorithm A

51700
86072
121044
156616
192788

Serial time for
parallel algorithm A

22248
45583
58193
79507
101841

Speedup

2.32
1.89
2.08
1.99
1.89

Table 2. Relative Speedups

Matrix
Size
6x6
8x8
10x10
12x12
14x14

Serial time for
parallel algorithm A

22248
45583
58193
79507
101841

Parallel time for
parallel algorithm A

7373
15664
17961
24171
30682

Speedup

3.02
191
3.24
3.29
132

The technique proposed rearranges the columns of M and produces a new
matrix. We may call, without any confusion, the new matrix as M. In the sec-
ond parallel algorithm, the new matrix M is partitioned again into four
blocks, as before, and the sequential algorithm, described in Figure 3, is ap-

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

14 High-Performance Computing in Engineering

plied to each one of them. The C-entries of each row, of the submatrices M^
are stored in a local one-dimensional array (called VALUE), while three local
one-dimensional arrays (called BASE, HEAD, and TAIL) are used for the re-
trieval. The HEAD and TAIL arrays for each block are obtained via the next
procedure.

Procedure 1

Suppose that S(a)=a,
and TAIL(a) =s.

... a,, , for the ath row in each M̂ . Set HEAD(a) = r

Parallel Algorithm B
Input: ?&* and HEAD array
Output : VALUE and BASE array for each submatrix M^
Method : Described in Figure 6.

Tables 3 and 4 present the execution timing results obtained for the se-
quential and parallel algorithms.

Table 3. Sequential Algorithm Enhancement

Matrix
Size
6x6
8x8
10x10
12x12
14x14

Serial time for
sequential algorithm *

27529
31998
36995
42520
48573

Serial tame for
parallel algorithm B

13918
18670
24118
30246
37054

Speedup

1.98
1.71
1.53
1.40
1.31

Table 4. Relative Speedups

Matrix
Size
6x6
8x8
10x10
12x12
14x14

Serial time for
parallel algorithm B

13918
18670
24118
30246
37054

Parallel time for
parallel algorithm B

4961
6531
8334
10351
12581

Speedup

281
2.86
2.89
2.92
195

The parallel algorithm C utilizes the BASE, HEAD and TAIL arrays of
each submatrix and decides in which one it will search for the required ele-
ments. It is a slow retrieval algorithm, as depicted in Table 5, but the time it
requires to retrieve the appropriate elements is too small to negatively affect
the overall speedup of the new approach. In Figure 4 is described the corre-
sponding sequential algorithm proposed in Aoe[6], while in Table 6 are pre-
sented the timing results obtained by the new algorithm when it is executed
sequentially and in parallel utilizing four different processors.

Parallel Algorithm C
Input: Row number a and column number b for each Mj
Output: DET
Method : Described in Figure 7

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

High-Performance Computing in Engineering 15

Table 5. Sequential Algorithm Enhancement

Matrix
Size
6x6
8x8
10x10
12x12
14x14

Serial time for
sequential algorithm C

315
313
343
373
403

Serial time for
parallel algorithm C

888
925
986
1008
1092

Speedup

0.35
0.33
0.34
0.37
0.36

Table 6. Relative Speedups

Matrix
Size
6x6
8x8
10x10
12x12
14x14

Serial time for
parallel algorithm C

888
925
986
1008
1092

Parallel time for
parallel algorithm C

663
L_ 712

781
861
941

Speedup

1.34
1.30
1.26
1.17
1.16

4 Discussion and conclusive remarks

In this work, a new parallel method is investigated for reducing sparse matri-
ces, while a modified retrieval algorithm is presented. The experimental re-
sults proved that even though the retrieval algorithm is slow when compared
with the sequential algorithm proposed in Aoe[6], the overall access time to
the data structure is very fast.
The more important advantage is that our method works effectively for any
analysis tables. This reduction technique can be well used for all static sparse
matrices in graph theory, circuit analysis, and so on.
To conclude, the new parallel approach can be generalized by partitioning the
initial matrix M into more than four blocks. More specifically, the matrix
under consideration can be partitioned into several submatrices depending on
its initial size n. The only restriction is that we should not have a submatrix
partitioning of size less than (3x3). Further partitioning will eventually lead
to the process of very small size matrices, a fact which will contribute to the
minimization of the effectiveness of the approach.

References

1. Book:

2.

3.

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. The Design and Analysis of
Computer Algorithms, pp. 44-52, Addison-Wesley, 1974.
Aho, A.V. and Ullman, J.D. The Theory of Parsing, Translation and
Compiling, Vol. I, pp. 368-399, Vol. II, pp. 579-675, Prentice-HalL 1972,
1973.
Knuth, D.E. The Art of Computer Programming, Vol. I, pp 299-301
Addison-Wesley, 1973.
Lester, B.P. The Art of Parallel Programming, Prentice-Hall Int. Incx,
Englewood Cliffs, N. Jersey, 1993.

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

16 High-Performance Computing in Engineering

2. Paper in journal:

5. Aoe, J,. Fukuoka, I, Yamamoto, Y. and Shimada, R. A Practical Method
for Reducing Lexical and Syntax Analyzer Tables, Bulletin of Faculty
of Engineering, Tokushima University, 17, pp. 11-27, 1980.

6. Aoe, J., Yamamoto, Y. and Shimada, R. A Practical Method for Reduc-
ing Sparse Matrices with Invariant Entries, Int. J. Computer Math.,
Gordon and Breach Science Publishers Inc., Vol.12, pp. 97-111, 1982

3. Paper in conference proceedings:

7. Joliat, M.L. Practical Minimization of LR(k) Parser Tables, Informa-
tion Processing 74, pp. 376-380, NorthHolland, 1974.

a

a

a

a

a

a

11

21

31

41

51

61

a

a

a

a

a

a

21

22

23

24

25

62

a

a

a

a

a

a

31

32

33

34

35

63

a

a

a

a

a

a

41

42

43

44

45

64

a

a

a

a

a

a

51

52

53

54

55

65

a

a

a

a

a

a

61

62

63

64

65

66 ,_

Figure 1: Matrix partitioning method

BEGIN
FOR F(b) in Û such that MEMBER(F(b) n F(c)) is maximum DO
BEGIN

R:= [Qi=F(b)];
l̂ :=U

END;

REPEAT
FOR F(a) in UM such that MEMBER(TOTAL(R) n F(a)) is maximum DO

BEGIN
R:= NEW(EMPTY(MERGE(R,F(a))));
Ui*= lWF(a)}

END;
UNTIL UM = 0 ;

Figure 2 : Sequential Algorithm A

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

High-Performance Computing in Engineering 17

BEGIN
PAL- PM;
FOR S(a) and S(c) in PAI such that COMMON(S(a),S(c)) is maximum DO
BEGIN

TEMP:=CONNECT(S(a), S(c));
PAL=PAI-{S(a),S(c));

END;
REPEAT

FOR S(a) in PAI such that COMMON(TEMP,S(a)) is maximum DO
BEGIN
TEMR=CONNECT(TEMP,S(a))-
PAD= PAI - (S(a)}

END
UNTIL PAI = 0 ;
FOR all e for 1 < e < k DO VALUE(e):= d. ;
FOR all S(a)= a*̂...a, in P̂ such that d̂ =â d̂a,̂.. Â -r) = a, DO

BASE(a):=u-HEAD(a);
END

Figure 3: Sequential Algorithm B

BEGIN
IF HEAD(a) < b <; TAIL(a) THEN
DET .- VALUE(BASE(a) + B)

ELSE
DET := 0

END

Figure 4: Sequential Algoritm C

Program Parallel Algorithm__A;
Architecture Shared(5);

Declarations...
Function Member (a : list): integer;...
Function Neq(a,b : list):boolean;...
Function Eq(a,b : list):boolean;...
Procedure Copy (a : list; var b : list);...
Procedure Delete(var arlist; element integer);...
Procedure Remove(var a:list);...
Procedure Sort(var a : list);...
Procedure Union (a,b : list; var c : list);...
Procedure Intersection (a, b : list; var c : list);...
Procedure Minus(a,b : list; var clist);...
Procedure Mainlnitial;...
Procedure Initial(sl,el,s2,e2 : integer; var M : typeM);...
Procedure Update(sl,s2 : integer; NM: typeM);...
Procedure Find F(M : typeM; i:integer; var RtypeF);...
Procedure Find Max(A,B : list; i, max : integer;

var max set: integer; var ALP :list);...
Procedure Renumber(var R : rlist);...
Procedure Empty(var R : rk'st);...
Procedure Total(R: rlist; var totalR : list);...
Procedure Find_Q(R : rlist; ALPrlist; var qi,qj : integer);
Procedure Find_Num(R: rlist; ALRlist; qi,qj : integer;

var NUM1,NUM2: integer; var BE1, BE2 :list);...
Procedure Merge(var R: rlist; Fa, ALP : list);...
Procedure Main (par : integer);...
Begin (* main program *)

Mainlnitial;
forall par=l to processors do
(@par) Main(par);

for i:=l to n do
begin
for j=l to n do
write(NIM[i,j}3);

writeLn;
end;

End (* Parallel Algorithm__A *).

Figure 5: Parallel Algorithm A

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

18 High-Performance Computing in Engineering

Program Parallel Algorithm__B;
Architecture Shared(5);

Declarations...
Function Member (a : list): integer;...
Procedure Copy (a : list; var b : list);...
Procedure Remove(var arlist);...
Procedure Mainlnitial;...
Procedure Initial(sl,el,s2,e2 : integer; var M: typeM);...
Procedure CreateS(var S : typeS; M typeM; i: integer;

var Head,Tail; typeA);...
Procedure Find Best(A,B : list; var y: list; var length : integer);...
Procedure Common(var SI, S2 : list; var C : list; i,j: integer;

var li,lj, max length : integer); ...
Procedure Find Pos (var A, B : list; var position : char; var f, 1: list);.
Procedure Cut(A,f,l: list; position: char; var ans, Y : list);...
Procedure Connect(A, B̂ ,Y,Z, f 1, f2, 11, 12 : list; posl, pos2 : char;

var TEMP : list);...
Procedure Find BASE(A:list; i: integer; V: typeV;

H integer; var BASE : typeA);...
Procedure Main (par : integer);...
Begin (* main program *)
Mainlnitial;
forall pan= 1 to processors do
(@par) Main(par);

End (* Parallel Algorithm_B *).

Figure 6: Parallel Algorithm B

Program Parallel Algorithm_C;
Architecture Shared(5);

Declarations...
Procedure Initial;...
Procedure Main(parinteger);...
Begin (* main program *)

Initial;
forall par=l to processors do
(@par) Main(par);

End (* Parallel Algorithmic *).

Figure 7: Parallel Algorithm C

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

