
An Efficient Partition Based Method for Exact Set
Similarity Joins

Dong Deng Guoliang Li He Wen Jianhua Feng
Department of Computer Science, Tsinghua University, Beijing, China.

{dd11,wenhe13}@mails.tsinghua.edu.cn;{liguoliang,fengjh}@tsinghua.edu.cn

ABSTRACT

We study the exact set similarity join problem, which, given
two collections of sets, finds out all the similar set pairs from
the collections. Existing methods generally utilize the prefix
filter based framework. They generate a prefix for each set
and prune all the pairs whose prefixes are disjoint. However
the pruning power is limited, because if two dissimilar sets
share a common element in their prefixes, they cannot be
pruned. To address this problem, we propose a partition-
based framework. We design a partition scheme to partition
the sets into several subsets and guarantee that two sets are
similar only if they share a common subset. To improve the
pruning power, we propose a mixture of the subsets and their
1-deletion neighborhoods (the subset of a set by eliminating
one element). As there are multiple allocation strategies
to generate the mixture, we evaluate different allocations
and design a dynamic-programming algorithm to select the
optimal one. However the time complexity of generating
the optimal one is O(s3) for a set with size s. To speed
up the allocation selection, we develop a greedy algorithm
with an approximation ratio of 2. To further reduce the
complexity, we design an adaptive grouping mechanism, and
the two techniques can reduce the complexity to O(s log s).
Experimental results on three real-world datasets show our
method achieves high performance and outperforms state-
of-the-art methods by 2-5 times.

1. INTRODUCTION
We study the exact set similarity join problem, which

aims to find all the similar set pairs from two collections
of sets. Similarity join plays an essential role in many appli-
cations, such as personalized recommendations and collab-
orative filtering [6,13], entity resolution [18], near duplicate
detection [22], data cleaning [4], data integration [5], and
machine learning [24]. The similarity functions are used to
measure the similarity between two sets. Two sets are said
to be similar if and only if their similarity exceeds a given

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 4
Copyright 2015 VLDB Endowment 21508097/15/12.

threshold. In this paper, we focus on three widely-used sim-
ilarity functions, Jaccard, Cosine and Dice. For example,
Spertus et al. [16] show that Cosine, a.k.a L2-norm, achieves
the best empirical results against the other five measures
for recommending on-line communities to members on the
Orkut social network.

Most of existing methods utilize the prefix-filter based
framework [2,20–22]. It first sorts all the elements in each
set by a global order and then takes the first few elements of
each set as a prefix. It can be guaranteed that if the prefixes
of two sets are disjoint, they cannot be similar. However the
pruning power of the prefix filter based framework is limited,
because if two dissimilar sets share a common element in the
prefixes, these methods cannot prune them.

To alleviate this problem, we propose a partition-based
framework for the exact set similarity join. We develop a
partition scheme to partition the sets into several disjoint
subsets and prove that two sets are similar only if they share
a common subset. We group the sets with same size to share
computation. We build inverted indexes on the subsets to
efficiently perform the set similarity join. To reduce the ac-
cessed inverted list sizes, we propose to use a mixture of the
subsets and their 1-deletion neighborhoods (the subset of a
set by eliminating one element). As there are multiple ways
to allocate the mixture, we evaluate different allocations and
design a dynamic-programming method for optimal alloca-
tion selection. However the time complexity of generating
the optimal one is O(s3) for a set with size s. To speed up
the allocation selection, we develop a greedy algorithm with
an approximation ratio of 2. To further reduce the complex-
ity, we design an adaptive grouping mechanism. The two
techniques together reduce the complexity to O(s log s). To
summarize, we make the following contributions. (1) We
propose a partition-based framework for the exact set sim-
ilarity join which is fundamentally different from existing
solutions (see Section 3). (2) We propose a mixture of the
subsets and their 1-deletion neighborhoods to perform the
exact set similarity join. We evaluate different allocations of
the mixture and design an algorithm to select the optimal
one (see Section 4). (3) We develop a greedy allocation se-
lection algorithm with an approximation ratio of 2 to speed
up the allocation selection and an adaptive grouping mech-
anism to decrease the number of groups. We reduce the
complexity of allocation selection for a set with size s from
O(s3) to O(s log s) (see Section 5). (4) Experimental results
on real world datasets show our method achieves high per-
formance and outperforms the state-of-the-art methods by
2-5 times (see Section 7).

360

2. PRELIMINARIES

2.1 Problem Formulation
Given a finite universe U = {x1, x2, . . . , xn}, a set is a sub-

set of U , which we interchangeably refer to as a record. To
measure the similarity between two records, we need a simi-
larity function Sim. We focus on three commonly used simi-
larity functions, Jaccard Similarity, Cosine Similarity,
and Dice Similarity. For any two records X and Y, the
three similarity functions are respectively defined as follows.

Jac(X ,Y)= |X∩Y|
|X∪Y|

, Cos(X ,Y)= |X∩Y|√
|X||Y|

, Dice(X ,Y)= 2|X∩Y|
|X|+|Y|

.

where |X | denotes the size of the record X . Note the Dice

Similarity is the same as the F-measure. Based on the def-
inition, the similarity of two records is within [0, 1]. For ex-
ample, considering the records in Table 1, we have Jac(X1,X2)=
6
12

= 0.5 as |X1 ∩ X2| = 6 and |X1 ∪ X2| = 12. Next we for-
mally define the exact set similarity join problem.

Definition 1 (Exact Set Similarity Join). Given two
sets of records R and S, a similarity function Sim and a
threshold δ, the exact set similarity join finds all similar
record pairs 〈X ,Y〉 ∈ R× S such that Sim(X ,Y) ≥ δ.

In this paper, we focus on self-join, i.e., R = S. Our
techniques can be easily extended to support RS-join (see
Section 6.2). We first use Jaccard Similarity as the simi-
larity function Sim to introduce our techniques and then dis-
cuss supporting the other similarity functions in Section 6.1.
Given a similarity threshold δ, two records X and Y are said
to be similar if Jac(X ,Y) ≥ δ. For example, consider the
dataset R in Table 1. Suppose the threshold δ = 0.73.
The exact set similarity join returns the pair 〈X1,X5〉 as
Jac(X1,X5) = 0.82 ≥ δ and all the others are not similar.

An important property of the Jaccard Similarity, which
is known as size filter, is that two records X and Y are similar

only if δ|Y| ≤ |X | ≤ |Y|
δ
. This is because |X | ≥ |X ∩ Y| and

|Y| ≤ |X ∪Y|, which leads to |X|
|Y|

≥ |X∩Y|
|X∪Y|

= Jac(X ,Y) ≥ δ.

Thus we have |X | ≥ |Y|δ. Similarly we can deduce |X | ≤
|Y|/δ. Let the Overlap Similarity be the size of the in-
tersection of two records. All the three similarity functions
above can be transformed to Overlap Similarity. More

specifically, as Jac(X ,Y) = |X∩Y|
|X∪Y|

= |X∩Y|
|X|+|Y|−|X∩Y|

, we have

Jac(X ,Y) ≥ δ iff their Overlap Similarity Over(X ,Y) =
|X ∪ Y| ≥ δ

1+δ
(|X | + |Y|). Similarly we can transform the

other two similarity functions to Overlap Similarity.

2.2 The Prefix Filter based Methods
To solve the exact set similarity join problem, a brute-

force method needs to enumerate O(|R|2) pairs of records
and calculate their similarities, which is too expensive. The
state-of-the-art methods generally utilize the prefix filter
framework to prune some dissimilar record pairs and verify
the survived record pairs that are not pruned. The prefix fil-
ter based methods first transform the Jaccard Similarity

threshold δ to an Overlap Similarity threshold t as fol-
lows. For any two records X and Y, Jac(X ,Y) ≥ δ iff
Over(X ,Y) ≥ δ

1+δ
(|X |+ |Y|). Based on the size filter |Y| ≥

|X |δ, we have Jac(X ,Y) ≥ δ only if Over(X ,Y) ≥ δ|X | = t.
Then they fix a global order and sort the elements in each
record by the global order. For each record X , its prefix
prefix(X) consists of its first |X | − ⌈t⌉ + 1 elements. The
prefix filter framework guarantees two records X and Y are
similar only if their prefixes are not disjoint, i.e., prefix(X)∩

id The records group
1 X1 {x1, x2, x5, x6, x7, x10, x11, x13, x14}

R9
2 X2 {x2, x4, x5, x6, x9, x11, x13, x14, x15}
3 X3 {x1, x3, x6, x7, x9, x10, x11, x13, x14}
4 X4 {x3, x4, x5, x7, x8, x10, x12, x13, x14}
5 X5 {x1, x2, x3, x4, x5, x6, x7, x10, x11, x13, x14} R11

Table 1: A record dataset R
prefix(Y) 6= φ. Next the prefix filter based methods build an
inverted index based on the elements in the prefixes and any
two records on the same inverted list compose a candidate
pair. Finally they verify the candidate pairs. For exam-
ple, we consider the dataset R in Table 1 and suppose the
threshold δ = 0.73. We suppose the global order first uses
the element frequency order and second utilizes the subscript
order. Then we have prefix(X1) = {x1, x2, x5}, prefix(X2) =
{x15,x9,x2}, prefix(X3)={x9,x1,x3}, prefix(X4)={x8,x12,x3}
and prefix(X5) = {x1, x2, x3}. As prefix(X1)∩prefix(X2) 6= φ,
〈X1,X2〉 is a candidate pair. Similarly, we can get 8 candi-
date pairs in total, while the brute-force method has 10.

2.3 Related Work
Exact Set Similarity Joins. There have been many stud-
ies on exact set similarity joins [1,2,7,12,17,19–22]. Jiang et
al. [9] conducted a comprehensive experimental study on
similarity joins. Bayardo et al. [2] proposed the prefix filter
as described above. Xiao et al. [22] improved the prefix fil-
ter by the position filter and the suffix filter. Moreover they
deduced a tighter overlap similarity threshold t = 2δ

1+δ
|X |

instead of t = δ|X | and thus reduced the prefix length
|X | − t + 1. Wang et al. [20] proposed to include more ele-
ments into the prefixes to enhance the pruning power of the
prefix filter and gave a cost model to achieve this. Our pro-
posed partition based framework is fundamentally different
from the prefix filter framework as we use a set of elements
as a signature while the prefix filter framework utilizes a
single element in the prefix as a signature.

Sarawagi et al. [12] developed a general algorithm for
set joins on predicates with various similarity measures, in-
cluding Jaccard Similarity and Edit Distance. Arasu et
al. [1] proposed PartEnum that utilized two operations, “par-
tition” and “enumeration”, for the exact set similarity join
in DBMS. Xiao et al. [21] extended the prefix filter tech-
niques for top-k set similarity joins. Verinica et al. [17] and
Deng et al. [7] proposed to perform exact set similarity join
on MapReduce framework. Wang et al. [19] designed a hy-
brid similarity function for exact set similarity joins. Deng
et al. [11] also proposed a partition based framework but for
string similarity joins with Edit Distance constraints. As
shown in [7], extending the techniques for set similarity joins
leads a time complexity of O(s3) for each record with size
s, which can be very large in practice. Li et al. [10] studied
efficient list-merging methods for set similarity search. All
these related work are different from our work. They either
solve different problems, such as top-k set similarity join and
set similarity search, or solve the problem on different set-
tings, such as MapReduce and DBMS. Our method can be
easily extended to work on the MapReduce framework and
DBMS (see Section 6.3).
Approximate Set Similarity Joins. Several previous
work [3,8,14,23] focus on probabilistic techniques for set sim-
ilarity joins. Locality Sensitive Hashing (LSH) [8] is the
most popular one. An LSH scheme is a distribution on a
family of hash functions operating on the sets such that
two similar sets are more likely to be hashed into the same

361

bucket. The MinHash [3] is an LSH scheme for Jaccard.
Satuluri et al. [14] proposed BayesLSH, a Bayesian algorithm
for candidate pruning and similarity estimation using LSH.
Zhai et al. [23] proposed a probabilistic algorithm for high
dimensional similarity search with very low thresholds. Shri-
vastava [15] proposed the asymmetric LSH for maximum in-
ner product search. All of these methods are different from
our work as they cannot find the exact answers. Moreover,
they need to tune parameters which is tedious and are less
effective in reducing candidate pairs at lower threshold [2].

3. PARTITION BASED FRAMEWORK
We first propose a partition strategy and then discuss how

to utilize it to address the set similarity join problem.

3.1 Record Partition
We propose a partition based framework which partitions

each record to several disjoint sub-records such that two
records are similar only if they share a common sub-record.
To achieve this goal, we need to decide (1) the number of
partitions and (2) how to partition the elements into differ-
ent sub-records. For example, consider the four records X1,
X2, X3 and X4 in Table 1 and suppose δ = 0.73. As shown in
Figure 1(b) we partition them to 4 sub-records and any two
of them are similar only if they share a common sub-record.
Here we only have 3 candidates 〈X1,X3〉, 〈X1,X4〉, 〈X3,X4〉
while the prefix filter based method has 4 candidates.

Number of Partitions. For any two records X and Y, let
X ∆Y denote their symmetric difference (the union without
intersection). We have the number of different elements be-
tween them is exactly |X ∆Y|. If Jac(X ,Y) ≥ δ, based
on the discussion in Section 2.1, we have Over(X ,Y) =
|X ∩Y| ≥ δ

1+δ
(|X |+ |Y|) and |Y| ≤ |X |/δ. Thus the number

of different elements satisfies

|X ∆Y| = |X \ Y|+ |Y \ X |

≤ |X | − δ(|X |+ |Y|)
1 + δ

+ |Y| − δ(|X |+ |Y|)
1 + δ

=
1− δ

1 + δ
(|X |+ |Y|) ≤ 1− δ

δ
|X |.

(1)

Let Hl = ⌊ 1−δ
δ

l⌋ where l = |X |. Hl is an upper bound of
the number of different elements between X and any record
similar to X as stated in Lemma 1.

Lemma 1. Given a record X with size l, for any record Y
s.t. Jac(X ,Y) ≥ δ, |X ∆Y| ≤ Hl.

1

As each different element can destroy at most 1 disjoint
sub-record, to guarantee that two similar records share at
least one common sub-record, for each record X with size l,
we need to partition it to m ≥ Hl + 1 disjoint sub-records,
X 1,X 2, · · · ,Xm. For example, consider a record X with
size l = 9 and δ = 0.73. We partition X to 4 sub-records.
For any record Y similar to X , we have |X ∆Y| ≤ H9 = 3.

Partition Strategy. If for any record, we can partition
the same element into the same disjoint sub-record, called
a homomorphism partition, we have a good property that
|X ∆Y| =

∑m

i=1 |X i
∆Yi| for any two records X and Y as

shown in Lemma 2. This is because, (1) for any e ∈ X i
∆Yi,

e ∈ X ∆Y; and (2) for any e′ ∈ X ∆Y, e′ ∈ X i
∆Yi for one

and only one i ∈ [1,m] as the sub-record X i is disjoint with
any X j and Yj where i 6= j.

1
Due to space constraints, we omit the formal proof of all the lemmas.

Lemma 2. For any records X and Y, if we use an ho-
momorphism partition to partition them into m sub-records,
we have |X ∆Y| =

∑m

i=1 |X i
∆Yi| where X i and Yi are

sub-records of X and Y.

Thus for any two records X and Y with l = |X | and
s = |Y|, we partition them into m ≥ Hl + 1 sub-records.
If X i 6= Yi for every i ∈ [1,m], then X and Y cannot be
similar as stated in Lemma 3, because X i 6= Yi leads to
|X i 6= Yi| ≥ 1 and |X ∆Y| =

∑m

i=1 |X i 6= Yi| ≥ m > Hl.

Lemma 3. For any records X and Y, suppose we use a
homomorphism partition to partition them into m ≥ Hl + 1
sub-records. If X i 6= Yi for every i ∈ [1,m], then X and Y
cannot be similar.

To get a homomorphism partition, we can use a hash
based method. For each element e ∈ X , we put it to the
(

(hash(e) mod m) + 1
)th

sub-record where hash(e) maps
an element e to an integer. Thus any element will be parti-
tioned into the same sub-record. However this method may
introduce a skewed problem: some sub-records have many
elements while some sub-records have few elements. To ad-
dress this issue, we propose a new partition scheme.

First we set a universe U , which consists of m sub-universe
U1, U2, . . . , Um s.t. (1) ∪m

i=1U i = U and (2) U i ∩ Uj = φ
for any 1 ≤ i 6= j ≤ m. For any record X , we utilize the
universe to get m sub-records X 1, X 2, . . . , Xm s.t. (1)
∪m

i=1X i = X and (2) X i ⊆ U i for any 1 ≤ i ≤ m. We use
scheme(U ,m) to denote this partition scheme. For exam-
ple, Figure 1(a) gives a partition scheme with m = 4 and
Figure 1(b) shows the sub-records achieved by partitioning
the records based on this partition scheme. For any records
X and Y, suppose we partition them based on the same
partition scheme scheme(U ,m) and get the sub-records X 1,
. . . , Xm and Y1, . . . , Ym. As the sub-records X i and Yi are
subsets of the sub-universe U i and any two sub-universes are
disjoint, |X ∆Y| =

∑m

i=1 |X i
∆Yi| as stated in Lemma 2.

Based on Lemmas 1, 2 and 3, for any record X with size
l and any record Y similar to X , if we partition them us-
ing the same partition scheme scheme(U ,m) where m > Hl,
they must share a common sub-record in the same slot. Oth-
erwise, |X ∆Y| =

∑m

i=1 |X i
∆Yi| ≥ m > Hl which leads to

Jac(X ,Y) < δ. Next based on this conclusion, we introduce
the partition based algorithm.

3.2 Partitionbased Algorithm
The algorithm contains three steps.

• Partitioning. Intuitively, the shorter a sub-universe is,
the higher probability two records share a common sub-
record in this slot and the more candidates we will get. Thus
we want the size of the sub-universes as large as possible. To
this end, we use an even partition scheme which evenly par-
titions the universe U to m = Hl+1 sub-universes with size
|U|
m

for the records with size l.2 For example, Figures 1(a)
and 1(b) respectively show the even partition scheme of the
universe U and the sub-records generated based on it. Here-
inafter, we use scheme to denote the even partition scheme.
Note our techniques can work on any partition scheme. We
leave the study of partition schemes as a future work.
• Building Indexes. To find the record pairs that share a
sub-record, we can use inverted list to index the sub-record

2
If |U| is not divisible by m, we set the size of the first few sub-

universes as ⌈
|U|
m

⌉ and the size of the rest as ⌊
|U|
m

⌋.

362

U1 U2 U3 U4

{x1, x2, x3, x4} {x5, x6, x7, x8} {x9, x10, x11, x12} {x13, x14, x15}

(a) The even partition scheme scheme(U ,m = 4) for l = 9

id X 1
id

X 2
id

X 3
id

X 4
id

1 {x1, x2} {x5, x6, x7} {x10, x11} {x13, x14}

2 {x2, x4} {x5, x6} {x9, x11} {x13, x14, x15}

3 {x1, x3} {x6, x7} {x9, x10, x11} {x13, x14}

4 {x3, x4} {x5, x7, x8} {x10, x12} {x13, x14}

(b) The sub-records of R9 based on scheme(U ,m = 4)

I1
9 I2

9 I3
9 I4

9

{x1, x2}→ 1 {x5, x6, x7}→ 1 {x10, x11}→ 1 {x13, x14} → 1, 3, 4

{x2, x4}→ 2 {x5, x6}→ 2 {x9, x11}→ 2 {x13, x14, x15} → 2

{x1, x3}→ 3 {x6, x7}→ 3 {x9, x10, x11}→ 3

{x3, x4}→ 4 {x5, x7, x8}→ 4 {x10, x12}→ 4

(c) The sub-record indexes of R9

D1
9 D2

9 D3
9 D4

9

{x1}→ 1, 3 {x5}→ 2 {x9}→ 2 {x13}→ 1, 3, 4

{x2}→ 1, 2 {x6}→ 2, 3 {x10}→ 1, 4 {x14}→ 1, 3, 4

{x3}→ 3, 4 {x7}→ 3 {x11}→ 1, 2 {x13, x14}→ 2

{x4}→ 2, 4 {x5, x6}→ 1 {x12}→ 4 {x14, x15}→ 2

{x5, x7}→ 1, 4 {x9, x10}→ 3 {x13, x15}→ 2

{x6, x7}→ 1 {x9, x11}→ 3

{x5, x8}→ 4 {x10, x11}→ 3

{x7, x8}→ 4

(d)The 1-deletion neighborhood indexes of R9

Figure 1:The sub-records and inverted indexes of R9

and the records on the same inverted list share a common
sub-record. To this end, we sort and group all the records
in R based on their sizes and Rl contains all the records
in R with size l which share the same partition scheme
scheme(U ,m = Hl + 1). For each group Rl, we build m in-
verted indexes Ii

l for 1 ≤ i ≤ m as follows. For each record
X ∈ Rl, we partition it based on scheme(U ,m). For each
sub-record X i, we append X .id to the inverted list Ii

l [X i]
where X .id is the id of X .
• Finding Similar Pairs. We discuss how to find similar
record pairs using the indexes. For each record X ∈ R
with size s, we find its similar records using the inverted
indexes. Based on the size filter, the sizes of its similar
records are within [δs, s]3. For each possible size l ∈ [δs, s],
we partition X to m = Hl +1 disjoint sub-records using the
even partition scheme scheme(U ,m). Then we access the
inverted list Ii

l [X i] and add all the records in this inverted
list, who share the common sub-record X i with X , into the
candidate set C for each 1 ≤ i ≤ m. Finally, we verify the
candidates by calculating their Jaccard Similarity to X
and return the result pairs.

The pseudo code of the partition based framework is shown
in Algorithm 1. It takes a dataset R and a similarity thresh-
old δ as input and outputs the set of all similar record pairs.
It first scans the dataset R and gets the universe U of R
(Line 1). Then it groups and sorts the records by their sizes
in ascending order (Line 2). Next for each record X ∈ R
with size s and each group Rl where δs ≤ l ≤ s, it first par-

3
Here we use a commonly used trick in self-join. For each record, we

only find its similar records with smaller or equal size.

Algorithm 1: The Partition Based Framework

Input: R: the dataset; δ: the similarity threshold;
Output: A: {〈X ,Y〉

∣

∣Jac(X ,Y) ≥ δ,X ∈ R,Y ∈ R}
retrieve the universe U of R;1

group and ascendingly sort the records by sizes;2

foreach record X ∈ R with size s do3

foreach δs ≤ l ≤ s do4

partition X to m = Hl + 1 sub-records using the5

even partition scheme scheme(U ,m);
foreach 1 ≤ i ≤ m do6

add all the records in Ii
l [X i] into C;7

foreach record Y in C do8

add Y into result set A if Jac(X ,Y) ≥ δ;9

repartition X to m′ = Hs + 1 sub-records using10

scheme(U ,m′) and append X .id to Ii
s[X i] for each

1 ≤ i ≤ m′;

return A;11

titions the record X to m = Hl+1 disjoint sub-records using
scheme(U ,m) and then accesses the inverted list Ii

l [X i] and
adds all the records in the list to candidate set C for each sub-
record X i where 1 ≤ i ≤ m (Lines 3 to 7). Then it verifies
the candidates by calculating the Jaccard Similarity and
adds the candidates similar to X to the result set A (Lines 8
to 9). Finally it repartitions the record X to m′ = Hs + 1
disjoint sub-records using scheme(U ,m′) and appends an en-
try X .id to the inverted list Ii

s[X i] for each sub-record X i

where 1 ≤ i ≤ m′ (Lines 10). It returns A at last (Line 11).

Example 1. Consider the dataset R in Table 1. Suppose
the threshold is δ = 0.73. We use the following three steps
to find similar pairs.
• Partitioning. As shown in Figure 1, for R9, as m =
H9 + 1 = 4, we evenly partition the universe U into 4
disjoint sub-universes where U1 = {x1, x2, x3, x4}, U2 =
{x5,x6,x7,x8}, U3={x9,x10,x11,x12} and U4={x13, x14, x15}.
• Building Indexes. We partition the records in R9 into 4
sub-records based on the partition scheme, For X1 ∈ R9, we
have X 1

1 = {x1, x2}, X 2
1 = {x5, x6, x7}, X 3

1 = {x10, x11} and
X 4

1 = {x13, x14}. We append the id 1 of X1 to the inverted
lists I1

9 [X 1
1], I2

9 [X 2
1], I3

9 [X 3
1] and I4

9 [X 4
1]. Similarly we can

partition the other records and build the inverted indexes.
• Finding Similar Pairs. Next we find similar record
pairs. Consider the record X5. As |X5| = 11 and δ|X5| =
8.25, we need to probe the three groups R9, R10, and R11.
For R9 we partition X5 to m = H9 + 1 = 4 parts based
on scheme(U ,m): X 1

5 = {x1, x2, x3, x4}, X 2
5 = {x5, x6, x7},

X 3
5 = {x10, x11} and X 4

5 = {x13, x14} . We access the in-
verted lists I1

9 [X 1
5], I2

9 [X 2
5], I3

9 [X 3
5] and I4

9 [X 4
5] and find X1

from I2
9 [X 2

5], X1 from I3
9 [X 3

5] and X1,X3,X4 from I4
9 [X 4

5].
Thus we get three candidates X1, X3, and X4. We calculate
their similarity to X5. As Jac(X1,X5) = 9

11
≥ δ we get a

result 〈X1,X5〉.
We prove the correctness and completeness of the partition
based framework as formalized in Theorem 1.

Theorem 1. The partition based framework satisfies (1)
correctness: a record pair returned by the framework must be
a similar pair; and (2) completeness: for any similar record
pair the framework must return the pair as a result.

Complexity Analysis: We first analyze the time complex-
ity. Suppose the maximum record size in R is n. The time
complexity of getting the universe and sorting the records

363

are O(|R|n) and O(|R| log |R|). For each record, it par-
titions the record for at most n − δ ∗ n + 1 groups. The
time complexity is O((1 − δ)n2). It also needs to access
the inverted lists and verify the candidates. The time com-
plexity is O(|L| + n|C|) where |L| is the sum of the size of
the accessed inverted lists and |C| is the number of candi-
dates. The time complexity of building the inverted indexes
isO(|R|n). Thus the total time complexity of the framework
is O

(

|R| log |R|+ |R|(1− δ)n2 + |L|+ n|C|
)

.
Next we analyze the space complexity. We need to store

the inverted indexes. The number of entries in the inverted
indexes is no more than |R|(Hn+1). The number of inverted
lists is not larger than the number of entries in the inverted
indexes. In addition, we need to store the candidates for
each record, whose number is not larger than |R|. Thus the
space complexity is O(|R|Hn).

We observe that some records may have frequent sub-
records which leads to a large |C| and low performance. For
example, in Example 1, X5 contains a frequent sub-record
X 4

5 which has 3 candidates. Next we discuss how to reduce
the size of accessed lists |L|, which is proportional to |C|.

4. SUBRECORD SELECTION
To avoid using frequent sub-records to generate candi-

dates, we propose a sub-record selection method. Note that
if two sub-records X i and Yi contain two (or more) different
elements, we can skip a frequent sub-record X j of X and do
not check whether X j equals Yj . This is because even if
we ignore the frequent sub-record X j , if X and Y do not
share another common sub-record, they cannot be similar
(as |X ∆Y| = |X i

∆Yi| + |X j
∆Yj | +

∑

k 6=i,j |X k
∆Yk| ≥

2 + 0+m− 2 = m). For instance, in Example 1, as X 1
3 and

X 1
5 contain 2 different elements, X 2

3 6= X 2
5 and X 3

3 6= X 3
5 , X3

and X5 must have no less than 4 different elements. Thus
we can prune this pair without checking if X 4

3 equals X 4
5 .

Similarly we can prune the pair of X4 and X5.
To efficiently detect whether two sub-records have 2 dif-

ferent elements, we propose 1-deletion neighborhoods (gen-
erated by eliminating an element from the sub-records) in
Section 4.1. We can use a mixture of the sub-records and
their 1-deletion neighborhoods in the partition based frame-
work instead of all sub-records. As there are multiple allo-
cation strategies to generate the mixture, we discuss how to
evaluate an allocation and propose a dynamic-programming
method to choose the optimal one in Section 4.2.

4.1 The 1Deletion Neighborhoods
Given a non-empty set Z, its 1-deletion neighborhoods

are its subsets with size of |Z|− 1. The empty set has no 1-
deletion neighborhoods. Next we give the formal definition
of 1-deletion neighborhoods as follows.

Definition 2 (1-Deletion neighborhoods). Given a
non-empty set Z, its 1-deletion neighborhoods are Z \ {z}
for each z ∈ Z.

For example, consider X 2
5 = {x5, x6, x7} in Example 1. Its

1-deletion neighborhoods are {x5, x6}, {x6, x7} and {x5, x7}.
Let del(X) = {X \{x}|x ∈ X} be the set of 1-deletion neigh-
borhoods of X , we have del(X 2

5)={{x5,x6},{x6,x7},{x5,x7}}.
For any two sets X and Y, if X 6= Y it is obviously that

they must contain at least 1 different element, i.e., |X ∆Y| ≥
1. Furthermore, based on Definition 2, we observe that if
X 6= Y, X 6∈ del(Y) and Y 6∈ del(Y), they must have at least
two different elements as stated in Lemma 4.

X = X ∩ Y

Y \ X

y

Y

Figure 2: Venn diagram of X \Y = φ and Y \X = {y}
Lemma 4. For any two sets X and Y, if X 6= Y, X 6∈

del(Y) and Y 6∈ del(X), |X ∆Y| ≥ 2.

For example, in Example 1, consider X 2
5 = {x5, x6, x7}

and X 2
4 = {x5, x7, x8}. As X 2

5 6= X 2
4 , X 2

5 6∈ del(X 2
4) and

X 2
4 6∈ del(X 2

5), |X 2
5 ∆X 2

4 | ≥ 2. Here, |X 2
5 ∆X 2

4 | = 2.

Overview. We discuss how to utilize the 1-deletion neigh-
borhoods for the exact set similarity join. Given two records
X and Y where l = |X | ≤ s = |Y|, we partition them to m =
Hl+1 sub-records, X 1,X 2, · · · ,Xm, and Y1,Y2, · · · ,Ym re-
spectively. There are three cases between X i and Yi:

Case 0: We skip X i and Yi.
Case 1: We use X i and Yi. If X i = Yi, we take X and Y
as a candidate pair.
Case 2: We use X i, Yi and their 1-deletion neighborhoods.
If X i = Yi, X i ∈ del(Yi) or Yi ∈ del(X i), we take X and Y
as a candidate pair.

The framework method only uses case 1. Here we consider
how to use the three cases to achieve high performance. We
can use a m-dimensional vector (v1, v2, . . . , vm) to decide
which cases we use, where vi ∈ {0, 1, 2} corresponding to
the three cases. For example, consider the record X5 in
Table 1 with size s = 11 and the group Rl where l = 9 and
suppose δ = 0.73. (2,0,2,0) is a 4-dimensional vector, which
denotes that we use case 2 for the first sub-record, case 0 for
the second sub-record, case 2 for the third sub-record, case
0 for the fourth sub-record.

Next we consider the value of
∑m

i=1 vi. First, suppose
∑m

i=1 vi ≥ m = Hl+1. If there is no matching for the vector,

i.e., (1) for vi = 1, X i 6= Yi; (2) for vi = 2, X i 6= Yi,X i 6∈
del(Yi) and Yi 6∈ del(X i), X and Y cannot be similar. This
is because for case 1, there is at least one mismatch element,
and for case 2, there are at least two mismatch elements,
and thus there are at least

∑m

i=1 vi ≥ m = Hl +1 mismatch
elements, i.e., |X ∆Y| ≥ Hl +1. Based on Lemma 1, X and
Y cannot be similar.

Actually, we can provide a tighter bound than m = Hl+1
by using the fact that X and Y are similar only if |X ∆Y| ≤
1−δ
1+δ

(|X | + |Y|) as shown in Equation 1. Let H(l, s) =

⌊ 1−δ
1+δ

(l+s)⌋ where |X |=l and |Y|=s. If
∑m

i=1 vi ≥ H(l, s)+1
and there is no matching, X and Y cannot be similar.

Then, we consider
∑m

i=1 vi < H(l, s) + 1. Even there is
no matching, X and Y still can be similar, as there can be
up to H(l, s) mismatch elements which can destroy all the
selected sub-records and 1-deletion neighborhoods. Thus in
this case, the method may involve false negatives.

Thus to use this method, we need to guarantee
∑m

i=1 vi ≥
H(l, s) + 1. To minimize the chance of taking two records
as a candidate, we want

∑m

i=1 vi as small as possible. Thus
we only consider the vector with

∑m

i=1 vi = H(l, s) + 1. We
call this kind of vector an allocation as defined below.

364

Algorithm 2: Deletion Neighborhood based Framework

// replace Line 6 to 7 in Algorithm 1

generate an allocation Vs
l ;1

foreach 1 ≤ i ≤ m do2

if vi = 1 then3

add all the records in Ii
l [X i] into C;4

if vi = 2 then5

add all the records in Ii
l [X i], Di

l [X i] and every6

Ii
l [del(X i)] into C;

// right after Line 10 in Algorithm 1

for each X i append X .id to every Di
s[del(X i)];7

Definition 3 (Allocation). Given two integers l and
s, a vector Vs

l = (v1, v2, . . . , vm) is an allocation if (1)m =
Hl + 1, (2)vi ∈ {0, 1, 2} and (3)

∑m

i=1 vi = H(l, s)+1.

We can prove that for any allocation, given two records,
if there is not matching in the allocation, they cannot be
similar as shown in Lemma 5.

Lemma 5. Given two records X and Y with m = Hl + 1
sub-records and an allocation Vs

l where l = |X | and s = |Y|,
if there is no matching with respect to Vs

l , Jac(X ,Y) < δ.

Algorithm. Next we adapt the partition based framework
to the new filter condition. We first discuss the indexes. To
utilize the new filter condition, besides the inverted index Ii

l ,
we also need to build an inverted index Di

l for the 1-deletion
neighborhoods of the ith sub-records of the records in Rl

where 1 ≤ i ≤ m = Hl + 1 (see Figure 1). For each record
X ∈ Rl, we partition it into m sub-records. For each sub-
record X i, except appending X .id to the inverted list Ii

l [X i],
we also append X .id to every Di

l [del(X i)], where Di
l [del(X i)]

denotes all the inverted lists Di
l [X i \ {x}] for every x ∈ X i,

so does Ii
l [del(X i)].

Then for any record X ∈ R with size s, we utilize the
two indexes I and D to find its similar records. For each
l ∈ [δ ∗ s, s], we partition X to m = Hl + 1 disjoint sub-
records using the even partition scheme scheme(U ,m) and
select an allocation Vs

l = (v1, v2, . . . , vm) (we discuss how to
select the allocation in Section 4.2). For each sub-record X i,
if vi = 1 we add all the records Y in Ii

l [X i] into candidate
set C, as X i = Yi. Similarly, if vi = 2 we add all the
records Y in Ii

l [X i], Di
l [X i] and every Ii

l [del(X i)] into C
as they respectively indicate X i = Yi, X i ∈ del(Yi) and
Yi ∈ del(X i). Based on Lemma 5, they are all candidates.
In this way, we can adapt the partition based framework to
the deletion neighborhood based framework.

The pseudo-code of the deletion neighborhood based frame-
work is shown in Algorithm 2. Instead of directly accessing
the inverted list and adding the entries to the candidate set
C, it generates an allocation Vs

l for each record X with size
s and group Rl (Line 1). Then for each dimension vi of
the allocation Vs

l where 1 ≤ i ≤ m, if vi = 1, it adds all
the records in the inverted list Ii

l [X i] into C (Lines 3 to 4).
Otherwise if vi = 2, it adds all the records in Ii

l [X i], Di
l [X i]

and Ii
l [del(X i)] into C (Lines 5 to 6). In the indexing phase,

besides appending X .id to Ii
l [X i], it also appends X .id to

every inverted list of Di
s[del(X i)] (Line 7). The rest parts

are the same as the partition based framework.

Example 2. Following the same setting as Example 1,
we partition the records in R9 to m = H9 + 1 = 4 sub-
records. We build the inverted indexes for their 1-deletion

neighborhoods as shown in Figure 1 (c). Next we find the
result pairs. Consider X5 and R9. Suppose we select the
allocation V11

9 = (2, 0, 2, 0) for them. For X 1
5 , as v1 = 2,

we access I1
9 [X 1

5], D1
9[X 1

5] and every I1
9 [del(X 1

5)] and get no
candidate. For X 2

5 , as v2 = 0, we do nothing. For X 3
5 , as

v3 = 2, we access I3
9 [X 3

5], D3
9[X 3

5] and every I3
9 [del(X 3

5)] and
get X1 and X3. We add X1 and X3 to C. For X 4

5 , as v4 = 0
we skip it. Finally we verify the records in C and find a
result pair 〈X1,X5〉.

We prove the correctness and completeness of the deletion
neighborhood based framework as formalized in Theorem 2.

Theorem 2. The deletion neighborhood based framework
satisfies correctness and completeness.

Space Complexity: We analyze the space complexity of
the inverted indexes. For each record, it generates at most
m = Hn + 1 sub-records and n 1-deletion neighborhoods
where n is the maximum record size in R. Thus there are
O(|R|n) entries in the inverted lists. As the number of in-
verted lists is no more than the number of entries in them,
the space complexity is O(|R|n) which is relatively small.

Note that the partition based framework is a special case
of the deletion neighborhood based framework when the al-
location is assigned as 1, i.e., a vector with all ones. Actually
given a record and a group there are many kinds of alloca-
tions, and a nature question is how to evaluate the allocation
and select the optimal one. Next we answer this question.

4.2 Optimal Allocation Selection
We first discuss how to evaluate an allocation. As shown

in the deletion neighborhood based framework, based on the
allocation we need to access the inverted lists Ii

l [X i], Di
l [X i]

or Ii
l [del(X i)] for each record X and group Rl. The shorter

the inverted list we access, the less time we take and the less
candidates we get. Thus we want to minimize the total size
of the inverted lists we access. To this end, given a record
X with size s and a group Rl, let

ci0 = 0; ci1 =
∣

∣Ii
l [X i]

∣

∣; ci2 =
∣

∣Ii
l [X i]

∣

∣+
∣

∣Di
l [X i]

∣

∣+
∣

∣Ii
l [del(X i)]

∣

∣

where 1 ≤ i ≤ m = Hl + 1, we define the cost of the alloca-
tion Vs

l = (v1, v2, . . . vm) as cost(Vs
l) =

∑m

i=1 c
i
vi

which is the
size of the inverted lists the allocation needs to access. Our
objective is to select the allocation with the minimum cost.
Next we formulate the optimal allocation selection problem.

Definition 4.(Optimal Allocation Selection)Given
a record X with size s and a group Rl, the optimal alloca-
tion selection problem is to select an allocation Vs

l with the
minimum cost.

For example, the costs for the record X5 and the group R9

are shown in Figure 4(a). The optimal allocation is V11
9 =

(2, 1, 1, 0) with a cost of cost(V11
9) = c12 + c21 + c31 + c40 = 2.

Next we introduce a dynamic programming method to
solve the optimal allocation selection problem. Let cost(i, j)

be the minimum value of
∑i

k=1 c
i
vk

such that
∑i

k=1 vk = j
where vk ∈ {0, 1, 2} and V(i, j) denotes the corresponding
vector (v1, v2, . . . , vi). Then the optimal allocation selection
problem is to calculate the minimum cost cost(m,H(l, s)+1)
and the optimal allocation V(m,H(l, s) + 1). To calculate
cost(i, j), considering the value of the last dimension vi of
V(i, j), which can be 0, 1 or 2, we have

cost(i, j) = min

cost(i− 1, j) + ci0
cost(i− 1, j − 1) + ci1
cost(i− 1, j − 2) + ci2

which is equivalent to

365

i ci0 ci1 ci2

1 0 0 0

2 0 1 3

3 0 1 2

4 0 3 4

(a) The costs

i ∇i
0 = ci1 − ci0 ∇i

1 = ci2 − ci1

1 0 0

2 1 2

3 1 1

4 3 1

(b) The cost increments

cost -1 0 1 2 3 4 concatenated vectors

0 ∞ 0 ∞ ∞ ∞ ∞ V(0, 0) = ()

1 ∞ 0 0 0 ∞ ∞ V(1, 2) = (2)

2 ∞ 0 0 0 1 3 V(2, 2) = (2, 0)

3 ∞ 0 0 0 1 2 V(3, 4) = (2, 0, 2)

4 ∞ 0 0 0 1 2 V(4, 4) = (2, 0, 2, 0)

(c) The cost matrix for X5 and R9

Figure 3: An optimal allocation selection example

cost(i, j) = min
v∈{0,1,2}

cost(i− 1, j − v) + civ. (2)

Moreover let

vmin = argmin
v∈{0,1,2}

cost(i− 1, j − v) + civ, (3)

vmin is the ith (the last) dimension of V(i, j) and we have
V(i, j) = V(i − 1, j − vmin) ⊕ vmin where ⊕ concatenates
vmin to the end of V(i − 1, j − vmin). Next we discuss the
initialization. For each 0 ≤ i ≤ m, cost(i, 0) = 0 as we can
set all vk = 0 for 1 ≤ k ≤ i and V(i, 0) = 0i, which is an i
dimensional zero vector whose elements are all 0. For all 1 ≤
j ≤ H(l, s) + 1, we set cost(0, j) = ∞ and for all 0 ≤ i ≤ m,
we set cost(i,−1) = ∞ as they are undefined, i.e., there does
not exist these kinds of allocations. With the initialization
and the recursive formula we can easily solve the optimal
allocation selection problem by calculating cost(m,H(l, s)+
1) and V(m,H(l, s) + 1) is the optimal allocation.
The pseudo-code of the optimal allocation selection al-

gorithm OptimalSelection is shown in Algorithm 3. It
takes the two kinds of inverted indexes Il and Dl, a record
X with size s and a group Rl as input and outputs the opti-
mal allocation Vs

l for the record X and the group Rl. It first
calculates all the costs ci0, c

i
1 and ci2 using X i, Ii

l and Di
l for

1 ≤ i ≤ m = Hl + 1 (Line 1). Then it initializes a cost ma-
trix cost and an allocation matrix V by setting cost(i, 0) = 0,
cost(i,−1) = ∞ and V(i, 0) = 0i for all 0 ≤ i ≤ Hl + 1 and
cost(0, j) = ∞ for all 1 ≤ j ≤ H(l, s) + 1 (Lines 2 to 5).
Then for each 1 ≤ i ≤ Hl + 1 and 1 ≤ j ≤ H(l, s) + 1,
it chooses the vmin from {0, 1, 2} which leads to minimum
cost, i.e., it sets vmin = argminv∈{0,1,2} cost(i−1, j−v)+ civ
(Line 8). Next based on the selected vmin, it fills cost(i, j)
as cost(i − 1, j − vmin) + civmin

and appends vmin to V(i −
1, j−vmin) to form V(i, j) (Lines 9 to 10). Finally, it returns
V(Hl+1, H(l, s)+1) as the optimal allocation Vs

l (Line 11).

Example 3. Consider X5 and R9. Following the same
setting as Example 1, the costs for them are shown in Fig-
ure 3(a). As H9 + 1 = 4 and H(9, 11) + 1 = 4, we first
initialize cost(i, 0) = 0 and V(i, 0) = 0i for 0 ≤ i ≤ 4 and
cost(i,−1) = cost(0, j) = ∞ for 0 ≤ i ≤ 4 and 1 ≤ j ≤

Algorithm 3: OptimalSelection(Il,Dl,X , s,Rl)

Input: Il and Dl: the two kinds of inverted indexes;
X : A record; s: the size of X ; Rl: the group.

Output: The optimal allocation for X and Rl.
get the costs ci0, c

i
1 and ci2 using Ii

l , Di
l and X i;1

for 0 ≤ i ≤ Hl + 1 do2

cost(i,−1) = ∞, cost(i, 0) = 0 and V(i, 0) = 0i;3

for 1 ≤ j ≤ H(l, s) + 1 do4

cost(0, j) = ∞;5

for 1 ≤ i ≤ Hl + 1 do6

for 1 ≤ j ≤ H(l, s) + 1 do7

vmin = argmin
v∈{0,1,2}

cost(i− 1, j − v) + civ;
8

cost(i, j) = cost(i− 1, j − vmin) + civmin
;9

V(i, j) = V(i− 1, j − vmin)⊕ vmin;10

return V(Hl + 1, H(l, s) + 1);11

4. Note that V(0, 0) = 00 = (). Then we fill the matrix
cost based on Equation 2 and the results are shown in Fig-
ure 3. Next we concatenate the vectors. For i = 1 and
j = 2, the values of cost(i − 1, j − v) + civ for v = 0, 1
and 2 are respectively ∞,∞ and 0. Thus vmin = 2 and
V(1, 2) = V(1−1, 2−2)⊕2 = (2). Similarly we can concate-
nate the other elements and finally get the optimal allocation
V(4, 4) = (2, 0, 2, 0) whose cost is cost(4, 4) = 2.

Time Complexity: For each record X ∈ R with size
s and a group Rl, the time complexity of the dynamic
programming algorithm is O((Hl + 1) ∗ (H(l, s) + 1)). As
l ∈ [δ ∗ s, s], the time complexity for each record X is
O(

∑s

l=δ∗s(Hl + 1)(H(l, s) + 1)) = O(s3), which is very ex-
pensive. We speedup the allocation selection in Section 5.

Note that we can extend the deletion neighborhoods def-
inition to q-deletion neighborhoods and use it in the dele-
tion neighborhood based framework. However the number
of q-deletion neighborhoods increases exponentially with q
(which is

(

|X|
q

)

for a set X). This not only leads to large
overhead of storing the q-deletion neighborhoods but also
requires a lot of time to generate them. Thus we focus on 1-
deletion neighborhoods in this paper and leave the q-deletion
neighborhood based techniques as a future work.

5. ALLOCATION SELECTION
As finding the optimal allocation is rather expensive, we

speed up the allocation selection. We first propose a heap-
based greedy algorithm in Section 5.1, which is a 2 factor
approximation algorithm. Furthermore, we design an adap-
tive record grouping mechanism to reduce the number of
groups probed by each record in Section 5.2. The two tech-
niques reduce the time complexity from O(s3) to O(s log s).

5.1 Greedy Algorithm
The goal of finding an allocation is to compute a vector

(v1, v2, · · · , vm) such that
∑m

i=1 vi = H(l, s)+1 and
∑m

i=1 c
i
v

is as small as possible. To achieve this goal, we can devise
a greedy algorithm as follows. Given a record X with size s
and a group Rl, we first initialize an m = Hl+1 dimensional
zero vector V = 0m. Then we repeatedly compare the cost
increment of increasing vi by 1, where the cost increment is
ci1−ci0 for vi = 0 and ci2−ci1 for vi = 14, and select the small-
est one for i ∈ [1,m]. In other words, we greedily “choose a
dimension with the minimum cost increment” and increases

4
Note we cannot increase vi = 2.

366

Algorithm 4: GreedySelection(Il,Dl,X , s,Rl)

Input: Il and Dl: the two kinds of inverted indexes;
X : A record; s: the size of X ; Rl: the group.

Output: Vs
l : an allocation for X and Rl.

get the cost increments ∇i
0 and ∇i

1 by Ii
l ,Di

l and X i;1

set all vi = 0 for V=(v1, v2, . . . , vm) where m=Hl+1;2

build a min-heap M over 〈vi,∇i
vi
〉 for all 1 ≤ i ≤ m;3

foreach 1 ≤ j ≤ H(l, s) + 1 do4

pop M to get the 〈vi,∇i
vi
〉 with minimum ∇i

vi
;5

increase vi by 1, which is the ith dimension of V;6

if vi = 1 then push 〈vi = 1,∇i
vi
〉 into M7

return V;8

the selected dimension vi by 1, where the cost increment for
vi ∈ {0, 1} is ∇i

vi
= civi+1−civi . For example, the cost incre-

ments for the records in R9 are shown in Figure 3 (b). After
we make H(l, s)+1 increments, V is an allocation which sat-
isfies

∑m

i=1 vi = H(l, s) + 1 and vi ∈ {0, 1, 2} for 1 ≤ i ≤ m
and we return V as the allocation Vs

l . To select the small-
est increment, we can utilize a heap. Next we propose the
heap-based greedy method. The pseudo-code of the greedy
method GreedySelection is shown in Algorithm 4.

Given a record X with size s and a group Rl, we first com-
pute the cost increments of vi where vi ∈ {0, 1}, using Ii

l ,
Di

l and X i for 1 ≤ i ≤ m = Hl+1 (Line 1). Then we initial-
ize an m = Hl + 1 dimensional vector V = (v1, v2, . . . , vm)
and set vi = 0 for all 1 ≤ i ≤ m (Line 2). Next, we build
a min-heap M where each node in M is a tuple 〈vi,∇i

vi
〉

where 1 ≤ i ≤ m (Line 3). Then we pop the heap H(l, s)+1
times, which always pops out the node with minimum cost
increment ∇i

vi
(Lines 4 to 5). For each popped out node

〈vi,∇i
vi
〉, we increase vi, which is the ith dimension of V, by

one. Then if vi = 1, we need to update its cost increment.
To this end we push in a new node 〈vi = 1,∇i

vi
〉 into M. If

vi = 2, we cannot increase vi anymore, thus we do not push
new nodes into M (Lines 6 to 7). After H(l, s) + 1 nodes
are popped, we return V as the allocation Vs

l (Line 8).

Example 4. Consider X5 and R9. Following the same
setting as Example 1, the cost increments are shown in Fig-
ure 3. We first initialize a 4 dimensional vector V = (0, 0, 0, 0)
and build a min-heap of four nodes 〈v1,∇1

0 = 0〉, 〈v2,∇2
0 =

1〉, 〈v3,∇3
0 = 1〉 and 〈v4,∇4

0 = 3〉 as shown in Figure 4. Note
that we omit the vi in all the nodes in the figure. We pop the
heap H(l, s) + 1 = 4 tims. For the first pop up, we get the
node 〈v1,∇1

0〉. We increase v1 by 1 and have V = (1, 0, 0, 0).
As v1 = 1 we push in a new node 〈v1,∇1

1 = 0〉. Then for the
second pop up, we get the newly pushed in node 〈v1,∇1

1〉. We
increase v1 by 1 and have V = (2, 0, 0, 0). As vi = 2 we do
not push in new node. For the third pop up5 we get the node
〈v2,∇2

0〉. We increase v2 by one and have V = (2, 1, 0, 0).
As v2 = 1 we push in a new node 〈v2,∇2

1〉 to the heap. For
the fourth pop up we get the node 〈v3,∇3

0〉 and increase v3
by one. Thus we have V = (2, 1, 1, 0) and we return it as the
allocation Vs

l , whose cost is 3.

We can prove that the cost of the allocation selected by
the heap-based algorithm is no larger than 2 times of the
cost of the optimal allocation as stated in Lemma 6.

Lemma 6. The heap-based algorithm is a 2-approximation
algorithm for the optimal allocation selection problem.

5
Note ties are broken arbitrarily.

∇1
0 = 0 ∇2

0 = 1 ∇3
0 = 1 ∇4

0 = 3

∇1
1 = 0 ∇2

1 = 2 ∇3
1 = 1 ∇4

1 = 1

∇1
0 ∇3

0

∇1
0 ∇1

0 : (1, 0, 0, 0)

∇1
1 : (2, 0, 0, 0)

∇2
0 : (2, 1, 0, 0)

∇3
0 : (2, 1, 1, 0)

V = (0, 0, 0, 0)

Figure 4: A greedy allocation selection example

Time Complexity. The time complexity of the greedy al-
location selection is O

(

(H(l, s)+1) log(Hl+1)
)

= O(s log s)
for a record with size s and a group Rl. However based on
the size filter, we need to probe s−δs+1 groups for the record
and for each group we need to perform a greedy allocation
selection. Thus the time complexity of allocation selection
for one record with size s is O(s2 log s) which is still expen-
sive. Next we propose an adaptive grouping mechanism to
reduce the number of probed groups for each record.

5.2 Adaptive Grouping Mechanism
If we aggregate all the records with sizes within the range

[

lmin

δk−1
, lmin

δk

)

as a group Rδ
k where lmin is the smallest record

size in R, we only need to probe at most 2 different groups
for any record X . This is because based on the size filter the
sizes of its similar records are within [δs, s] where s = |X |.
Without loss of generality, suppose X ∈ Rδ

k, i.e., lmin

δk−1
≤

s < lmin

δk
. Then we have lmin

δk−2
≤ δs < lmin

δk−1
, which indicates

all its similar records are in the group Rδ
k−1 and Rδ

k. Thus
we only need to probe these two groups to find its similar
records for the record X . Next we formalize our idea.
Let lk+1 = lk

α
+ 1 where l1 = lmin and α ∈ [1

2
, 1] (we

will discuss how to set α later). The adaptive grouping
mechanism aggregates all the records in R with sizes within
the size range

[

lk,
lk
α

]

as a group Rα
k . Next we integrate the

adaptive grouping mechanism into our algorithm.
We first show how to build the inverted indexes I and D.

For the group Rα
k , we evenly partition the universe U into

m = Hlk + 1 disjoint sub-universes and accordingly parti-
tion the records X ∈ Rα

k into m sub-records. For each sub-
record X i we append X .id to all the inverted lists Ii

lk

[

X i
]

and Di
lk

[

del(X i)
]

where 1 ≤ i ≤ m. Then we find similar
record pairs using the indexes. For each record Y with size
s we probe all the groups Rα

k where its size range [lk,
lk
α
]

overlaps [δs, s], which indicates X may have similar record
in the group Rα

k . For each of these groups Rα
k , we partition

the record Y to m = Hlk +1 sub-records based on Ulk . Then
we invoke the greedy allocation selection or the optimal allo-
cation selection to select an allocation V = (v1, v2, . . . , vm)
where m = Hlk + 1. Note that for the greedy allocation

selection we need to pop the heap H(lk
α
, s) + 1 times and

for the optimal allocation selection the number of columns
in the cost matrix and vector matrix is H(lk

α
, s) + 1 as the

group Rα
k contains records with size as large as lk

α
. Thus

the selected allocation V satisfies
∑m

i=1 vi = H(lk
α
, s) + 1.

Next we find similar records by V, which is the same as the
deletion neighborhood based framework.

We discuss how to set α. Obviously α cannot be larger
than 1 as if α > 1, the size range [lk,

lk
α
] of the group Rα

k

is empty. Actually when α = 1, the grouping mechanism
degenerates to the original grouping strategy which builds
one group for each record size. Also α should be larger
than 0. However we find α cannot infinitely close to 0. The

367

Sim H(l, s) Hl Size Filter

Jaccard ⌊ 1−δ
1+δ

(s+ l)⌋ ⌊ 1−δ
δ

l⌋ [lδ, l
δ
]

Cosine ⌊s+ l − 2δ
√
sl⌋ ⌊ 1−δ2

δ2
l⌋ [δ2l, l

δ2
]

Dice ⌊(1− δ)(s+ l)⌋ ⌊2 1−δ
δ

l⌋ [δ
2−δ

l, 2−δ
δ

l]

Table 2: The parameters in the partition framework
intuition is that when α is close to 0, the size range of the
group is rather wide and the number of partitions is not large
enough for the records with very large size in the group.

Formally, consider a record with size s and a group Rα
k

probed by this record. On the one hand, [sδ, s] and [lk,
lk
α
]

overlap, i.e., s ≥ lk and sδ ≤ lk
α
. Thus we have lk ≤ s ≤

lk
αδ

. On the other hand, the allocation V = (v1, v2, . . . , vm)

satisfies
∑m

i=1 vi = H(lk
α
, s)+1 and vi ∈ {0, 1, 2} where m =

Hlk + 1. As vi ≤ 2, we have
∑m

i=1 vi ≤ 2m. Thus we have

H(lk
α
, s) + 1 ≤ 2(Hlk + 1). To make this inequality true for

any s and lk with the restriction lk ≤ s ≤ lk
αδ

, we need α ≥ 1
2
.

Thus the value range of α is [1
2
, 1]. Similarly for the partition

based framework which always sets the allocation as 1m we
can deduce the domain of α, which is [1, 1]. This means we
cannot integrate the adaptive grouping mechanism into the
partition based framework.

We prove the correctness and completeness of the dele-
tion neighborhood based framework with adaptive grouping
mechanism as formalized in Theorem 3.

Theorem 3. The deletion neighborhood based framework
with adaptive grouping mechanism satisfies correctness and
completeness when α ∈ [1

2
, 1].

Next we analyze the number of groups probed by a record
in the adaptive grouping mechanism. Consider a record with
size s, we need to probe all the groups with size ranges over-
lap [δs, s]. Among these probed groups, suppose Rα

t is the
first one and Rα

t′ is the last one. Thus the number of the
probed groups is t′− t+1. Next we deduce the upper bound
of t′− t+1. Based on the adaptive grouping mechanism, we

have lk =
lk−1

α
+1 =

lk−2

α2 + 1
α
+1 = · · · = lmin

αk−1
+α2−k−α

1−α
. Af-

ter transformation we have k = − logα
(1−α)lk+1

(1−α)(lmin+α)
which

is monotonically decreasing with lk. On the other hand as
the size range [lk,

lk
α
] overlaps [δs, s], we have lk ≤ s ≤ lk

αδ
,

that is αδs ≤ lk ≤ s. Thus we have the number of the
probed groups t′ − t+ 1 ≤ logα

(1−α)δs+1
(1−α)s+1

+ 1 ≤ logα δ + 1.

Time Complexity: As the number of probed groups by
each record is no more than logα δ+1, the time complexity of
allocation selection for a record with size s isO(s log s logα δ).
We can always set α = δ and the time complexity becomes
O(s log s) when δ ≥ 0.5 which is true almost all the time6.

6. DISCUSSION

6.1 Supporting the Other Similarity Functions
In our techniques, only three parameters, H(l, s), Hl and

the size filter depend on the similarity functions. Similar
to the deduction of the Jaccard Similarity, we can also
deduce these parameters for Cosine Similarity and Dice

Similarity and the details are shown in Table 2. Based on
these parameters, we can easily extend our techniques for
the other two similarity functions.

6.2 Supporting RSJoin
Given two datasets R and S, we first build the inverted

indexes of sub-records and 1-deletion neighborhoods for one
dataset, e.g., R. Then for each record in another dataset,

6
In practice δ is usually between 0.8 and 1.

Dataset R |R| lmin lmax l |U|
DBLP 873,524 6 1,538 94.1 44,798
Tweets 2,000,000 1 70 21.6 1,713,437
MovieLens 138,493 20 9,254 144.4 26,744

Table 3: The dataset details

e.g., S, we can use the indexes to find all of its similar records
in R in a same way as self-join, i.e., using the allocation
selection techniques to select an allocation for this record,
probing the inverted indexes based on the allocation to fetch
candidates and verifying the candidates to get all the records
in R similar to this record. We can also apply the adaptive
grouping mechanism to build the indexes for efficiently find-
ing similar records.

6.3 Extending to the MapReduce Framework
Our techniques can be easily extended to work on the

MapReduce framework. We first show how to adapt the
partition-based framework to work on MapReduce. We only
need to utilize a single MapReduce round. For each record X
with size l, we first partition it toHl+1 indexing sub-records
(to build the inverted indexes). Then for each s ∈ [l ∗ δ, l],
we partition X to Hs + 1 probing sub-records to probe the
inverted indexes and find records similar to X . A record X
with indexing sub-records and a record Y with probing sub-
records are similar only if they share a common sub-record
X i = Yi under the same partition scheme Ul where l = |X |.
Thus in the MapReduce framework we use the combination
(X i, i, l) as the key, and use the combination of (X , f lag) as
the value where flag = 0 indicates that the key-value pair
comes from an indexing sub-record and flag = 1 indicates
that the key-value pair comes from a probing sub-record.

In the map phase, for each record X , we first partition
it to Hl + 1 indexing sub-records and emit a key-value pair
〈(X i, i, l), (X , 0)〉 for each sub-record X i. For each s ∈ [l ∗
δ, l], we partition X to Hs +1 probing sub-records and emit
a key-value pair 〈(X i, i, s), (X , 1)〉 for each sub-record X i.

In the reduce phase, for key (X i, i, l), let list(X , f lag)
denote the list of values with this key, which share the same
sub-record X i. We split the list to two lists L0 and L1 based
on flag where L0 contains all the records with indexing
sub-records X i and L1 contains all the records with probing
sub-records X i. Each pair of records 〈X ,Y〉 in L0 × L1 is
a candidate pair. As some record pairs may share multiple
common sub-records, there may be duplicate candidates in
different reducers. To avoid verifying duplicate candidates,
for a candidate pair (X , Y) of key (X i, i, l), we first check
whether they have the same sub-record before the i-th sub-
record. If so (i.e., ∃j < i, s.t. X j = Yj), we do not need to
verify the pair; otherwise, we verify this pair. In this way,
we can only verify each candidate pair once.

7. EXPERIMENTS
We have conducted experiments to evaluate our method,

and our experimental goal was to evaluate our proposed
techniques and compare the efficiency and scalability with
state-of-the-art methods, PPJoin+ [22] and AdaptJoin [20].Al-
though there are other algorithms, such as All-Pair [2],
Flamingo [10] PartEnum [1], and BayesLSH [14] for set simi-
larity joins, previous studies [9,20] have shown they cannot
outperform the two state-of-the-art methods. Thus we only
reported the comparison results of our method with PPJoin+

and AdaptJoin. We got the codes from the authors.
All the algorithms were implemented in C++ and com-

piled using GCC 4.8.2 with -O3 flag. All the experiments
were conducted on a Ubuntu machine with 24 Intel Xeon
X5670 2.93GHz processors and 64 GB memory.

368

 2

 4

 6

0.90.920.940.960.98

S
iz

e
 o

f
A

c
c
e

s
s
e

d
 L

is
ts

 (
1

0
x
)

Threshold δ

Greedy
Optimal

Framework

(a) DBLP (Avg Size = 94)

 3

 6

 9

0.80.850.90.95

S
iz

e
 o

f
A

c
c
e

s
s
e

d
 L

is
ts

 (
1

0
x
)

Threshold δ

Greedy
Optimal

Framework

(b) Tweets (Avg Size = 22)

 1

 2

 3

 4

 5

0.90.920.940.960.98

S
iz

e
 o

f
A

c
c
e

s
s
e

d
 L

is
ts

 (
1

0
x
)

Threshold δ

Greedy
Optimal

Framework

(c) MovieLens (Avg Size = 144)

Figure 5: Sizes of Accessed Lists: Evaluating Different Allocation Selection Methods.

 20

 40

 60

 80

0.90.920.940.960.98

E
la

p
s
e

d
 T

im
e

 (
s
)

Threshold δ

Greedy
Optimal

Framework

(a) DBLP (Avg Size = 94)

 0

 100

 200

 300

 400

0.80.850.90.95

E
la

p
s
e

d
 T

im
e

 (
s
)

Threshold δ

Greedy
Optimal

Framework

(b) Tweets (Avg Size = 22)

 20

 40

 60

 80

0.90.920.940.960.98

E
la

p
s
e

d
 T

im
e

 (
s
)

Threshold δ

Greedy
Optimal

Framework

(c) MovieLens (Avg Size = 144)

Figure 6: Efficiency: Evaluating Different Allocation Selection Methods.

Dataset: We used three real-world datasets in our exper-
iments. 1) DBLP was a computer-science bibliographic
dataset. Each record was a set of 3-grams by tokenizing
the bibliography. 2) Tweets was a tweet dataset. Each
record was a tweet and each element was a word tokenized
by space. 3) MovieLens was a movie rating dataset. Each
record corresponded to a user, which was a set of movies the
user has rated. Table 3 showed the details of the datasets.

7.1 Evaluating Allocation Selection
We evaluated different allocation selection methods. We

implemented the following three algorithms. (1) The par-
tition based framework, Framework, which always set the
allocation Vs

l = 1m for any record with size s and group Rl

where m = Hl + 1. (2) The dynamic programming algo-
rithm for optimal allocation selection, denoted by Optimal.
(3) The min-heap based algorithm for greedy allocation se-
lection, denoted by Greedy. We did not utilize the adaptive
grouping mechanism for any of them. According to Sec-
tions 3, 4.2 and 5.1, their time complexities of allocation
selection were respectively O(s2)7, O(s3) and O(s2 log s)
where s was the record size. As the running time of Optimal
and Greedy grew rapidly with the decreases of the threshold,
we only reported the results with a relatively large thresh-
old in this section to finish the experiments in reasonable
time. We first compared the size of accessed inverted lists.
Figure 5 shows the results. Note the y-axis was in log scale.

We could see that Optimal achieved the smallest sizes of
accessed lists and the sizes of accessed lists of Greedy were
slightly larger than that of Optimal. Framework had the
largest sizes of accessed lists and were 10 to 100 times of
those of Greedy and Optimal and got worse with the de-
creases of the threshold. For example, on Tweets dataset,
for δ = 0.8, the sizes of accessed lists for Framework, Greedy
and Optimal were respectively 4∗109, 4.4∗107 and 4.3∗107,
because Framework did not use the 1-deletion neighborhoods
and thus could only utilize a fixed allocation while Optimal

selected the optimal allocation with minimum accessed list
sizes. Greedy was a 2 factor approximation algorithm for
optimal allocation selection whose accessed list sizes was no

7
The record partitioning was also included in allocation selection.

more than twice of the optimal allocation. The experimental
results were consistent with our theoretical analysis.

We also compared the elapsed time of the three methods.
The results are shown in Figure 6. We can see Greedy con-
sistently outperformed Optimal, because Greedy had lower
time complexity than Optimal but similar size of accessed
lists. When the threshold was larger than 0.9, the Framework
was better than Greedy and Optimal, which was consis-
tent with the time complexity analysis of allocation selec-
tion, because with large threshold and without adaptive
grouping mechanism, the allocation selection time

(

O(s2)

for Framework, O(s3) for Optimal andO(s2 log s) for Greedy
)

dominated the running time. However when the thresh-
old got smaller than 0.9, Greedy and Optimal outperformed
Framework, as the size of accessed inverted list and the can-
didates of Framework grew exponentially with the decrease
of δ and the verification dominated the running time.

7.2 Evaluating the Adaptive Grouping
We evaluated the adaptive grouping mechanism. We var-

ied the value of α from 0.5 to 0.9 and reported the elapsed
time and the sizes of the accessed inverted lists of Greedy+
(Greedy with adaptive grouping) and Optimal+ (Optimal
with adaptive grouping). We did not report the results for
α > 0.9 as the running time were rather long that could
not finish in reasonable time. We also reported the results
of Framework. Figure 7 showed the results. The numbers
above the bars were their sizes of accessed lists. We split the
elapsed time to three parts: the indexing time, the alloca-
tion selection time and the finding similar pairs time. Note
the pre-processing steps (getting the universe, sorting the
dataset and grouping the records) took less than 0.5 second.
We can see that with the increases of α, the elapsed time
for Greedy+ and Optimal+ both increased. Moreover they
both outperformed Framework. For the same α, Greedy+ was
better than Optimal+. For example, on MovieLens dataset
with δ = 0.8, the elapsed time when α varied from 0.5 to 0.9
were 6s, 7s, 8s, 10s, and 14s for Greedy+ and 8s, 9s, 10s, 14s,
and 23s for Optimal+, while the elapsed time for Framework
was 286s. This was because the time complexity for alloca-
tion selection of Greedy+, O(s log s logα δ), was lower than

369

 1

 10

 100

 1000

.50 .60 .70 .80 .90

E
la

p
s
e

d
 T

im
e

 (
s
)

α, Threshold δ=0.8

Index

Alloc
Find

Greedy+

0.4m
0.4m

0.4m0.4m
2.7m

Optimal+

0.4m
0.4m0.4m

0.4m
2.6m

Framework

1192.0m

(a) DBLP (Avg Size = 94)

 1

 10

 100

 1000

.50 .60 .70 .80 .90

E
la

p
s
e

d
 T

im
e

 (
s
)

α, Threshold δ=0.8

Index

Alloc

Find

Greedy+

41.8m38.8m
39.3m

42.8m

43.9m

Optimal+

41.3m
38.4m

39.0m
42.5m

43.6m

Framework

4025.3m

(b) Tweet (Avg Size = 22)

 1

 10

 100

 1000

.50 .60 .70 .80 .90

E
la

p
s
e

d
 T

im
e

 (
s
)

α, Threshold δ=0.8

Index

Alloc
Find

Greedy+

1.8m1.9m2.0m
2.1m

3.8m

Optimal+

1.8m
1.9m2.0m

2.1m
3.7m

Framework

26.3m

(c) MovieLens (Avg Size = 144)

Figure 7: Evaluating The Adaptive Grouping Mechanism by Varying α.

 0

 100

 200

 300

 0.8 0.85 0.9 0.95

E
lp

a
s
e
d
 T

im
e
 (

s
)

Threshold δ

Greedy+
PPJoin+

AdaptJoin

(a) DBLP (Avg Size = 94)

 0

 20

 40

 60

 0.8 0.85 0.9 0.95

E
lp

a
s
e
d
 T

im
e
 (

s
)

Threshold δ

Greedy+
PPJoin+

AdaptJoin

(b) Tweet (Avg Size = 22)

 0

 5

 10

 0.8 0.85 0.9 0.95

E
lp

a
s
e
d
 T

im
e
 (

s
)

Threshold δ

Greedy+
PPJoin+

AdaptJoin

(c) MovieLens (Avg Size = 144)

Figure 8: Efficiency: Comparison with State-of-the-art Studies.

 3

 6

 9

 12

0.95 0.9 0.85 0.8

 3

 6

 9

 12

S
iz

e
 o

f
A

c
c
e

s
s
e

d
 L

is
t

(1
0

x
)

C
a

n
d

id
a

te
s
 (

1
0

x
)

Threshold δ

Greedy+

PPJoin+

AdaptJoin

Greedy+

PPJoin+

AdaptJoin

(a) DBLP (Avg Size = 94)

 3

 6

 9

 12

0.95 0.9 0.85 0.8

 3

 6

 9

 12

S
iz

e
 o

f
A

c
c
e

s
s
e

d
 L

is
t

(1
0

x
)

C
a

n
d

id
a

te
s
 (

1
0

x
)

Threshold δ

Greedy+

PPJoin+

AdaptJoin

Greedy+

PPJoin+

AdaptJoin

(b) Tweet (Avg Size = 22)

 3

 6

 9

 12

0.95 0.9 0.85 0.8

 3

 6

 9

 12

S
iz

e
 o

f
A

c
c
e

s
s
e

d
 L

is
t

(1
0

x
)

C
a

n
d

id
a

te
s
 (

1
0

x
)

Threshold δ

Greedy+

PPJoin+

AdaptJoin

Greedy+

PPJoin+

AdaptJoin

(c) MovieLens (Avg Size = 144)

Figure 9: Sizes of Accessed Inverted Lists: Comparison with State-of-the-art Studies.

that of Optimal+, which was O(s2 logα δ). In addition, the
sizes of accessed lists of Greedy+ were at most twice of that
of Optimal+. Moreover when α was small, their time com-
plexities were both not higher than that of Framework, which
was O(s2) and they accessed much smaller number of entries
in the inverted lists than Framework as shown in the figure.
The sizes of accessed lists of Greedy+ and Optimal+ slightly
changed with the increases of α. This was because they
could always choose a good or even optimal allocation for
different records and groups. As Greedy+ achieved the best
performance, in the following experiments we only reported
the results of Greedy+.

7.3 Comparison with Existing Methods
We compared our method Greedy+, which utilized the

deletion neighborhood based framework with adaptive group-
ing mechanism, with the state-of-the-art methods PPJoin+

and AdaptJoin. We reported the elapsed time, sizes of ac-
cessed inverted lists and candidate number. The results were
shown in Figures 8 and 9. We can see that for efficiency our
method Greedy+ achieved the best performance and out-
performed existing methods by 2 to 5 times. For example
on the DBLP dataset with Jaccard Similarity threshold
δ = 0.8, the elapsed time for Greedy+ was 20s while PPJoin+
and AdaptJoin took 330s and 100s respectively. This was
because Greedy+ had more powerful pruning technique than
AdaptJoin and PPJoin+, and the greedy allocation selection
and the adaptive grouping mechanism decreased the time

complexity of the pruning techniques to O(s log s). Our
method Greedy+ also achieved the smallest sizes of accessed
inverted lists and candidate numbers. The bars in Figure 9
showed the candidate numbers and the points showed the
size of accessed lists. AdaptJoin accessed more number of
entries in the inverted lists but with less number of can-
didates than PPJoin+. This was because both PPJoin+ and
AdaptJoin utilized the prefix filter framework where each el-
ement corresponded to an inverted lists while each inverted
list corresponded to a subset in Greedy+. Thus the size of
the inverted lists was much shorter than that of PPJoin+ and
AdaptJoin. Moreover with the greedy allocation selection,
Greedy+ can further reduce the number of accessed entries.
PPJoin+ included a few more elements into prefix to prune
dissimilar pairs thus had a larger accessed inverted lists size
and a smaller number of candidates.

We also compared the index sizes. On the MovieLens
dataset with threshold δ = 0.8, the index sizes for AdaptJoin,
PPJoin+ and Greedy+ were respectively 80.1 MB, 16.1 MB
and 87.2 MB. The Greedy+ had the largest index size as
it needs to insert both the sub-records and the 1-deletion
neighborhoods to the index. PPJoin+ had the smallest in-
dex size as it only inserted the prefixes to the index while
AdaptJoin inserted every element in the record to the index.

7.4 Scalability
We evaluated the scalability of our method Greedy+ with

two different similarity functions, the Jaccard Similarity

370

 0

 100

 200

 300

200k 400k 600k 800k

E
la

p
s
e

d
 T

im
e

 (
s
)

of Records

δ=0.95
δ=0.9

δ=0.85
δ=0.8

(a) Jaccard on DBLP (Avg Size = 94)

 0

 20

 40

 60

2m 4m 6m 8m 10m

E
la

p
s
e

d
 T

im
e

 (
s
)

of Records

δ=0.95
δ=0.9

δ=0.85
δ=0.8

(b) Jaccard on Tweet (Avg Size = 22)

 0

 2

 4

 6

20k 40k 60k 80k 100k

E
la

p
s
e

d
 T

im
e

 (
s
)

of Records

δ=0.95
δ=0.9

δ=0.85
δ=0.8

(c) Cosine on MovieLens (Avg Size = 144)

Figure 10: Scalability with Different Similarity Functions.

and the Cosine Similarity, by varying the number of records
in the dataset. Figure 10 showed the results. We could
see that our method scaled very well. For example, on
the Tweets dataset with Jaccard Similarity threshold
δ = 0.9, we varied the number of records from 2 million
to 10 million. The elapsed time were respectively 3s, 7s,
12s, 18s and 28s. This was attributed to our effective filter
conditions and allocation selections.

7.5 Evaluating RSJoin
We extended Greedy+ to support the RS-join as discussed

in Section 6.2. For each dataset, we randomly split it to two
parts. Figure 11 showed the elapsed time and the number
of candidates. Our algorithms still achieved high perfor-
mance for RS-join, because our method built indexes for
one dataset and utilized the indexes to find similar pairs.

 5

 10

 15

 20

0.8 0.85 0.9 0.95

E
la

p
s
e

d
 T

im
e

 (
s
)

Threshold δ

Index

Alloc

Find

RS-Join

39.0k
77.9k

134.6k

596.3k

(a) RS-Join on DBLP

 3

 6

 9

 12

 15

0.8 0.85 0.9 0.95

E
la

p
s
e

d
 T

im
e

 (
s
)

Threshold τ

Index

Alloc

Find

RS-Join

0.1m

1.2m

5.1m

45.4m

(b) RS-Join on Tweet
Figure 11: Evaluating RS-Join.

8. CONCLUSION
We proposed a partition based framework for exact set

similarity join. We designed a partition scheme to par-
tition the sets into subsets. We generated the 1-deletion
neighborhoods for the subsets. Then we built inverted in-
dexes for the 1-deletion neighborhoods and the subsets. For
each set we accessed the inverted lists of some of its sub-
sets and 1-deletion neighborhoods to find similar sets. We
studied how to evaluate different allocations of the sub-
sets and 1-deletion neighborhoods and developed a dynamic-
programming method to select the optimal one. To accel-
erate the allocation selection, we designed a greedy algo-
rithm with 2 approximation ratio. We proposed an adaptive
grouping mechanism to further speedup the allocation selec-
tion. These techniques improved the allocation complexity
from O(s3) to O(s log s) for a set with size s. Experiments
showed our method outperformed state-of-the-art studied.

Acknowledgement: This work was supported by the National Grand

Fundamental Research 973 Program of China (2015CB358700), and

the National Natural Science Foundation of China (61422205, 61472198),

Beijing Higher Education Young Elite Teacher Project(YETP0105),

Tsinghua-Tencent Joint Laboratory for Internet Innovation Technol-

ogy, “NExT Research Center”, Singapore (WBS:R-252-300-001-490),

Huawei, Shenzhou, FDCT/116/2013/A3, MYRG105(Y1-L3)-FST13-

GZ, National 863 Program of China (2012AA012600), and Chinese

Special Project of Science and Technology (2013zx01039-002-002).

9. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In VLDB, pages 918–929, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, pages 131–140, 2007.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations
(extended abstract). In ACM STOC, pages 327–336, 1998.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, pages 5–16, 2006.

[5] W. W. Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity. In
ACM SIGMOD, pages 201–212, 1998.

[6] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: scalable online collaborative filtering. In
WWW, pages 271–280, 2007.

[7] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng. Massjoin: A
mapreduce-based method for scalable string similarity joins. In
ICDE, pages 340–351, 2014.

[8] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In ACM STOC,
pages 604–613, 1998.

[9] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An
experimental evaluation. PVLDB, 7(8):625–636, 2014.

[10] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, pages
257–266, 2008.

[11] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins. PVLDB,
5(3):253–264, 2011.

[12] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD Conference, pages 743–754, 2004.

[13] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation algorithms.
In WWW, pages 285–295, 2001.

[14] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive
hashing for fast similarity search. PVLDB, 5(5):430–441, 2012.

[15] A. Shrivastava and P. Li. Asymmetric LSH (ALSH) for
sublinear time maximum inner product search (MIPS). In
NIPS, pages 2321–2329, 2014.

[16] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating
similarity measures: a large-scale study in the orkut social
network. In ACM SIGKDD, pages 678–684, 2005.

[17] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In SIGMOD, pages
495–506, 2010.

[18] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. PVLDB, 5(11):1483–1494,
2012.

[19] J. Wang, G. Li, and J. Feng. Fast-join: An efficient method for
fuzzy token matching based string similarity join. In ICDE,
pages 458–469, 2011.

[20] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?:
an adaptive framework for similarity join and search. In
SIGMOD Conference, pages 85–96, 2012.

[21] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity
joins. In ICDE, pages 916–927, 2009.

[22] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity
joins for near duplicate detection. In WWW, pages 131–140,
2008.

[23] J. Zhai, Y. Lou, and J. Gehrke. ATLAS: a probabilistic
algorithm for high dimensional similarity search. In ACM
SIGMOD, pages 997–1008, 2011.

[24] X. Zhu and A. B. Goldberg. Introduction to Semi-Supervised
Learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2009.

371

	Introduction
	Preliminaries
	Problem Formulation
	The Prefix Filter based Methods
	Related Work

	Partition based Framework
	Record Partition
	Partition-based Algorithm

	Sub-Record Selection
	The 1-Deletion Neighborhoods
	Optimal Allocation Selection

	Allocation Selection
	Greedy Algorithm
	Adaptive Grouping Mechanism

	Discussion
	Supporting the Other Similarity Functions
	Supporting RS-Join
	Extending to the MapReduce Framework

	Experiments
	Evaluating Allocation Selection
	Evaluating the Adaptive Grouping
	Comparison with Existing Methods
	Scalability
	Evaluating RS-Join

	Conclusion
	References

