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Abstract

A novel parallelization method of genetic algorithm (GA) solution of the Traveling Salesman Problem (TSP) is

presented. The proposed method can considerably accelerate the solution of the equivalent TSP of many complex

vehicle routing problems (VRPs) in the cloud implementation of intelligent transportation systems. The solution

provides routing information besides all the services required by the autonomous vehicles in vehicular clouds. GA

is considered as an important class of evolutionary algorithms that can solve optimization problems in growing

intelligent transport systems. But, to meet time criteria in time-constrained problems of intelligent transportation

systems like routing and controlling the autonomous vehicles, a highly parallelizable GA is needed. The proposed

method parallelizes the GA by designing three concurrent kernels, each of which running some dependent

effective operators of GA. It can be straightforwardly adapted to run on many-core and multi-core processors. To

best use the valuable resources of such processors in parallel execution of the GA, threads that run any of the

triple kernels are synchronized by a low-cost switching mechanism. The proposed method was experimented for

parallelizing a GA-based solution of TSP over multi-core and many-core systems. The results confirm the efficiency

of the proposed method for parallelizing GAs on many-core as well as on multi-core systems.
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Introduction
Vehicle routing problems have been the focus of exten-

sive research over the past 60 years, driven by their

economic importance and their theoretical interest. The

diversity of applications has motivated the study of an

innumerable problem variants with different attributes

in transportation literature [1, 2].

Using efficient vehicle routes provides a direct com-

petitive advantage to transportation companies, which

usually operate with limited profitability margins. More-

over, the fact that these problems share a simple yet rich

structure, generalizing the traveling salesman problem,

has helped to elevate the VRP family into one of the

main testbed for studies in optimization and heuristics

[3, 4]. Recently, integration of the traffic management

systems (TMSs) with cloud computing paradigm has

brought the extensibility and scalability for these systems

[5]. Recently, many researches seek VRP solutions which

can be easily exploited on vehicular cloud computing

(VCC) platforms [6–8].

This research paper proposes an optimally parallizable

Genetic Algorithm solution to TSP problem in VRPs.

Approximate solutions have been widely used in science

and engineering problems. Genetic Algorithm is a class

of evolutionary algorithms which is used for finding

approximate solutions for search and optimization

problems.

A challenging issue in solving problems using GA is the

considerable iterations of the genetic algorithm. In such

cases, with the increase in the number of generations, the
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populations and their required crossovers and muta-

tions will increase. These, in turn, significantly in-

crease the time complexity of the deployed algorithm.

This computational disadvantage of GA is considered

as a major problem in deploying GA-based solution

to time-constrained problems like vehicle routing and

controlling navigation of autonomous vehicles in in-

telligent transportation systems [9].

Computational bottlenecks of the GA are fitness, mu-

tation, crossover and selection functions. A common

solution to this challenge is to migrate the computation

of these functions to parallel machines [10, 11]. There-

fore, regarding the wide use of GA in a variety of

problems such as optimization [12], image processing

[13] artificial neural networks training [14] and rule-

based systems [15] many researchers try to investigate

parallelization methods for GAs on multi-core systems

as well as many-core systems.

This paper presents a method for parallelizing the

main operators of the genetic algorithm. The proposed

parallelism is based on the structure of multi-core

Central Processing Units (CPUs) and many-core

Graphics Processing Units (GPUs) and tries to compare

the power of the two processors in parallelizing genetic

algorithms. Our methodology for evaluating the

performance of these two different types of processors is

based on the results of executing parallel GAs which

solve a well-known complex problem in computer

science, i.e. TSP problem. TSP is an NP-complete prob-

lem with high complexity. The main idea of TSP is

finding the shortest route among a set of cities, provided

that each city is visited only once, and at the end the city

of origin should be visited again.

Specifically, the contributions of the paper are as

follows:

1- Usually, in comparisons between multi-core CPU

and many-core GPU, the CPU is illustrated weaker

than GPU in certain cases. In this article, by

comparing the performance of Threading Building

Blocks (TBB) and Compute Unified Device

Architecture (CUDA) platforms in solving TSP

problem with a parallel GA, we show that by

optimally exploiting the parallel resources of a

multi-core CPU, a higher level of performance

could be obtained.

2- In our multi-core parallelization, all working

threads should be synchronized. But, in GPU-based

parallelization only threads of one block could be

synchronized with each other. Hence, in order to

best utilize the resources of GPU in parallelization

of GA, we use three distinct kernels which let us

synchronize threads in different blocks of GPU.

This setting makes it possible to synchronize all of

the working threads but, meanwhile, imposes the

cost of switching among kernels. We investigate this

cost in our parallel kernels.

3- The investigated TBB-based and CUDA-based

methods are evaluated on different data sets,

according to the variations of GA operators includ-

ing length of chromosomes, number of generations,

and size of populations.

The rest of the paper is structured as follows. In the

next section, a brief overview of the related works is pre-

sented. Section three reviews the structure of CUDA

and TBB platforms. In addition, the method of solving

TSP with genetic algorithm is explained next. The pro-

posed approach to parallel implementation of a GA

problem is discussed in the fourth section. Experiments

and their corresponding analyses are extensively ex-

plored in the following section. Section six concludes

the paper and suggests some future directions.

Related work

In this section, we review the related works in parallel

implementation of GA algorithms for solving TSP. For

this purpose, first we review the studies that have

parallelized their algorithm on multi-core CPUs or

many-core GPUs. Next, we review the works that have

compared the performance of different parallel GA-

based TSP solutions.

J. Zhu et al. [16] combine TBB and MPI platforms to

parallelize a GA-based solution of TSP. In their

parallelization model which is named Island Model, the

original population is divided into a series of subpopula-

tions called islands or demes. Such demes could evolve

in parallel but are mostly isolated from each other. Inter-

action between demes is done by an operator known as

migration. Each island is a process which is connected

to other ones via MPI ring topology. After running five

generations of each process, it sends 5% of its best popu-

lation to another process. Initially, each process indi-

vidually generates the first population randomly, which

increases the probability that the population will be uni-

form in the process. According to the results obtained

from implementation on different datasets in 100 gener-

ations, the acceleration rate achieved on four processing

cores in 144 and 1889 cities is 2.1 and 2.55, respectively.

Studies conducted by Fujimoto et al. [17] and Chen

et al. [18] can be considered as preliminary studies

which introduce two different methods for Parallelizing

GA computations on CUDA platform. The former ex-

ploits all threads of a CUDA block for performing the

computations of each GA chromosome and the latter

exploits only one thread for this purpose. Both of these

methods use only one CUDA block for parallelization.

Moreover, due to the need for synchronizing threads in
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both of these methods, none of them can fully utilize the

computational resources of the GPU.

Sánchez et al. [19] consider this issue and propose two

parallel models for GAs on GPU, namely, PGAIM and

PGAEI which stand for a Parallel Genetic Algorithm

with Islands Model and a Parallel Genetic Algorithm

with Elite Island, respectively. In both models, each

individual is represented by a thread, and each island is

represented by a CUDA block. Their results show that

PGAEI model outperforms PGAIM model. PGAEI does

not let any migration between islands and, instead,

creates an elite island with the best individuals from

each island. Despite its better results, PGAEI model is

unable to produce the intended solution in a shorter

time as compared to PGAIM model.

The work of Kang et al. [20] proposes a parallel

solution to genetic TSP. In their method, a single gene

corresponds to a tour visiting all the cities. For large

problem spaces, they propose an improved crossover

that maintains a diversity of genes. However, by increas-

ing the problem size, the size and number of genes

increases and, consequently, the necessary computation

tasks increase. Although they propose a parallel imple-

mentation for their proposed GA which can be executed

on GPU-like many-core machines, experimental results

show the inefficiency of this method in achieving a

high level of parallelism on GPUs. Other researches

like [21–24] have obscurely implemented parallel ker-

nels for GA-based solutions of TSP.

Up to now, few studies have been carried out to quan-

titatively compare the efficiency of parallel kernels on

multi-core machines with that of GPU-like many-core

machines.

The most prominent example is the study conducted

by Saxena et al. [25] which compares the efficiency of

Open Multi-Processing (OpenMP) and CUDA via exe-

cution of parallel GA-based optimization kernels on

multi-core CPUs and many-core GPUs. Unfortunately,

this study does not provide a common experimental

setting for all parallel kernels. As a result, the effect of

different parameters of GA on the performance of both

parallel kernels which run over OpenMP and CUDA

platforms has not been assessed. For example, they have

provided plots which represent the effect of the number

of cities on the processing time of OpenMP kernel while

providing plots which demonstrate the effect of the size

of initial population on the processing time of CUDA

kernel. Such superficial results cannot be used for any

judgment and comparison as to the efficiency of those

parallelization platforms.

These studies clearly indicate that research in the field

of GA parallelization has tended only to focus on ob-

scure design of parallel programs. None of the presented

studies have investigated the efficient parallelization of

GA operators on multi-core platforms like TBB and

many-core platforms like CUDA. Specifically, the paral-

lel processing models of the threads and different ap-

proaches of synchronization of threads in different

blocks of GPU have not been exactly studied in any of

them.

In this paper, we investigate the effect of different pa-

rameters of GA-based solutions of TSP on the perform-

ance of parallel kernel on both multi-core systems as

well as many-core systems. For this purpose, we provide

parallel kernels for multi-core systems using TBB and

for many-core GPUs using CUDA. The results of run-

ning this kernels with identical GA settings are used to

provide an in-depth comparison of the efficiency of the

kernels as well as to assess the effect of each GA param-

eter on the overall efficiency of each kernel.

Background

This section gives a brief overview of the related con-

cepts including the architecture of GPU in the CUDA

platform and the main ingredients of TBB architecture.

CUDA

Graphics processing unit is a tool assigned to display

graphic images in workstations, game consoles, or

personal computers. Due to its high processing power in

non-graphic applications, a new branch has been

developed in computer science called GPGPU (General-

Purpose computing on Graphics Processing Unit).

Nvidia’s graphics cards include one of the Femi, Tesla,

and Kepler structures. Each structure has specific

characteristics such as the maximum number of threads

in blocks, the size of shared memory, etc. However, in

order to facilitate programming, the programming inter-

face has been developed. The programming of GPU is of

course a difficult task. Therefore, Nvidia company

presented a software platform called CUDA in 2006 to

implement non-graphic computation on the graphics

processor [26–28].

CUDA provides features for developers to use the hard-

ware capabilities of Nvidia graphics cards in non-graphic

programs and to increase the implementation rate of so-

phisticated algorithms using GPU capabilities. CUDA sup-

ports the main factors involved in the computation from

two different points of view: host and device. Host runs the

main program while device is a help with the processing. A

typical scenario is that CPU is considered as the host and

GPU is considered as an aid to the processor [29].

Any program that is written in CUDA may consist of

several kernels. Each kernel is executed by a grid which

consists of several blocks. Each block consists of mul-

tiple threads. These threads are responsible for imple-

menting the program. In Fig. 1, the concepts of thread,

block and grid are depicted [30].
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TBB

TBB was first introduced by Intel in 2006 as a parallel

programming library. Figure 2 illustrates the general

structure of TBB and how it works to create threads

and balance their workloads. This library allows

parallelization to be interpreted both explicitly and

implicitly. In explicit mode, spawning provides the

programmer with full control over the work of each

task. The implicit state can be achieved using patterns

such as parallel_for or parallel_reduce that accelerate

code-writing. Tasks created explicitly or implicitly are

added to the queue of thread tasks in an abstract

space called Threads Arena. These tasks are carried

out by the master thread or by other workers through

a mechanism called theft. In what follows, we shall

have a look at this concept [31].

TBB’s master thread represented by MT in this figure

is a software thread that instantiates the TBB::task_

scheduler_init object. All threads that are created by MT

and are used to complete MT’s task are referred to as

worker threads. The resource management layer (RML)

is the host of a pool of worker threads. The role of the

Market is to distribute the workloads of master threads

as well as to assign workers to the arenas of master

threads for carrying out the allocated workloads. The

number of available worker threads is always one less

than the maximum of tbb::task_scheduler_ init argument

and the total number of logical cores on the system

Fig. 1 Grid of Thread Blocks

Fig. 2 Components of TBB’s Task Scheduler
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CPU. The next structure is the arena of each MT that

encapsulates all the tasks and resources available (worker

threads) to execute a master thread. A number of slots

are assigned to each arena that represent the number of

worker threads which are needed to complete the paral-

lel tasks of the MT. If the total number of slots needed

for all master threads exceeds the number of workers in

the RML pool, allocation of slots to the arena of MTs

will be tailored to the needs. When the task of the mas-

ter thread ends, the threads produced at the time of

creating each arena are either destroyed or assigned by

RML to active arenas.

Each working thread, when run in an arena, executes a

scheduling procedure called wait_for_all() which consists

of three nested loops. The inner loop executes the

current task by calling the execute() method. Upon

completion of this task, if no further task is called, the

program exits the inner loop. In the middle loop, the

get_task() method attempts to dequeue local tasks in a

Last-In-First-Out (LIFO) order. If successful, the inner

loop will be called again. Otherwise, the thread exits the

middle loop and the outer loop activates the stealing

mechanism by calling the receive_or_steal_task()

method. This method searches for all tasks on this level.

The search includes sending tasks through the task-

thread dependency mechanism, reloading tasks without

uploading priority, or reloading tasks left by other

workers. If the search does not return a task to run, this

method steals from a victim thread that is randomly se-

lected at the current location. If the failures of a worker

thread to steal exceed a certain threshold (a default value

of 100) and the arena of the MT is empty, the failed

worker is released and returned to the pool of RML. The

details of how tasks are stolen can be found in many

sources such as [31, 32].

The proposed approach
Parallel GA for TSP

The general method of solving TSP with genetic

algorithm, which is discussed in this section, is presented

in a flowchart in Fig. 3. It has a lot of applications in

different areas of engineering such as timing, routing,

etc. [33].

Population: each chromosome consists of a fixed

number of genes. In this case, each gene is a city and

every permutation of cities can be considered as a

chromosome.

Fitness function of the initial population: for each

chromosome, the function gives a non-negative integer

which indicates competence and individual ability of

each chromosome. To calculate the fitness of each

chromosome in TSP, we consider the matrix of coordi-

nates of cities. With respect to the coordinates matrix,

the distance between the cities of a chromosome is

obtained from the following equation [34]:

f xð Þ ¼
X

n

i¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi−xi−1ð Þ2 þ yi−yi−1ð Þ2
q

 !

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1−xnð Þ2 þ y1−ynð Þ2
q

ð1Þ

Crossover: this operator is responsible for mating

process (exchange of information between paired chro-

mosomes) and also the convergence speed of genetic al-

gorithm. It usually acts with high probability, i.e. 0.6 to

0.9. This value is called crossover rate and is denoted by

Pc. In this case, a parent and a random position between

the parent’s genes are considered. Then all the genes

which were at the right side of the position of the parent

Fig. 3 Sequential approaches for running Genetic Algorithm
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chromosome will be moved so that the new chromo-

some is obtained.

Mutation: it is another operator which is responsible

for the new information. This operator with the low

probability of 0.01 accidentally changes one of the re-

sulted genes. The overall probability of mutation on a

chromosome is called mutation rate which is denoted by

Pm. In this paper, two genes of a chromosome are ran-

domly displaced.

Calculation of the fitness of new generation: the fitness

function of the population is calculated using crossover

and mutation operators just as the calculation of initial

population.

Selection: there are different methods for selecting the

best chromosome and its transfer to the next generation.

In parallel implementation, it is better to use tourna-

ment selection. In this method, two chromosomes are

randomly selected from the population. Then a random

number between zero and one is chosen as r. if r < k (k

is a parameter for the case of 0.8) then a fitted person or

the one which is less adapted is selected as the parents.

These two are then returned to the initial population

and again participated in the selection process. Finally,

the selected chromosomes are recognized as the next

generation and are sent to the next round of algorithm

implementation [10]. The statistical analysis of the

methods of selection in genetic algorithms, as well as

other operators, is already studied in many researches

including [35]. This issue has a significant effect in de-

signing efficient GAs [36].

The general structure of the sequential and parallel

genetic algorithm is illustrated in Fig. 4. In all of the

proposed parallel kernels, the initial population is same.

The aim of the proposed kernels for parallel GA is to

compare the parallelization power of CUDA and TBB.

In the sequential method, all the operations of the gen-

etic algorithm are performed sequentially. However, in

the parallel method, the important operations of the GA

are implemented in parallel, which reduces the runtime

of the genetic algorithm. These operators are fitness,

crossover, mutation and selection. Figure 4 shows the

flowchart of the proposed method for parallelizing GA.

According to the structure of GPUs, only the threads of

one block can be synchronized. The synchronization is

very important in the genetic algorithm where some op-

erators need to execute in sequence. The most import-

ant advantage of our method over recent methods like

[18] is proposing a trick for solving the problem of syn-

chronizing threads and using the threads of more than

one block. For this purpose, we organize three different

kernels, each of which corresponds to a distinct function

of GA. These kernels would be replicated on different

CUDA blocks simultaneously. By switching between ker-

nels, all threads coincide. The main challenge in switch-

ing among kernels is to minimize the related cost. Given

that, the result of the computations of each kernel are

stored in the global memory of GPU, and no data would

be exchanged at each switching step between the host

and the device. Therefore, the time required for switch-

ing among kernels is very small. The operation of each

kernel is described below.

In the proposed parallelism, first the primary popula-

tion fitness is calculated in parallel by the first kernel. In

this kernel, each thread is responsible for calculating the

Fig. 4 Parallel approaches for running Genetic Algorithm
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fitness of a chromosome. Then, in order to create a new

generation, the operators of crossover, mutation, and fit-

ness functions are implemented in parallel by the second

kernel. In this kernel, each thread is responsible for cre-

ating a new child using different operators of the GA.

The next operator, which is the selection, is also exe-

cuted in parallel by the third kernel and selects the best

chromosomes of current generation to be passed to the

next generation. In this kernel, each thread is respon-

sible for choosing a chromosome. In the end, the condi-

tion of the end of the generation is checked. If the

condition of the completion of the generation is estab-

lished, this operation stops and the best answer is

returned from the populations as a result. Otherwise,

the second and third kernel that perform the creation of

a new generation as well as the selections will run to the

end of the pre-defined number of generations. In the

next section, we examine the performance of parallel

methods on TSP.

Integration to vehicular cloud

Vehicles and sensors in a local area produce the vehicle

content. These contents are processed and used by

neighbourhood vehicles. Vehicles can access these re-

sources by means of vehicular cloud computing (VCC)

[6, 37]. VCC lets vehicles to compute, process, store, and

communicate with each other. The corresponding re-

sources provide the feasibility of management of traffic

and safety of the roads. Indeed, VCC opens new

possibilities for traffic management via efficient vehicle

routing [8].

Our proposed routing system is exploitable on VCCs.

In this case, the systems can offer a new direction for

the development of traffic management systems. Note

that, the integration of VCC with other commercial and

roadside clouds can expand the capabilities of VCC. The

different types of cloud generated by vehicles and dis-

tinctions between them depend on the underlying net-

work infrastructure and the nature of merging between

the clouds. Here, we only focus on the overall structure

of the VCC platform which is best suited for our method

and skip issues and challenges that it brings [7, 8, 37].

Figure 5 shows the proposed VCC structure for imple-

menting the proposed method for routing in smart

vehicular networks. In the bottom of the diagram, a ve-

hicular ad-hoc network (VANET) infrastructure is pre-

sented. The cloud shows the connections of the

participating vehicles. One vehicle acts as a cloud leader

or cloud controller. The cloud controller also links to

the Internet for additional services. Through the inter-

net, the leader communicates with traffic management

officials which runs the proposed algorithm on received

vehicular positional information thus providing required

routing information (information or event - related in-

structions) about optimum routs for the entire road net-

work of a vehicles over the city.

Each vehicle have a collection of resources and knows

the main service provider which can provide routing in-

formation. The abstraction of the vehicle, as shown in

Fig. 5 The vehicular cloud computing for exploiting the proposed method

Abbasi et al. Journal of Cloud Computing: Advances, Systems and Applications             (2020) 9:6 Page 7 of 14



Fig. 5, is shown in the right side of the diagram. Each ve-

hicle has an operating system and hardware at the

primary level controlled by a software that can be run

on virtual machines. This system provides collects

positional data of vehicle and communicates. The re-

sources of the vehicle are actually made available to the

cloud according to the service level agreements with

cloud leader. The cloud leader initiates, publishes and

analyzes the services for the vehicles by continually

evaluating and monitoring the virtual resources of the

contributing vehicles.

Implementation and performance evaluation
In this section, first the characteristics of the used CPU

and GPU as well as the values of the different parame-

ters of the GA are described. Next, the performance of

the proposed parallelization method is investigated based

on different metrics.

Experimental setup and methodology

The experiments were conducted on an Intel (R) Core

i5–7600 3.50GHz personal computer with 8 GB of main

memory that was equipped with NVIDIA GeForce GTX

1060 graphics card. This GPU has 1280 cores, and its

base and boost clocks are 1506MHz, and 1708MHz, re-

spectively. The frameworks used in this implementation

are based on C++ CUDA 8.0 (V8.0.61) for many-core

GPU and TBB version 2018 for multi-core CPU. The

number of threads in the CUDA platform was set equal

to the number of chromosomes while the number of

threads on multi-core CPUs was set equal to the number

of cores. Therefore, in the TBB-based parallel code, the

number of cores is impressive. To investigate this effect,

we run the TBB-based parallel code on dual-core and

quad-core CPUs.

Crossover operator probability is 0.8 and mutation

probability is 0.02. The probability of selection operator,

providing that the operator may choose a sample with

less fitness, is equal to 0.8. The crossover operator is a

single-parent and single-point one and the mutation op-

erator are of the movement type.

The standard data of BCL380, RBU737, PBD984 derived

from VLSI data were used to implement TSP. The data-

sets consisted of 380, 737 and 984 geographical regions of

cities [38]. TSP was solved with 1024 to 16,384 popula-

tions by applying 100, 200 to 3000 generations on each.

The number of offsprings produced in the crossover was

between 10%–50% of the size of the initial population. In

the next section, we review the results which were ac-

quired from the experiments that were repeated 10 times.

Performance evaluation

To evaluate the proposed methods and compare their

performances, we reviewed the influence of parameters

such as population size, number of generations, number

of crossover-mutation and chromosomes size on the

performance of each method.

Evaluation criteria are the implementation time of the

GA in the proposed methods and accelerating the paral-

lel versions of the serial method. First, we investigate the

cost of switching between the proposed kernels over

CUDA platform in different scenarios. Table 1 shows

the time required for solving TSP with 380 cities using

the proposed set of tertiary kernels with different sizes

of population and different numbers of generations. For

each case, the time required for switching among kernels

as well as their execution time is reported. Table 2

shows the switching and execution time of the kernels in

100 generations, with different numbers of cities and dif-

ferent sizes of population. In Tables 1 and 2, the number

of offsprings is 40% and 30% of the population, respect-

ively. As explained in Section 4, since there is no data

transmission between kernels and generations (from

GPU to CPU and vice versa), increasing the number of

generations has not any effect on the switching time.

But by increasing the number of cities and the size of

population, switching time increases due to the transfer

of the initial population from CPU to GPU. However,

the switching time is negligible compared with the ker-

nel running time. The total computation time for any

CUDA kernel is actually the sum of the switching time

and the time of kernel computation.

The plots in Fig. 6 shows the effect of increasing the

size of the initial population and the number of genera-

tions on the execution time of the serial method, the

parallel method on CUDA platform, and the parallel

methods formed by exploiting TBB on two/four CPU

cores. In this experiment, the size of the new population

generated from the crossover operation is 40% of the ini-

tial population. By increasing the number of generations,

the running time of TSP has increased in all methods.

A remarkable point in this experiment is the impact

of the size of population on the running time of

CUDA-based parallel code as compared to TBB-based

parallel codes running on dual-core and quad-core

CPUs. As shown in Fig. 6-a, the execution time of

CUDA-based parallel TSP code is worse than TBB-

based parallel code on dual-core and quad-core CPUs.

In this experiment, all resources of CPUs have been

used while in the GPU only up to 1024 threads have

been used. Increasing the size of populations in-

creases the level of parallelism and consequently the

performance of GPU code is improved. For example,

in the case of having a population of size 4096,

CUDA-based parallel TSP has been better than TBB-

based TSP. The degree of this superiority reaches a

maximum when the size of population hits 16,384. In

this state, the GPU resources has been well used.
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Figure 7 shows the speedup of three parallelization

methods, namely TBB-based TSP kernel on dual-core

and Quad-core CPUs and CUDA-based GPU kernel

with respect to the sequential code in different sizes of

population and offsprings created by crossover. As a

common setting in this experiment, the maximum num-

ber of generations of the GA is set to 100. In all cases,

the speedup of TBB on four cores is more than the

speedup of TBB on two cores. In addition, the overall

rate of the speedup has not changed with the size of

population and the number of offsprings. This is while

in the CUDA-based TSP kernel the speedup has chan-

ged with both of these parameters. The reason is that

both parameters affect the utilization of the resources of

GPU.

The effect of the number of chromosomes on the execu-

tion time of parallel TSP codes is illustrated in the plots in

Fig. 8. In the corresponding experiment, the number of

Table 2 Switching and kernel computation time (ms) in CUDA- 100 generations

Cities Population

Switch Kernel Switch Kernel Switch Kernel Switch Kernel

1024 2048 4096 6144

380 (BCL380) 0.68951 2175.47 1.1975 2211.08 2.20462 2359.25 3.24037 2366.61

737 (RBU737) 1.15285 4060.45 2.1389 4114.11 3.83376 4367.86 5.60917 4377.8

984(PBD984) 1.57603 6200.72 3.11869 6301.57 6.60059 6714.43 8.52061 6727.66

7168 8192 9126 10,240

380 (BCL380) 3.67074 2138.17 4.96326 2400.57 4.65838 2179.79 5.00744 2198.41

737 (RBU737) 6.61571 4410.09 7.89123 4447.35 8.11848 4503.38 9.41981 4528.84

984(PBD984) 10.4104 6786.87 11.0019 6829.77 14.361 6917.51 13.9765 6953.94

16,384 20,480 32,768 65,536

380 (BCL380) 8.41643 2280.52 10.2355 2632.1 16.026 4905.64 32.1677 9212.24

737 (RBU737) 16.22 4694.13 194,048 4917.1 30.0229 9179.92 58.7788 17,204.9

984(PBD984) 24.4927 7204.22 28.8571 7572.09 44.0464 14,145.5 91.1372 26,544.6

Table 1 Switching and kernel computation time (ms) in CUDA- 380 cities (BCL380)

Population Generation

100 200 400 800 1000 2000 2500 3000

1024 Switch 0.73822 0.75217 0.76018 0.75258 0.74694 0.75838 0.75547 0.75114

Kernel 2183.76 4352.68 8687.09 17,355.7 21,697.6 43,378.4 54,213.4 65,068.2

2048 Switch 1.28195 1.47194 1.35182 1.26267 1.2215 1.37934 1.28483 1.28211

Kernel 2268.34 4520.98 9024.91 18,036.1 22,541.3 45,064 56,323.4 67,587.5

3072 Switch 1.80883 1.80882 1.94954 1.81701 1.83845 2.31515 1.8183 1.80926

Kernel 2359.75 4700.82 9390.72 18,762.1 23,439.8 46,859.3 58,596.2 70,285.9

4096 Switch 2.33739 2.33973 2.33702 2.52005 2.35171 2.3325 2.3419 2.28941

Kernel 2362.82 4705.47 9399.08 18,779.1 23,461.8 46,914.9 58,661.3 70,357.7

5120 Switch 2.90762 2.92509 2.86219 2.91802 2.91189 2.97024 3.03762 2.88035

Kernel 2384.06 4750.92 9484.7 18,944.5 23,687.8 47,371.8 59,201.4 71,052.9

6144 Switch 3.73773 3.4692 3.58517 3.48848 3.40894 3.45525 3.5112 3.60488

Kernel 2399.68 4779.72 9544.65 19,071.8 23,829.4 47,643.4 59,560 71,438.4

8192 Switch 4.68266 4.48123 4.52781 4.87566 4.90762 4.45749 5.53869 4.46005

Kernel 2443.86 4876.11 9721.46 19,423.6 24,309.7 48,604.7 60,656.3 72,888.9

10,240 Switch 5.55746 5.61781 5.79314 5.61149 5.62642 5.53069 5.70728 5.61958

Kernel 2239.25 4434.78 8829.64 17,603.5 21,985.7 43,953.9 54,938.4 66,007.3

16,384 Switch 11.3822 9.32661 8.84053 8.85627 9.85898 9.05573 9.3819 8.99462

Kernel 2434.82 4814.55 9593.75 19,134 23,902.9 48,031.8 60,033 72,071.8
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generations and the number of offsprings resulting from

each crossover process are kept constant while the size of

the population is allowed to be varied. For this experi-

ment, three different datasets with 380, 737 and 984 cities

have been used. The size of offsprings is set to be 40% of

the initial population during 100 generations.

As shown in Fig. 8, TBB-based code on four cores in

the population of less than or equal to 4096 has the least

running time and the highest speedup as compared to

other methods. But when the population is more than

4096, CUDA has the best performance compared to

other methods. This state hits when CUDA computes

the GA solution of TSP with 20,480 population; in this

case, each thread calculates a chromosome. As the popu-

lation grows, each thread should examine more than one

chromosome, which increases the running time. This is

illustrated in the speedup plots of Fig. 8.

According to the GPU specifications used in this study,

the maximum number of threads to run simultaneously is

20,480 threads. Thus, when the initial population exceeds

20,480, the computational load per thread increases, which

reduces the acceleration. Another remarkable point in this

experiment is the ineffectiveness of changes in chromo-

some length (number of cities) in the overall running time

of the three parallel methods provided by the GA. The

maximum speedup values obtained in experimentation of

Fig. 6 The running time of the algorithm over different numbers of generations and different sizes of population. Each subplot is labeled with

the corresponding population size
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TBB-based TSP on dual-core and quad-core CPUs are 1.99

and 3.99, respectively, while the maximum speedup of

CUDA-based TSP on 1280 cores is 13.73.

Finally, according to the experiments, it can be stated

that when a genetic algorithm is applied on a small

population, the TBB-based method has the best per-

formance. Otherwise, considering the ability of CUDA

to define the maximum required number of threads for

calculations, the use of CUDA is more efficient.

Efficiency evaluation and comparison

To provide a more intuitive illustration of the efficiency of

the proposed parallelization method, the efficiency of the

proposed parallelization of the GA solution of TSP on TBB

platform is computed and compared in Table 3 with the

state-of-the-art methods. As shown in Table 3, the efficiency

of the proposed parallel GA on a quad-core system using

TBB platform is the highest as compared to the other paral-

lel GA solutions of TSP on multi-core systems. Moreover,

the efficiency of multi-core parallelization of GA solution of

TSP using TBB platform is 0.9975, which is considerably

higher than that of the OpenMP-based parallelization as

well as TBB-based parallelization done by Zhu [16]. This re-

sult shows that the proposed parallelization method could

more optimally exploit the parallel resources of the multi-

core CPUs and consequently achieve higher efficiency.

Fig. 7 The speedup of the parallel methods with respect to different ratios of offspring on different populations in a TSP with 380 cities. Each

subplot is labeled with the corresponding population size
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Conclusion

Using efficiently parallelizable optimization algorithms

for solving equivalent TSPs of vehicle routing problems

is a key in minimizing the costs of any intelligent trans-

portation system with limited profitability margins. Espe-

cially, providing a solution exploitable on vehicular

cloud computing platform has been recently attracted

many interests.

In this paper we presented an enhanced GA solution

to TSP problem in VRPs which could be easily and

highly parallelized on multi-core and many-core

Fig. 8 The impact of population size on the speedup of parallel methods. Each subplot is labeled with the corresponding population size

Table 3 Comparing the efficiency of state-of-art parallelizations

of GA solution of TSP

Year Method Reference # of Cores Speed up efficiency

2013 TBB Zhu [16] 4 2.55 0.6375

2019 OpenMP Saxena [25] 4 2 0.5

2019 TBB Proposed Method 4 3.99 0.9975

2019 TBB Proposed Method 2 1.99 0.995
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machines of suitable VCC platforms. We show that the ef-

ficient parallelization of genetic algorithms (GAs) on

multi-core or many-core systems is affected by the effi-

ciency of the schedulation of hardware resources regard-

ing the concurrency of threads. We proposed a method

for efficient parallelization of genetic algorithms on multi-

core and many-core systems. In the proposed method, the

fitness functions, crossover, mutation and selection func-

tions are implemented in parallel. Next, the proposed

method is implementable on many-core and multi-core

processors. The second aim of this study was to arrange

synchronizable kernels which can use the maximum re-

sources of many-core processors for accelerating the com-

putations. In this regard, three separate kernels were

designed to compute the various functions of the genetic

algorithm concurrently. These kernels can be replicated

on different CUDA blocks on GPU. To synchronize the

threads of these blocks, a switching mechanism is used.

The time taken to switch between the kernels of different

blocks is negligible with regard to the running time of the

genetic algorithm. Therefore, the proposed method is

highly efficient in synchronizing collaborative threads in

the processing of genetic algorithms.

The proposed method was tested for parallelizing a

GA-based solution of Traveling Salesman Problem

(TSP) on CUDA and TBB platforms with the same set-

tings including the same number of primary population

and generations as well as the same ratio of children cre-

ated by crossover and mutation operators on the same

data set. The performance of these two platforms were

evaluated based on different criteria such as the running

time and speedup of the parallel GA over each of them.

According to the results, the highest speedup of the

parallel algorithm on the GPU, the dual–core processor,

and the quad-core processor is 13.73, 1.99, and 3.99, re-

spectively. Another significant finding of this study is

that the performance of a parallel algorithm on a GPU-

like many-core processor, when the initial number of

population in the genetic algorithm is low, is much

lower than that of a multi-core processor. The reason is

that, in a low initial population, parallelization resources

in multi-core processors are more efficiently utilized

than in the GPU-like many-core system.

The CPU/GPU clusters have recently evolved to become

high-performance accelerators for computation-intensive

programs [39, 40]. Therefore, future studies should inves-

tigate how to extend the proposed method to best use the

resources of GPU cluster for GA computations.
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