
An Efficient Parallel Implementation of the MSPAI
PreconditionerI

T. Huckle∗,a, A. Kallischkoa, A. Roya, M. Sedlaceka, T. Weinzierla

aTechnische Universität München, Boltzmannstr. 3, 80748 Garching, Germany

Abstract

We present an efficient implementation of the Modified SParse Approximate In-
verse (MSPAI) preconditioner. MSPAI generalizes the class of preconditioners
based on Frobenius norm minimizations, the class of modified preconditioners
such as MILU, as well as interface probing techniques in domain decomposition:
it adds probing constraints to the basic SPAI formulation, and one can thus opti-
mize the preconditioner relative to certain subspaces. We demonstrate MSPAI’s
qualities for iterative regularization problems arising from image deblurring.

Such applications demand for a fast and parallel preconditioner realization.
We present such an implementation introducing two new optimization tech-
niques: First, we avoid redundant calculations using a dictionary. Second, our
implementation reduces the runtime spent on the most demanding numerical
parts as the code switches to sparse QR decomposition methods wherever prof-
itable. The optimized code runs in parallel with a dynamic load balancing.

Key words: preconditioners, iterative methods, sparse matrices,
regularization, dictionary, parallel computing

1. Introduction

We consider the iterative solution of a large, sparse, and ill-conditioned linear
system of equations Ax = b with A ∈ Rn×n, x, b ∈ Rn. Hereby, the choice of the
preconditioner often has a stronger impact on the convergence behavior than the
choice of the iterative solver such as BiCGstab, GMRES, or QMR. In [14, 15],
we extend and generalize the class of SParse Approximate Inverse (SPAI) pre-
conditioners to the Modified SPAI (MSPAI) formulation: here, the combination
of targeting approaches [12] and classical probing methods [4] enables us to op-
timize the preconditioner on problem-dependent subspaces, and, thus, to derive

IThis work has partially been funded by Bund der Freunde der Technischen Universität
München e.V. (BdF), Antrag 2008-09.

∗Corresponding author
Email addresses: huckle@in.tum.de (T. Huckle), sedlacek@in.tum.de (M. Sedlacek)

Preprint submitted to Elsevier January 4, 2010

filtering preconditioners. MSPAI’s effectiveness is already demonstrated for sev-
eral fields of applications such as preconditioning Schur complements in domain
decomposition, conventional PDE matrices, or Stokes problems [14, 15].

In this paper, we apply MSPAI as promising preconditioner in iterative reg-
ularization methods arising from image deblurring. Hereby, the image has to be
reconstructed fast and as accurate as possible, while the noise in the image is
to be eliminated. The image and the noise are two different problem-dependent
subspaces, which can be addressed by MSPAI in different ways.

Afterwards, we present an efficient, i.e. fast, parallel, and scalable, MSPAI
code implementing three sophisticated features:

1. Matrices with a structured sparsity pattern entail the solution of many
identical Least Squares (LS) problems throughout the computation of an
MSPAI. We eliminate these redundancies (Section 3.1) as we introduce a
dictionary holding the intermediate results. A hash table is a straightfor-
ward implementation of such a dictionary. Yet, it turns out that a simpler
cache-type realization with a last recently used update strategy works as
well, but comes along with fixed memory requirements. Fixed memory
requirements are important for huge-sized problems where storing all the
intermediate results exceeds the memory.

2. A data decomposition approach makes our MSPAI implementation run
in parallel on a distributed memory machine (Section 3.2). The individ-
ual nodes benefit from the dictionary introduced before, too. Our code
supports the prescription of a maximum sparsity pattern for the precon-
ditioner. This idea introduced in [13] predicts the sparsity structure of a
SPAI-type preconditioner, i.e. it predicts the data to be exchanged and
enables the code to exchange a smaller number of bigger messages which
minimizes the communication overhead.

3. Sparse matrices often lead to sparse LS problems throughout an MSPAI
computation. We speed up this expensive computational subtask as we
switch from a full matrix QR decomposition to a sparse one (see Davis
[6]) wherever suitable (Section 3.3).

Our performance improvements exploit the structure and sparsity of the
matrices arising from image deblurring. Yet, image processing, where a single
operator is applied on all pixels, is only one example application domain where
such structured matrices occur. Matrices stemming from PDEs that are dis-
cretized on a regular grid are another example. Such matrices are taken into
account throughout the numerical experiments. In the PDE world, also matri-
ces from block-structured adaptive grids reveal the same (hierarchical) pattern
over and over again.

The remainder is organized as follows: In Section 2, we explain the SPAI
preconditioner and generalize it to the MSPAI method. To demonstrate the
usefulness of MSPAI, we introduce an adaption for image deblurring in Sec-
tion 2.2. Afterwards, we show that a realization of the MSPAI does not differ
substantially from a SPAI implementation, and we write down the algorithmic

2

steps of such a realization (Section 2.3). The description places emphasis on the
algorithm’s redundant calculations, the inherent parallelism, and the computa-
tional demanding subtasks. In Section 3, we finally present an implementation
exploiting computational redundancies, a tailored parallelization, and the sparse
QR decompositions. Runtime results, a conclusion, and a short outlook close
the discussion.

2. SPAI and SPAI variants

Benson and Frederickson [2] introduce the idea to use Frobenius norm mini-
mizations for preconditioning purposes. The underlying principle is to construct
an approximation M ≈ A−1 to the inverse of the system matrix A ∈ Rn×n by

min
M
‖AM − E‖F . (1)

Sparsity is ensured by imposing a certain sparsity pattern P (M), which has
usually a number of nonzero entries (nnz) in the order of magnitude of A’s nnz.
The Frobenius norm is a sum of Euclidean norms

‖AM − E‖2F =

n∑

k=1

‖Amk − ek‖22 .

Therefore, the minimization (1) decouples into the independent solution of mul-
tiple minimization problems, one for each column of M :

min
mk

‖Amk − ek‖2 , k = 1, . . . , n. (2)

This aspect gives preconditioners based on Frobenius norm minimizations a
clear advantage over other classical preconditioners: they are inherently paral-
lel. Since we only allow a few nonzero entries defined by P (M) in the solution
mk, (2) is a Least Squares (LS) problem. Grote and Huckle [8] address the prob-
lem of computing such a Frobenius norm minimization with a simple diagonal
or empty start pattern and add, step by step, the most promising additional
nonzero entries in order to improve the approximation. Their Frobenius norm
minimization enriched by pattern updates is well-known as the SPAI precondi-
tioner.

2.1. Modified SParse Approximate Inverses – MSPAI

In [14], we generalize the SPAI minimization (1) similar to the targeting
by Holland, Shaw, and Wathen [12]. We combine this approach with classical
probing techniques [4], which are, for example, applied for preconditioning Schur
complements in domain decomposition problems. In contrast to the classical
probing, our basic formulation

min
M
‖CM −B‖F = min

M

∥∥∥∥
(

C0

ρeTC0

)
M −

(
B0

ρeTB0

)∥∥∥∥
F

(3)

3

is not restricted to special probing subspaces as it allows any choice of e. The
resulting preconditioner M satisfies

C0M ≈ B0, and

eTC0M ≈ eTB0. (4)

We refer to the first n rows of (3), i.e. C0M − B0, as full approximation part
and to the additional rows as probing part. The weight ρ ≥ 0 enables us to
control how much emphasis is put on the probing constraints (4), and the ma-
trix e ∈ Rn×k contains the k subspaces on which the preconditioner should be
optimal. Choosing ρ = 0 and C0 = A, B0 = E in (3) leads to the classical
SPAI formulation. Setting C0 = E and B0 = A, we end up with a formulation
computing explicit approximations to A. This approximation can have consid-
erably fewer nnz than A but an equivalent action on e. The field of applications
is versatile: we can improve preconditioners resulting from ILU, IC, FSAI, FS-
PAI, or AINV (see [3] for an overview) by adding probing information. For a
given ILU factorization LU ≈ A, e.g., we set C0 = L, B0 = A and restrict the
sparsity pattern of M to upper triangular form (M := Ũ):

min
Ũ

∥∥∥∥
(

L
ρeTL

)
Ũ −

(
A

ρeTA

)∥∥∥∥
F

.

If we choose e = (1, . . . , 1)T , we obtain an Ũ preserving the row sums. There-
fore, our formulation is closely related to the class of modified preconditioners
(modified ILU, modified IC), and we refer to (3) as Modified SPAI (MSPAI).
We also overcome the main drawbacks of MILU and classical probing such as
the restriction to the vector of all ones as probing subspace and the rather dif-
ficult efficient implementation on parallel computers. The numerical examples
in [14, 15] demonstrate MSPAI’s effectiveness for preconditioning various PDE
matrices and preconditioning Schur complements arising from domain decom-
positions. The regularization of image deblurring problems as a new promising
field of application is the topic of the following section.

2.2. MSPAI for preconditioning in iterative regularization methods

For ill-posed problems, as they arise in image restoration, regularization
techniques are important in order to recover the original information. Let us
consider the linear system

g = Hf + η (5)

where f is the original image, H is the blur operator, η is the noise, and g is
the observed image. We want to recover f as good as possible and as fast as
possible. Because H may be extremely ill-conditioned and because of the noise,
(5) cannot be solved directly. Consequently, a regularization technique has to
be applied.

We use an iterative solver such as the Conjugate Gradient method (CG) [7].
From the CG convergence analysis it is known that in the first steps the method
reduces the error relative to large eigenvalues. In later steps, the eigenspectrum

4

related to noise and small eigenvalues dominates the evolution of the approx-
imate solution. Therefore, the restoration has to stop after a few iterations
before the method starts to reduce the error relative to the noise space.

Preconditioning accelerates the convergence while it should improve the
quality of the reconstruction [9, 10, 17]. Until now, structured preconditioners
like Toeplitz or circulant matrices are considered typically, whenever structured
isotropic blur operators are treated. For general H, a preconditioner like ILU
will lead to faster convergence but the quality of the reconstruction will de-
teriorate because the preconditioner also improves the solution relative to the
unwanted noise subspace. Therefore, usually no preconditioners are applied
for general H. We propose MSPAI probing as regularizing preconditioner for
general H: Following [10], such a preconditioner M should have the following
properties:

• M ≈ |H|−1 on the signal subspace with |H| = (HTH)1/2, and

• M ≈ E or M ≈ 0 on the noise subspace.

For circulant matrices, the eigendecomposition is known and, therefore, these
conditions can be satisfied by manipulating the eigenvalues. For general matri-
ces, this is usually not possible, and we thus use the probing facility of MSPAI in
order to derive a different approximation quality on the signal or noise subspace,
respectively:

• For the signal space, we use the smooth vector eS = (1, 1, . . . , 1)T . In order
to allow larger subspaces, we can add numerical eigenvector estimates to

k large eigenvalues, or we add k vectors of the form (sin
(
πjs
n+1

)
j=1,...,n

,

s = 1, . . . , k). They also represent smooth components, and therefore the
important part of the signal subspace.

• For the noise space, we use eN = (1,−1, 1,−1, . . .)T . To allow larger sub-
spaces we can also consider eigenvector estimates to near singular eigen-

values, or vectors of the form (sin
(
π(2j+1)(n+s)

2(n+1)

)
j=1,...,n

, s = 1, . . . , k)

related to fast oscillations.

For higher dimensional problems, probing vectors typically result from a Kro-
necker product of 1D probing vectors. The probing conditions in MSPAI are
given by ρSe

T
S (AM − E) for the signal subspace in order to derive a good pre-

conditioner and fast convergence on the signal subspace, and ρNe
T
N (M − E)

or ρ0e
T
N (M − 0) for the noise subspace in order to avoid a deterioration of

the reconstruction by the preconditioner. Only nonnegative weight factors are
allowed.

In many examples, the signal space is large and the noise subspace is small.
It then makes sense to approximate the inverse in the signal subspace and add
a few probing conditions relative to the noise subspace. In other cases, the
noise subspace is much larger, i.e. the preconditioner should approximate the
identity, and we add only a few probing conditions relative to significant vectors

5

Figure 1: Image section of Lena (left) and Example 1 (right) with preconditioned CG on H1:
no preconditioner (dotted line); MSPAI to weights wn = (1, 0, 0, 0) (dashed line, equivalent to
plain SPAI); MSPAI to weights wn = (1, 0, 100, 100) (solid line). The minimal error has been
achieved by MSPAI probing with parameters wn = (1, 0, 100, 100) after 11 iterations.

representing the signal subspace. The general approximation condition reads as
minM ‖AM − E‖2F on the full space in the form

min
M

(
ρ2A ‖AM − E‖2F + ρ2E ‖M − E‖2F

)
or min

M

∥∥∥∥
(
ρAA
ρEE

)
M −

(
ρAE
ρEE

)∥∥∥∥
2

F

.

Together with the probing part, we end up with the minimization problem

min
M

∥∥∥∥∥∥∥∥




ρAA
ρEE
ρSe

T
SA

ρNe
T
N


M −




ρAE
ρEE
ρSe

T
S

ρNe
T
N




∥∥∥∥∥∥∥∥

2

F

or min
M

∥∥∥∥∥∥∥∥




ρAA
ρEE
ρSe

T
SA

ρ0e
T
N


M −




ρAE
ρEE
ρSe

T
S

0 · eTN




∥∥∥∥∥∥∥∥

2

F

with the weights wn := (ρA, ρE , ρS , ρN) for the case M ≈ E on the noise
subspace, or w0 := (ρA, ρE , ρS , ρ0) for M ≈ 0 relative to noise, respectively. For
our tests, we consider the following blur matrices:

1. With T1 := tridiag(1, 2, 1) and the identity matrix E, we set H1 = E ⊗
T1 + T1 ⊗ E relative to the filter mask

 1
1 4 1

1

. H1 has a large signal

subspace.
2. With T2 = pentadiag(1, 1, 1, 1, 1), we set H2 = E ⊗ T2 + T2 ⊗ E.
3. With tj = exp(−0.1j2), we define the band matrix T3 for the vector

(tL−1, . . . , t1, t0, t1, . . . , tL−1). H3 := T3 ⊗ T3 representing a 2D Gauss
filter. It has a large noise subspace.

Our test image is a 100× 100 section of lena.bmp (Figure 1), where we ap-
ply the operator Hk and add random noise with level 0.001. A CG method

6

reconstructs the original image on the normal equations, and the sparsity pat-
tern of H acts as sparsity pattern for the preconditioner. The error is given by
the difference between the recovered image and the original information in the
Frobenius norm.

Figure 2: Example 2 with blur matrix H2: no preconditioner (dotted line); MSPAI to weights
wn = (1, 0, 0, 0) (dashed line); MSPAI with weights wn = (1, 1, 100, 0) (solid line). The
best image recovering was achieved by probing M ≈ 0 on the noise subspace with weights
w0 = (1, 1, 100, 100) (dash-dot curve). For this method the minimal error has been achieved
after 27 iterations.

Using MSPAI probing, it is possible both to reduce the number of iterations
(Figure 1) and to recover the original image more accurately (Figures 2 and 3).
The faster convergence with the MSPAI preconditioner leads to a faster dete-
rioration of the reconstruction if we apply too many iteration steps. Without
a preconditioner, the number of iterations that yields an almost optimal recon-
struction is bigger, and the region of optimal approximation quality is broader
and smoother, i.e. here, the CG approximation is almost stationary. Our reg-
ularization in turn should be combined with an appropriate stopping criterion
[11]. The weights in MSPAI should be chosen heuristically either

• as an approximate inverse part plus probing on the noise space,

• as identity for the approximation part plus a probing part relative to the
signal space,

• or as a compromise between the above.

Following Figures 1 – 3, these preliminary examples show the advantage of
MSPAI probing for regularization problems. However, there are still a lot of
open questions such as choosing optimal probing vectors, sparsity patterns, the
stopping criterion, or the individual weights ρ.

7

Figure 3: Example 3 with matrix H3, L = 3: no preconditioner (dotted line); MSPAI with
weights wn = (0, 100, 100, 0) (solid line). The minimal error has been achieved by MSPAI
probing with parameters wn = (0, 100, 100, 0) after 40 iterations.

2.3. Solution of SPAI-type least squares problems

We can compute the columns of M independently from each other for both
SPAI and MSPAI. For each column, the MSPAI formulation (3) leads to the

solution of one LS problem of type minmk
‖Cmk − bk‖22, i.e. n LS problems in

total. This is exactly the same type of LS problem as (2), i.e. it is sufficient
to restrict ourselves to the classical SPAI notation and to refer to this type as
SPAI-type LS problem. We prescribe or let the pattern update steps identify
a sparsity pattern P (mk) ⊂ P (M) (k = 1, . . . , n) for the location of nonzero
entries in M . Let J denote the index set of entries in column mk:

J := {j : mk(j) 6= 0, j = 1, . . . , n}, q := |J |.

J contains the q columns of A which we need when a matrix-vector product of
A and mk(J) is evaluated. Most of the index sets, matrices, and vectors here
and on the forthcoming pages are generic, i.e. they depend on k, too. Besides
ek and mk, we however omit the k-subscripts to improve the readability.

The reduced matrix A(.,J) typically contains a lot of zero rows if A is sparse.
Therefore, we define the set I of nonzero rows of A(.,J) as

I :=



i :

∑

j∈J
|aij | 6= 0, i = 1, . . . , n



 , p := |I|.

I is the shadow of J , and it yields

Â := A(I,J) ∈ Rp×q,
m̂k := mk(J) ∈ Rq×1,
êk := ek(I) ∈ Rp×1.

8

J

J




× × × × × ×
× × ×

× × ×
× ×

× × × × ×
× ×

× ×







×

×
×

×




A mk

I=⇒




× × ×

× ×
× × × ×
× ×
× ×







×
×
×
×




A(.,J) m̂k




× × ×
× ×

× × ×
×

×







×
×
×
×


=⇒

Â m̂k

Figure 4: Â is defined by the index sets J and the shadow I (J = {2, 4, 5, 7} and I =
{2, 4, 5, 6, 7}).

I and J formulate the LS problem (2) in its reduced form (see Figure 4) as

min
m̂k

∥∥∥Âm̂k − êk
∥∥∥
2

2
.

Usually, the dimension of Â is considerably smaller than n, as we allow only a
few entries in each column. Since Â has full column rank q if A is nonsingular,
we can use a QR decomposition to compute the LS solution. Let Â = QR0 with

orthogonal Q ∈ Rp×p and R0 =

(
R
0

)
∈ Rp×q. R holds the first q rows of R0.

We then compute the solution m̂k by

ĉ = QT êk, and

m̂k = R−1ĉ(1 : q). (6)

The Householder QR decomposition of Â requires 2q2
(
p− q

3

)
operations, and

it dominates the preconditioner’s runtime. Its matrix Q is implicitly given by
the Householder vectors. Once the entries m̂k are determined, both SPAI and
MSPAI improve the approximation by updating the sparsity pattern of each
column. Based on the residual r = Amk − ek and its sparsity pattern, they
identify the most profitable new indices and add them to the pattern. We
introduce the notation Υα,β which symbolizes a maximum of α pattern update
steps, each adding exactly β new indices. Ῡα,β indicates that only those indices
are added which are more profitable than the average of all the β additional
indices taken into consideration.

9

Updating the pattern leads to an enlarged Â and another LS solution by
QR decomposition. The update steps are continued until ‖r‖2 falls under a
predefined ε or the nnz of mk exceeds an upper bound specified by the user.
For the details on the update criterion see [8].

3. Implementation

The MSPAI implementation can be reduced to a SPAI implementation for
an augmented system. This system is sparse but tends to be huge. Hence,
the corresponding solution task is computational demanding due to the large
number of small LS problems. It requires for an efficient implementation.

3.1. Eliminating redundant calculations with a dictionary

The linear equation systems in image restoration typically exhibit a very
regular structure: In the full approximation part of (3) the diagonal element is
set and, relative to the diagonal, entries occur often at the same positions. These
entries’ values moreover are the same for many columns. In (6), reoccurring
values and sparsity patterns in A lead to the same Â, if the index pattern is
also aligned along the diagonal. This is usually the case. Same Â imply the
same LS problems, and the corresponding identical QR decompositions thus
are computed multiple times. It is an obvious idea to avoid the redundant
computations and to exploit the reoccurring patterns.

We extend our MSPAI algorithm: After a QR decomposition, the algorithm
stores the decomposition and the corresponding Â in a dictionary. For the sub-
sequent Â, i.e. the next preconditioner column to compute, the code looks up
the result in the dictionary. If it is not computed yet, the algorithm computes
the decomposition and notes it down. Thus, we avoid redundant QR decompo-
sitions.

Although computations are eliminated, naively searching in the dictionary
will almost for certain slow down the application. We introduce a function
key : Â 7→ {0, . . . ,M − 1}, M ∈ N resembling a hash key [16] for the dictionary
entries. Each entry in the dictionary then equals a four-tuple (Â,Q,R, key(Â)).
With Â1 = Â2 ⇒ key(Â1) = key(Â2), we apply a two-step search: If the
key is not stored yet, the algorithm terminates the search and starts the QR
decomposition. Otherwise, all the dictionary entries Â with an equal key are
compared bit-wise to the current input Â until a decomposition is found. If
all comparisons fail, the decomposition is computed. The comparisons and the
decomposition can run in parallel; they compete with each other.

The performance improvement of the MSPAI optimization all depends on
the key computation. The key has to be simple to compute, and, for a given
number of different Â, the number of identical keys (key collisions) should be
small. This is a classical hash key challenge where one long bit stream consisting
of Â’s sparsity pattern and the matrix’s values act as input sequence. For our
purposes, a simple 32-bit key proved of sufficient value: Hereby, the upper
and lower part of each matrix entry’s bit representation are combined via an

10

1. Given Â.

2. Compute key(Â).

3. key(Â) ∈ dictionary?

(a) For each dictionary en-
try with same k: Com-
pare Â bit-wise to en-
try’s Â.

(b) Found same Â? Take re-
sult QR decomposition
from dictionary and re-
turn.

(c) Otherwise proceed to
next step.

4. key(Â) /∈ dictionary or from
(3c)?

(a) Compute result QR de-
composition.

(b) Add (Â,Q,R, key(Â))
to dictionary.

(c) Return result.

1. Given Â. Dictionary of size D.

2. Compute key(Â).

3. key(Â) ∈ dictionary?

(a) For each dictionary entry with
same k: Compare Â bit-wise to
entry’s Â. Start with first entry.

(b) Found same Â at position d?

i. Extract result decomposition
from dictionary.

ii. Reinsert decomposition at
begin of dictionary.

iii. Return result.

(c) Otherwise proceed to next step.

4. key(Â) /∈ dictionary or from (3c)?

(a) Compute result decomposition.
(b) If size of dictionary equals D: re-

move last entry.
(c) Add (Â,Q,R, key(Â)) as first en-

try to dictionary.
(d) Return result decomposition.

Figure 5: SPAI’s QR decomposition augmented with a dictionary (left). Instead of a complete
dictionary, one could also use a cache of fixed size with a last recently used update scheme
(right). The latter one comes along with bounded memory requirements and a reduced number
of key collisions.

exclusive OR. All the p · q resulting keys keyi, i ∈ {1, . . . , p · q}, Â ∈ Rp×q, are
then combined into one key according to

h1 = key1,

hi = hi−1 · (32− 1) + keyi 2 ≤ i ≤ p · q and

key(Â) = hp·q.

A straightforward implementation of the dictionary uses a hash table to store
the calculations. Such tables come along with two drawbacks: Throughout the
computation they grow and the probability of a key collision increases with the
number of entries, if the algorithm does not adapt both the hash key and the
hash table size. Yet, one can characterize the different Â for many matrices:
there is a couple of Â whose entries occur very often. A second implementation
of our algorithm thus implements the dictionary in a last recently used (LRU)
cache manner (Figure 5, right), i.e. the dictionary’s size is fixed. If the dictionary
runs out of size because of an insert, the code removes the element used last
recently. For this implementation, the required memory is bounded1.

1We implemented two cache realizations based either on a linked list or on a fixed-sized

11

3.2. Parallelization

SPAI is inherently parallel due to the decoupled minimization problems in
(2) and, hence, demands for a parallel implementation. This property holds for
MSPAI, too. Our MSPAI parallelization strategy follows [1]: First, the differ-
ent columns of M are cut into chunks of the same number of columns. These
numbers differ by at most one column. The responsibilities for the individual
chunks then are distributed equally among the computing nodes. Second, C’s
and B’s columns are distributed in the same manner. Third, every node com-
putes the columns of M it is responsible for. Finally, each node carries over
responsibilities for additional columns from other working nodes as soon as it
runs out of work.

We end up with a plain, low-overhead, dynamic load balancing for our par-
allel MSPAI implementation. A static load balancing would not be sufficient as,
on the one hand, the pattern of the inverse is not known a priori and the compu-
tational work thus is not predictable. On the other hand, augmenting MSPAI
with a dictionary makes it difficult to foresee the computing time required per
column.

While MSPAI’s column computations run independently of each other, the
computation might demand for columns of B and C for which the local node
is not responsible. Such columns are not available on the local node a priori.
Instead, the node has to copy them from other nodes. To avoid redundant
requests, all the copied data are cached.

The data exchange is optimistic, asynchronous, and overlapping, i.e. the al-
gorithm predicts remote column accesses and exchanges data in the background:
In [13] the idea of a maximum sparsity pattern is introduced. Hereby, a pattern
for the approximate inverse is derived a priori. This pattern guarantees for a suf-
ficient initial approximation. We use it to enlarge the remote column request’s
size, i.e. instead of requesting solely data required for the current computation,
we request additional data imposed by the pattern. Thus, too many data might
be exchanged for the moment, but it is likely that these columns will be used
later on.

As we run our experiments on a distributed memory machine, each node
holds a decomposition dictionary of its own. Dictionary entries hence are com-
puted and stored multiple times on different nodes. Searching in the dictionary
comes along without any communication and data exchange. However, for a
cluster with shared memory nodes, shared dictionaries might be of great use.

3.3. Sparse QR decomposition

The QR decomposition in (6) is the most expensive computation of the
overall algorithm. Although Â is small compared to A and, typically, much
denser, it still exposes a sparse pattern if P(M) is sufficiently sparse. It is an
obvious idea to make the algorithm benefit from a sparse QR decomposition
implementation for Â.

array. The linked list yields better results.

12

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

x 10
−3

density [%]

tim
e

[s
]

LAPACK

CSparse

CSparse w. AMD

Figure 6: Runtime for different implementations of the QR decomposition. One 100 × 100
random matrix acts as input matrix. The plot compares LAPACK’s implementation with the
CSparse2 [6] package with and without AMD preordering. The break-even here is lower than
the one we observed in tests with matrices from Matrix Market3.

Yet, for sufficiently dense matrices, sparse QR decomposition approaches
come along with a lower MFLOP rate and a higher overhead if one compares
them to QR decompositions working on full matrices (Figure 6). As we do not
know the structure of all the matrices a priori, we can not restrict ourselves
to one hardwired type of QR decomposition. Instead, we examine Â’s nnz
compared to p·q to choose an appropriate implementation for each computation.

If 1
p·qnnz(Â) < εQR, we invoke a sparse QR decomposition based upon a

compressed sparse column format. Our implementation uses CSparse, since this
package implements Householder transformations using sparse data structures.
In case of denser submatrices, we convert the internal representation of Â into a
full matrix and pass it to standard LAPACK/Atlas routines. Extensive runtime
tests with a large set of test matrices from Matrix Market reveal εQR = 15%
being a meaningful default value in our implementation. Of course, this value
can be modified by the user, and, of course, it depends on the actual machine and
the library implementation used. An approximate minimum degree reordering
as preprocessing step in order to reduce the fill-in during the QR decomposition
is also offered by CSparse but not taken over into our current implementation.

4. Runtime results

Here, we study the optimization techniques introduced in the previous sec-
tions. All the experiments were conducted on AMD Opteron 850 processors at

2http://www.cise.ufl.edu/research/sparse/CSparse
3http://math.nist.gov/MatrixMarket

13

Table 1: MSPAI 1.1’s behavior for different matrices. All measurements are normalized
with respect to the standard SPAI without optimizations, i.e. they give speedups. MSPAI’s
dictionary is realized either as hash table or as a LRU cache of size 60. The QR decompositions
are based upon LAPACK with Ῡ0,0, ε = 10−2, and the SPAI pattern of A.

matrix hash table LRU cache
name dimension speedup dictionary entries speedup
laplace2d 1o10 100 1.37 24 1.37
laplace2d 2o10 100 0.87 24 0.87
orsirr 2 886 0.78 776 0.88
laplace3d 1o10 1000 1.85 125 1.84
pores 2 1224 0.68 1221 0.78
olm2000 2000 1.93 5 1.92
laplace2d 1o50 2500 2.92 24 2.92
fidap029 2870 0.67 2692 0.80
rdb3200L 3200 2.64 50 2.60
laplace2d 2o60 3600 2.19 81 2.16
CFD small 4096 2.25 145 2.23
CFD large 8192 2.14 385 2.14
laplace2d 1o100 104 3.02 24 2.95
laplace2d 2o100 104 2.32 81 2.26
laplace3d 1o22 1.0648 · 104 2.42 125 2.36
laplace2d 1o317 1.00489 · 105 3.14 24 3.06
laplace2d 2o317 1.00489 · 105 2.38 81 2.35
laplace3d 1o47 1.03823 · 105 2.37 125 2.32
laplace2d 1o1000 106 2.54 24 2.87
laplace2d 2o1000 106 2.09 81 2.05
laplace3d 1o100 106 2.39 125 2.38

2.4 GHz with 8 GByte of main memory. For our parallel MSPAI implementa-
tion with MPI, we used a cluster of such processors connected by InfiniBand.
It is referred as InfiniCluster.

As we wanted to apply our efficient preconditioner to problems from other
fields of applications, to problems yielding more irregular matrices than those
from image deblurring (laplace2d 2o10, laplace2d 1o50, laplace2d 2o60, . . .),
as well as matrices of a bigger size, we decided to study the implementation’s
behavior for several matrices from Matrix Market, matrices resulting from com-
putational fluid dynamics [15], and laplacian matrices generated on our own.
Besides the standard 2D and 3D laplacian matrices, named laplace2d 1∗ and
laplace3d 1∗, we built generalized 2D laplacian matrices using a 13 point stencil.
They are called laplace2d 2∗.

We give the runtime improvement resulting from a dictionary for a SPAI
without pattern updates in Table 1 and with pattern updates in Table 2. Both
results stem from one node of the InfiniCluster. This performance optimization

14

Table 2: MSPAI 1.1’s behavior for different matrices. All measurements are normalized
with respect to the standard SPAI without optimizations, i.e. they give speedups. Both
preconditioners use pattern updates with a tolerance of ε = 10−2 and a diagonal start pattern.
MSPAI’s dictionary is realized either as hash table or as a LRU cache with user-defined cache
size. The QR decompositions are based upon LAPACK.

matrix hash table LRU cache
name dimension setting speedup speedup cache size
laplace2d 1o10 100 Ῡ6,5 1.01 1.06 60
laplace2d 2o10 100 Ῡ6,5 0.76 0.81 60
orsirr 2 886 Ῡ10,6 0.80 0.80 20
laplace3d 1o10 1000 Ῡ12,8 1.12 1.11 1000
pores 2 1224 Ῡ12,8 0.76 0.80 60
olm2000 2000 Ῡ10,8 4.60 4.55 500
laplace1o50 2500 Ῡ10,8 3.36 3.32 1000
fidap029 2870 Ῡ12,10 0.71 0.82 20
rdb3200L 3200 Ῡ10,8 3.47 3.38 1000
laplace2o60 3600 Ῡ8,8 2.78 2.75 800
CFD small 4096 Ῡ8,6 1.25 1.24 1000
CFD large 8192 Ῡ6,6 1.25 1.20 800
laplace2d 1o100 104 Ῡ5,8 1.70 1.69 60
laplace2d 2o100 104 Ῡ5,8 1.81 1.79 1000
laplace3d 1o22 1.0648 · 104 Ῡ7,8 1.81 1.79 1000
laplace2d 1o317 1.00489 · 105 Ῡ5,5 2.00 2.00 60
laplace2d 2o317 1.00489 · 105 Ῡ3,4 1.25 1.25 60
laplace3d 1o47 1.03823 · 105 Ῡ4,5 1.48 1.47 1000
laplace2d 1o1000 106 Ῡ6,8 2.28 2.24 1000
laplace2d 2o1000 106 Ῡ6,8 1.62 1.61 1000
laplace3d 1o100 106 Ῡ6,8 1.81 1.80 1000

proves to be robust for almost all matrices, i.e. the algorithm is seldom slower
than an implementation without a dictionary. The more identical decomposi-
tions occur – column four displays the maximum number of different patterns,
i.e. the maximum size of the hash table – the faster the implementation; the
memory overhead hereby is determined by the number and memory footprint
of the individual dictionary entries.

An LRU scheme with a prescribed maximum dictionary size and a fixed up-
per threshold of fill-ins bounds the memory requirements of the implementation.
This reduction to a fixed set of dictionary entries does not lead to a significant
performance breakdown for our test matrices – the breakdowns in the measure-
ments are due to small experiment sizes where measurement noise pollutes the
figures. Besides the results listed, we also compared the runtimes for differ-
ent cache sizes. It turned out that highly structured matrices benefit from a
big cache that was able to hold all decompositions (cf. Table 1). Unstructured

15

1

2

4

8

16

32

64

128

256

512

1 2 4 8 16 32 64 128

b

b

b

b

b

b

b b

bc

bc

bc

bc

bc

bc

bc

bc

u

u

u

u

u

u

u

u

ut

ut

ut

ut

ut

ut

ut

ut

+

+

+

+

+

+

+
+

T ime in
seconds

Number of processors p

b b SPAI 3.2
bc bc MSPAI 1.1 (a)
u u MSPAI 1.1 (b)
ut ut MSPAI 1.1 (c)

+ + MSPAI 1.1 (d)

Figure 7: Time to compute M for SPAI 3.24 and our MSPAI 1.1 realization. We give the
runtime achieved through MSPAI without any optimization (a), a dictionary based upon a
LRU cache with default cache size 60 (b) and increased cache size 2000 (c). Finally, we
present runtimes for the sparse QR decompositions using CSparse without any cache (d). All
experiments result from the computational fluid dynamics test matrix CFD large [15] with
dimension n = 8192, Ῡ12,5, ε = 10−3 and a diagonal start pattern.

matrices could not take advantage of any dictionary, as, here, the algorithm’s
performance suffers from the additional key computations. In an improved ver-
sion, one can deploy both the QR decomposition and the key computation to
a thread of their own, and make them compete to deliver the decomposition.
This multicore parallelization is switched off here. All the insights also hold for
the MSPAI with pattern updates (Table 2).

As the pattern of the MSPAI is not fixed in advance, the parallel algorithm
exhibits a sophisticated communication scheme with nodes requesting columns
from other nodes throughout the computation. While the SPAI implementa-
tions, both the well-established SPAI 3.2 and our new realization, scale almost
linearly – the deterioration for more then 32 or 64 nodes, respectively, is due
to the strong scaling, i.e. the problem size is not increased with the number
of nodes – our optimization techniques speed up the standard parallel SPAI
implementation by at least a factor of two (Figure 7): the dictionary modifica-
tion with one dictionary per computing node and the sparse QR decomposition
implementation selection hereby fit perfectly into the parallelization concept.

4http://www.computational.unibas.ch/software/spai

16

However, using a dictionary has two side effects. On the one hand, both the
dictionary entries and the remote columns fetched throughout the previous QR
decompositions are cached locally and thus increase the memory consumption
per node. Prescribing an upper memory footprint of these caches, we ensure
that no node of the cluster runs out of memory: Whenever the cache size exceeds
the given threshold, we clear it. In the experiments, we chose the threshold such
that MSPAI, the dictionary, and the remote cache fit into the local memory of
8 GByte per node. The memory side effect hence is controllable and determin-
istic. On the other hand, the individual dictionaries typically hold some entries
redundantly as the dictionaries act independently of each other, i.e. multiple
nodes compute the same entries. As a result, the averaged dictionary hit rate,
i.e. the global number of successful dictionary searches on all nodes divided by
the global total number of dictionary accesses, decreases; from 84% on a sin-
gle node in the example (c) down to 57% on 64 nodes and only 53% on 128
nodes. This decay is the bigger the bigger the dictionary is and measurements
for different dictionary sizes thus converge to each other (measurement (b) and
(c)).

Finally, we study the impact of the QR decomposition realization on the
total runtime of the MSPAI (Table 3) in detail. MSPAI’s implementation can
switch from a dense realization to a sparse one, and the figures reveal that this
speeds up the computation for sufficiently sparse systems. For dense systems,
the standard LAPACK/Atlas routines are of greater value. While an empirical
study of an optimal switch threshold is beyond the scope of this paper, the
figures in Table 3 give a first impression of the advantage of a well-chosen εQR.

5. Conclusion and outlook

In this paper, we show how iterative regularization methods in image de-
blurring benefit from MSPAI compared to the non-preconditioned case. The
benefit is twofold as both the number of required iterations reduces and the
accuracy of the reconstructed image improves. The latter aspect holds due to
MSPAI’s new probing and targeting extension. Probing has already proved of
great value for other applications. Besides the new application domain, we place
special emphasis on the combination of different probing vectors allowing us to
determine the precision of the solution in a solution subspace. Thus, we end up
with a multiscale approach in the Fourier space, i.e. we were able to control the
preconditioner’s behavior on different frequency subspaces.

Any sophisticated preconditioner is of great value if and only if its compu-
tation is sufficiently cheap and simple. SPAI-type preconditioners reduce the
computation of the preconditioner to a large number of independent simple
minimization problems, and, thus, they exhibit a very simple, embarrassingly
parallel structure compared to other preconditioners. This simplicity is pre-
served by the MSPAI extension.

The relevance to practice of a MSPAI implementation sinks or swims with the
runtime performance of its implementation. We present an efficient realization
introducing two new MSPAI optimizations. First, we analyze the density of

17

Table 3: MSPAI 1.1’s behavior for different matrices from Matrix Market, computational
fluid dynamics [15] and laplacian matrices generated on our own. The table compares
LAPACK with CSparse for solving the LS problems in SPAI. The tests were performed on
one node of the InfiniCluster with ε = 10−3 and the SPAI pattern of A.

matrix CSparse
name dimension setting speedup
laplace2d 1o10 100 Ῡ10,8 1.48
laplace2d 2o10 100 Ῡ10,8 1.14
orsirr 2 886 Ῡ14,8 2.20
laplace3d 1o10 1000 Ῡ12,8 1.84
pores 2 1224 Ῡ16,10 4.39
olm2000 2000 Ῡ15,8 4.55
laplace1o50 2500 Ῡ14,10 3.15
fidap029 2870 Ῡ18,15 1.57
rdb3200L 3200 Ῡ15,10 3.09
laplace2o60 3600 Ῡ10,8 1.30
CFD small 4096 Ῡ10,6 1.30
CFD large 8192 Ῡ8,6 1.21
laplace2d 1o100 104 Ῡ10,8 1.74
laplace2d 2o100 104 Ῡ10,8 1.29
laplace3d 1o22 1.0648 · 104 Ῡ8,8 1.27
laplace2d 1o317 1.00489 · 105 Ῡ10,8 1.77
laplace2d 2o317 1.00489 · 105 Ῡ10,8 1.14
laplace3d 1o47 1.03823 · 105 Ῡ10,8 1.50

every underlying minimization problem. For both sufficient sparse and dense
systems, optimized libraries do exist. Thus, we take into account the sparsity
and switch to an appropriate implementation. Second, intermediate calculations
occurring over and over again are stored in a dictionary and, thus, redundant
QR decompositions are avoided. While both optimizations reduce the runtime
required, they do not harm the parallel efficiency and introduce a bounded
memory overhead. The implementation is available at our website5. Besides
the features presented in this paper, the version online also supports complex
valued systems.

We believe that other applications can benefit from the MSPAI extension
and the idea of a multispace probing, too. Besides multiscale behavior in the
frequency spaces, systems arising from PDEs in Physics, e.g., could benefit from
different probing vectors if the preconditioner also preserves conservation laws.
Apart from properties of the linear equation system that has to be approxi-
mated, the interplay of a MSPAI preconditioner optimized on certain solution
spaces and multiscale solvers is yet to be studied.

5http://www5.in.tum.de/wiki/index.php/MSPAI

18

The improved parallel implementation allows to experiment with huge sys-
tems arising from real world problems on massive parallel clusters. While results
for such systems have been studied carefully [1, 5] for other SPAI variants and
implementations, such a study is beyond the scope of this paper. Complex val-
ued systems are beyond the scope, too, although our implementation supports
them. We place great emphasis to preserve MSPAI’s parallel properties for all
optimizations. Nevertheless, we have to examine concepts for shared memory
systems in more detail. With all the multicore systems coming up, a hybrid
implementation supporting both shared and distributed memory systems is of
importance.

References

[1] S. T. Barnard, L. M. Bernardo, H. D. Simon, An MPI implementation of
the SPAI preconditioner on the T3E, International Journal of High Perfor-
mance Computing Applications 13 (2) (1999) 107–123.

[2] M. W. Benson, P. O. Frederickson, Iterative solution of large sparse lin-
ear systems arising in certain multidimensional approximation problems,
Utilitas Mathematica 22 (1982) 127–140.

[3] M. Benzi, M. Tůma, A comparative study of sparse approximate inverse
preconditioners, Appl. Numer. Math. 30 (1999) 305–340.

[4] T. F. Chan, T. P. Mathew, The interface probing technique in domain
decomposition, SIAM J. Mat. Anal. Appl. 13 (1) (1992) 212–238.

[5] E. Chow, Parallel implementation and practical use of sparse approximate
inverse preconditioners with a priori sparsity patterns, Int. J. High Perf.
Comput. Appl 15 (2001) 56–74.

[6] T. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.

[7] H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems,
Kluwer, 1996.

[8] M. Grote, T. Huckle, Parallel preconditioning with sparse approximate
inverses, SIAM J. Sci. Comput. 18 (1997) 838–853.

[9] M. Hanke, Iterative regularization techniques in image reconstruction, in:
Proceedings of the Conference Mathematical Methods in Inverse Problems
for Partial Differential Equations, Mt. Holyoke, 1998.

[10] M. Hanke, J. G. Nagy, R. J. Plemmons, Preconditioned iterative regu-
larization for ill-posed problems, Numerical Linear Algebra and Scientific
Computing (1993) 141–163.

[11] P. Hansen, Analysis of discrete ill-posed problems by means of the l-curve,
SIAM Review 34 (1992) 561–580.

19

[12] R. M. Holland, G. J. Shaw, A. J. Wathen, Sparse approximate inverses and
target matrices, SIAM J. Sci. Comp. 26 (3) (1992) 1000–1011.

[13] T. Huckle, Approximate sparsity patterns for the inverse of a matrix and
preconditioning, Appl. Numer. Math. 30 (2003) 291–303.

[14] T. Huckle, A. Kallischko, Frobenius norm minimization and probing for
preconditioning, International Journal of Computer Mathematics 84 (8)
(2007) 1225–1248.

[15] A. Kallischko, Modified sparse approximate inverses (MSPAI) for parallel
preconditioning, Ph.D. thesis, Fakultät für Mathematik, Technische Uni-
versität München (Mar. 2008).

[16] D. E. Knuth, The Art of Computer Programming Vol. 3: Sorting and
Searching, 2nd ed., Addison-Wesley, 1998.

[17] J. G. Nagy, R. J. Plemmons, T. C. Torgersen, Iterative image restoration
using approximate inverse preconditioning, IEEE Transactions on Image
Processing 5 (1996) 1151–1162.

20

