
An Efficient Partitioning Algorithm for
Distributed Virtual Environment Systems

John C.S. Lui, Member, IEEE, and M.F. Chan, Student Member, IEEE

AbstractÐDistributed virtual environment (DVE) systems model and simulate the activities of thousands of entities interacting in a

virtual world over a wide area network. Possible applications for DVE systems are multiplayer video games, military and industrial

trainings, and collaborative engineering. In general, a DVE system is composed of many servers and each server is responsible to

manage multiple clients who want to participate in the virtual world. Each server receives updates from different clients (such as the

current position and orientation of each client) and then delivers this information to other clients in the virtual world. The server also

needs to perform other tasks, such as object collision detection and synchronization control. A large scale DVE system needs to

support many clients and this imposes a heavy requirement on networking resources and computational resources. Therefore, how to

meet the growing requirement of bandwidth and computational resources is one of the major challenges in designing a scalable and

cost-effective DVE system. In this paper, we propose an efficient partitioning algorithm that addresses the scalability issue of designing

a large scale DVE system. The main idea is to dynamically divide the virtual world into different partitions and then efficiently assign

these partitions to different servers. This way, each server will process approximately the same amount of workload. Another objective

of the partitioning algorithm is to reduce the server-to-server communication overhead. The theoretical foundation of our dynamic

partitioning algorithm is based on the linear optimization principle. We also illustrate how one can parallelize the proposed partitioning

algorithm so that it can efficiently partition a very large scale DVE system. Lastly, experiments are carried out to illustrate the

effectiveness of the proposed partitioning algorithm under various settings of the virtual world.

Index TermsÐDistributed virtual environment, scalability issue, partitioning algorithm, load balancing, communication reduction, linear

optimization.

æ

1 INTRODUCTION

ADVANCES in multimedia systems, parallel/distributed
database systems, and high speed networking tech-

nologies enable system designers to build a distributed
system which allows many users to explore and interact
under a three dimensional virtual environment. In general, a
3D virtual environment is a virtual world which consists of
many high-resolution 3D graphics sceneries to represent a
real-life world. For example, we can have a 3D virtual
world to represent a lecture hall so that hundreds of
students and scientists can listen to a seminar presented
by Professor Daniel C. Tsui1 or we can have a large 3D
virtual world to represent the latest COMDEX show which
has many customers reviewing the latest softwares and
electronic gadgets. This type of shared, computer-resident
virtual world is called a distributed virtual environment (DVE)
[34]. Like other ground-breaking computer technologies,
DVE will change the way we learn, work, and interact with
other people in the society.

To illustrate how a DVE system can change our lifestyles
and the way we handle our business operation, let us

consider the following situation. Let's say an architect from
New York, a civil and a structural engineer from Paris, a
financial planner from Hong Kong, and an interior designer
from Tokyo all need to have a business meeting to discuss
the designing and financing issues of a new high-rise office
complex. Under a DVE setting, these people can convene a
meeting in a virtual world without leaving their respective
homes and offices. Their meeting can be carried out in a
DVE system. These participants can interact with each other
in a virtual world of the new high-rise office complex that
they are proposing to build. Each participant in this
business meeting can virtually walk around in the proposed
high-rise office building, interact with each other and carry
out the discussion. For example, in this virtual high-rise
office complex, each participant in the meeting is repre-
sented by a 3D object, which is known as an avatar. Each
participant can walk around in this virtual office building
and, in the process, rearrange any 3D object in the
environment (e.g., rearrange paintings and furniture or
select different kinds of carpet). Any change to a 3D object
in this virtual world will be visible to all participants.
Participants in this meeting are able to interact with each
other in real time, as well as to inquire and to receive any
relevant information of the virtual world. For example,
participants can query about the credit history of a
manufacturer who is responsible to produce the office
furniture.

There are many challenging issues in designing a
scalable, cost-effective, and high performance DVE system.
We list some of the important research issues (although not
exhaustive) when designing such DVE systems.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1, JANUARY 2002 1

. J.C.S. Lui is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
E-mail: cslui@cse.cuhk.edu.hk.

. M.F. Chan is with ??? E-mail: ???.

Manuscript received 11 Jan. 2000; revised 21 Apr. 2001; accepted 13 Aug.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 111201.

1. A 1998 Noble Prize winner in Physics for the discovery of a new form
of quantum fluid with fractionally charged excitations.

1045-9219/02/$10.00 ß 2002 IEEE

. Backend Database. Designing a spatial and relational
database engine so that users who are virtually
exploring a large 3D virtual environment can query
and receive relevant information about the environ-
ment being explored. The backend database engine
should be able to support relational, spatial, and
possible fuzzy types of queries. This research issue
has been addressed in the VINCENT project [20],
which is an earlier version of our current DVE
system.

. Object Consistency. Since DVE clients can manipulate
any object in a 3D virtual world, therefore, it is
important to keep all objects in the virtual world in a
consistent state such that, once the object is being
accessed, other users may not be able to access it
anymore. In general, there are several approaches to
solve this concurrent access problem. For example,
by exclusive locking of the object or by defining
various access operations (similar to defining the
read/write operations in database) that can be
performed on the object so as to allow concurrent
access to the object. Although concurrency control
has been well studied in the database research
community [7], concurrent data access under a
DVE environment is more complicated. Objects in
a 3D environment are usually rich in semantics
and, therefore, one can propose different classes of
concurrency control algorithms so as to support a
high degree of concurrent access.

. View Consistency. Since users can move around in the
virtual world and any user can access any object in
the environment, users who are exploring the same
virtual world have to be notified of the activities so
as to keep their local views consistent. For example,
if a user moves a chair from one location to another
location, another user in the virtual world should be
able to visualize this change. The process of sending
the control information so as to maintain the view
consistency among all users requires a tremendous
amount of communication bandwidth. Recent re-
search work on multicasting techniques [3], [10], [11]
can help to reduce the network resource demand. In
[22], [23], the authors propose approaches to connect
all participating clients using different communica-
tion subgraph construction algorithms. The authors
also derive an optimal synchronization interval so
that every participating client in the same virtual
world can view all objects with a high degree of
consistency.

. Balancing Workload and Reducing Communication Cost.
Potentially, one can use a DVE system to model a
virtual world which represents a very large real-life
environment and, at the same time, to support many
users who want to explore in this virtual environ-
ment. This implies that servers for this DVE system
have to have a large computational power so as to
render different 3D models, perform the positional
updates, as well as transfer the control information
between different clients. Each participating client
and server also needs to process many updates sent

by others so as to keep the states of every object in
the virtual world consistent.

As the number of clients in a DVE system
increases, so doesthe amount of network traffic
generated by the clients and the DVE servers. The
communication networks (WANs and LANs) sup-
porting this DVE system can be easily overwhelmed
by the traffic load. Furthermore, the increase of
computation overhead at each client/server for
processing the incoming information makes it
difficult to implement a scalable DVE system. To
realize a large scale DVE system, it is clear that the
system needs to use multiple servers to handle
clients' requests. (Therefore, an interesting and
important problem in designing a DVE system is
how one can partition and assign the workload
among different servers in the DVE system and, at
the same time, maintain a manageable level of
communication overhead.) This is the main focus
and contribution of this paper.

Let us briefly describe some previous work on DVE
systems. In [20], the authors illustrated how to design and
implement a virtual walk-through system such that a user
can query and retrieve information about the virtual world.
One limitation of this system is that it only allows a single
user to explore the virtual world. However, it allows many
users to explore the same virtual world but under different
sessions. Therefore, for this special type of DVE system,
there is no communication and interaction between
different users in the system. In [27], [28], the authors
described how to build a storage system that can support
applications like the video-on-demand and 3D walk-
through of a virtual world. The result is particularly
interesting in the sense that the storage server can provide
a guarantee for timely data retrieval for different multi-
media applications, which may have vastly different quality
of service requirements. In [24], the authors demonstrated
how to build a distributed virtual environment for military
applications and showed how it can be used to support
hundreds of users. In [8], the authors designed a prototype
DVE system which operates based on the Internet IP
Protocol [9]. In this work, the authors illustrated that it is
impossible for a single system to handle all the required
workload and, therefore, workload partitioning approach
was mentioned. However, there is no detail description on
how to maintain synchronization among different servers
and how to carry out the partitioning operation so as to
reduce the communication overhead. In [31], the authors
presented a software toolkit known as DIVE to construct a
DVE system. Using the DIVE toolkit, users can define their
own objects and behavior, but the underlying DIVE system
assumes a single server and that each DIVE world is
maintained by a dedicated server only. In [22], [23], the
authors derived the optimal synchronization interval so that
every client in the same virtual world can view all objects
with a high degree of consistency.

Let us also briefly describe some previous work on graph
partitioning. One can view that the DVE problem we
mentioned above is similar to theproblemofmapping a finite
element graph on a distributed memory multicomputer

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1, JANUARY 2002

system. This type of graphmapping problem is shown to be
NP-complete [19]. There is a lot of research work [1], [2], [4],
[13], [16], [17], [18] on how to perform this type of finite
graph mapping. All these proposed approaches try to
find some suboptimal solutions. There are number of
important heuristics which include techniques like recur-
sive coordinate bisection, inertial bisection, scattered
decomposition, and index-based partitioners [5], [29],
[32], [36] for parallel scientific computation. There are also
a number of methods which use explicit graph informa-
tion to achieve partitioning. These heuristics include
spectral bisection, recursive spectral multisection, min-
cut-based methods and genetic algorithms [6], [14], [15],
[16]. Note that all these proposed algorithms provide some
suboptimal solutions and that they are not applicable to the
DVE systems which we mentioned above. The reason is that
users of a DVE system can join and leave anytime. Also, the
communication cost can also vary in time due to temporary
traffic congestion. Therefore, the structure of the graph
which is used to present a DVE system, is more dynamic
and the problem is more difficult.

The paper is organized as follows: In Section 2, we
describe some possible DVE system architectures and the
characteristics of avatar objects in the virtual world. In
Section 3, we formulate the workload partitioning problem.
We propose a partitioning algorithm to solve the scalability
problem. The partitioning algorithm is based on the linear
optimization technique and is shown to be computationally
efficient and can effectively partition the workload evenly
among the servers and, at the same time, reduce the
communication overhead. We also illustrate how we can
parallelize the proposed partitioning algorithm so that it
can partition a very large scale DVE system. Section 4
contains the result and discussion of different experiments
with various sizes of virtual world and different avatar's
location distributions to illustrate the effectiveness of our
proposed partitioning algorithm. Lastly, the conclusion is
given in Section 5.

2 DISTRIBUTED VIRTUAL ENVIRONMENT

In this section, we describe various elements in a
distributed virtual environment system, namely, 1) the
system architectures, 2) the methodologies of representing
clients as avatars and their area-of-interest (AOI), and 3) the
dynamic joining and leaving properties of avatars in a DVE
system.

2.1 DVE Architectures

Let us first consider different possible architectures so as to
realize a multimedia service like a DVE application. In
general, there are two possible architectures for implement-
ing a DVE system. The choice of which architecture to use
depends on the size of the virtual world (or the 3D virtual
environment) that we want to model, as well as the number
of concurrent participating clients under this virtual world.
These two types of architectures are 1) single server
distributed virtual environment architecture (SSDVE) and
2) multiple servers distributed virtual environment
architecture (MSDVE).

Under a SSDVE architecture, all clients are connected to
a single and dedicated server. To guarantee that all clients
have the same consistent view of the virtual world, any
action or activity generated by a client has to be transmitted
in real time to all clients or, at the very least, to those clients
who need to know about this new activity. This form of
communication is accomplished as follows: The initiating
client sends a message to the DVE server, the DVE server
first transforms the message to some database operations
(e.g., locking an object in the virtual world, changing the
position of a given object), etc., then the server broadcasts
(or multicasts) this new information to other clients in the
DVE system so that every client can update their local view
of this virtual world. It is important to point out that the
SSDVE approach has the scalability problem. For example,
if the number of clients is large, then the demand on the
processing power, system buffer, and communication
bandwidth will also be large. Therefore, an SSDVE
architecture is only suitable for a small scale DVE system,
for example, a virtual world with a small number of
objects and a small number of participating clients.

To support many concurrent clients in a DVE system,
one can adopt the MSDVE architecture. In an MSDVE
architecture, multiple servers will be used and each server
is responsible for handling a subset of the virtual world
(e.g., some number of clients and some number of objects in
the virtual environment), as well as the communication of
its attached clients and the communication between servers.
It is important to point out that, in order to keep the view
consistency among the participating clients, some form of
server-to-server communication is necessary. Therefore, a
DVE system designer has to consider the issue of balancing
the computational workload among different servers and
reducing the communication cost between different servers.
Balancing these two costs is not easy and, in general, it is
architecturally dependent. This can be illustrated by the
following examples. For a DVE system in which the servers
are distributed around a wide area network, balancing the
communication cost is more important. On the other hand,
if a DVE system has many servers which are closely
connected (or tightly coupled), then balancing the computa-
tional workload may be more important. Fig. 1 illustrates
that we use three servers to divide up the virtual world.
Clients are associated to a specific server whenever the client
is in the administrative region of that server. Note that the
administration region of a server can be time-varying. We
will elaborate this point in a later section.

2.2 Representation of Client as Avatar and
Its Area-of-Interest (AOI)

In a distributed virtual environment, we usually use an
avatar, which is a 3D active object, to represent a
participating client in a virtual world. In order to provide
the interactive capability of a client, the avatar can move or
traverse in a virtual world. A client can also use his/her
avatar to communicate with other avatars (or other users
in the virtual world) or use his/her avatar to access any
3D objects, such as books, chairs, glasses, etc., in the virtual
environment. Since an avatar can move around and can
interact with any static or dynamic 3D objects within the
virtual world, for any action performed by an avatar, a

LUI AND CHAN: AN EFFICIENT PARTITIONING ALGORITHM FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 3

DVE system needs to transfer the information for this new
action to other avatars so as to keep the information of the
virtual world consistent.

One simple way to maintain the consistency of the
virtual world is to broadcast any action taken by any avatar
to all other avatars in the system. However, this will incur a
significant communication overhead. In general, each
avatar only needs to know those activities that happened
near his/her vicinity, for example, any activity that is
within 10 meters of his/her position in the virtual world.
Therefore, one way to significantly reduce the total
communication overhead in a DVE system is to allow
every avatar to define his/her own area of interest (AOI). In
general, an AOI of an avatar is the region of the virtual
world that, if there is any activity happened in this region,
the avatar needs to know so as to update its own state
and to make his/her view consistent. Fig. 2 illustrates the
AOI concept of different avatars. In this paper, we use a
circle to represent the AOI of each avatar. Let AOI�Ai�
denote the area-of-interest of avatar Ai. From the figure, we
can see that AOI�A4� � AOI�A1�. Therefore, the DVE
system has to inform A1 of any activity generated by A4.
On the other hand, if there is any activity which happened
within the intersection of AOI�A1� and AOI�A3�, then the
DVE system only needs to inform A1 and A3 of this activity.
Also, since AOI�A5� or AOI�A6� does not intersect with the
AOI of A1 to A4, the DVE system does not have to inform
A1,A2, A3, and A4of any activity generated by A5 or A6.

2.3 Dynamic Membership

It is important to mention that the dynamic membership
characteristic of an avatar in a DVE application. The
dynamic membership characteristic of an avatar refers to
the notion that a new client can join a virtual world at any
given time or a participating client can leave a virtual world
at any given time. Therefore, if a DVE application has the
dynamic membership characteristic, this implies that the

number of participating clients who are exploring this
virtual world is dynamically changing in time. For example,
for the virtual world of business meeting we described in
Section 1, the number of clients is fixed throughout the
virtual world session (e.g., people are conducting a business
meeting under a DVE system). On the other hand, in the
virtual world of the COMDEX show we described in
Section 1, the number of clients can vary in time since a user
may want to log on to the DVE system and explore the
COMDEX virtual world anytime or a user may decide to
leave the COMDEX virtual world when he/she found the
electronic gadget that he/she wanted to purchase.

Note that this dynamic membership characteristic of
avatar in joining and leaving a virtual world increases the
necessity of an efficient partitioning algorithm. Moreover,
since an avatar can move from one location to another, it is
possible that an avatar can move out of the region that is
managed by a server, say Si, and move into another region
that is managed by another server Sj, where i 6� j. It is easy
to observe that, if we do not adjust the avatar-to-server
assignment, eventually, the workload among servers will
vary significantly and the amount of traffic between servers
may reach an unacceptable level. Therefore, it is important
to find an efficient algorithm that can partition the work-
load in the virtual world evenly so that every server will
carry the same amount of workload and, at the same time,
the partitioning algorithm can also reduce the server-to-
server communication overhead.

3 PARTITIONING ALGORITHM

In this section, we present the partitioning problem of a
DVE system. We first formulate the partitioning problem
and illustrate that it is an NP-complete problem in general.
We then present an iterative partitioning algorithm. At the
end of this section, we illustrate how we can parallelize the
proposed partitioning algorithm so as to handle a very large
scale DVE system. The effectiveness of the partitioning
algorithm will be illustrated in Section 4.

3.1 Problem Formulation

Before we formulate the problem, let us define the
following notation:

. P = Number of partitions or servers in a DVE
system.

. Si = The ith server in the DVE system where
i � 1; 2; . . . ; P .

. n = Number of avatars in a DVE system.

. ai = The ith avatar in a DVE system where
i � 1; 2; . . . ; n.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1, JANUARY 2002

Fig. 1. MSDVE architecture for a DVE system.

Fig. 2. Avatars and their area of interest.

. w��� = A nondecreasing function that maps the
workload of an avatar to the computational cost on a
server. For example, w�ai� represents the computa-
tional cost on a server if the server is responsible
for handling all workload events generated by the
avatar ai.

. I�ai; aj� = Amount of information exchange (in unit
of bit) from avatar ai to avatar aj. If there is no
communication between ai and aj, then I�ai; aj� � 0.

. �Si;Sj
��� = A nondecreasing function that maps the

amount of information exchange (in unit of bits) to
the communication cost server from Si to Sj in the
DVE system.

. 	�ai� = A nondecreasing function that maps the
amount of information transmitted (in unit of bits)
by an avatar ai to the computational cost on a server.

. W1 = A nonnegative real number representing the
relative importance of the computational workload
cost on a server.

. W2 = A nonnegative real number representing the
relative importance of the server-to-server commu-
nication cost on a server. Note that W1 �W2 � 1:0.

. CW
P = Computation workload cost for a given

partition policy P.
. CL

P = Communication cost for a given partition
policy P.

. CP = Total cost for a given partition policy P.

. jPj = The total number of possible partition policies.

We use a graph notation to represent a DVE system.
Given a graph G � �V ;E�, V represents the set of avatars
in a DVE system, E represents the set of edges such that an
edge eij 2 E represents that the avatar ai needs to
communicate with avatar aj (e.g., the AOIs of ai and aj
intersect with each other). Let P be a partition policy that
divides V into P (number of servers) disjoint subsets
V1; V2; . . . ; VP such that Vi \ Vj � ; for i 6� j and [P

i�1
Vi � V .

In other words, all avatars in the subset Vi will be assigned
to server Si in the DVE system. Let the function w�� be an
nondecreasing function that maps the workload of an
avatar to the computational cost on a server. For example,
Fig. 3a represents an example of a mapping function from
the avatar's workload (e.g, workload of moving, rendering,
etc.) to the server's computational cost. Let the function 	��
be a nondecreasing function that maps the amount of
information transmitted (in unit of bits) by an avatar to the

computational cost on a server. Fig. 3b illustrates an
example of such a mapping function.

Given a partition P, we define the computation work-
load cost CW

P of this partition strategy as

CW
P �

X

P

j�1

X

ai2Vj

w�ai� �	�ai� ÿ w�

�

�

�

�

�

�

�

�

�

�

�

�

0

@

1

A; �1�

where w� �
Pn

i�1
�w�ai� �	�ai��=P is the computational

workload per server under the perfectly balanced workload
partition strategy. Therefore, CW

P measures the deviation
from the ideal load balancing partitioning strategy.

For the communication cost between servers under a
partition strategy P, we have to consider the AOI of each
avatar. Specifically, if an avatar ai is within the AOI of
another avatar aj, then, for any action taken by the avatar ai,
the DVE system needs to send this new information to the
avatar aj. Let P be given a partition strategy which divides
V into fV1; V2; . . . ; VPg and that we assign partition Vi to
server Si. Let I�ai; aj� denote the amount of information
exchange (in unit of bit) from avatar ai to avatar aj. And, let
�Si;Sj

�� be a nondecreasing function that maps the amount
of information exchange (in unit of bits) to the communica-
tion cost server from Si to Sj in the DVE system. The
communication cost between partition Vl and Vm (for
l 6� m), denoted as Clm, can be expressed as

Clm �
X

vi2Vl

X

vj2Vm

f�Sl;Sm
�I�vi; vj��g

�
X

vj2Vm

X

vi2Vl

f�Sm;Sl
�I�vj; vi��g:

�2�

The first term of the above equation expresses the
communication cost for transmitting information updates
from partition Vl to Vm, while the second term expresses the
communication cost for transmitting information updates
from partition Vm to Vl. Let C

L
P be the communication cost

for a given partition strategy P, we have:

CL
P �

X

P

l�1

X

P

m>l

Clm: �3�

Therefore, CL
P represents the total server-to-server commu-

nication cost for a given partition P. In this paper, we
assume the communication cost between avatars which
are assigned to the same server as part of the server

LUI AND CHAN: AN EFFICIENT PARTITIONING ALGORITHM FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 5

Fig. 3. (a) w��: Mapping function from the avatar's workload to the server's computational cost. (b) 	��: Mapping function from the avatar's

information exchange to the server's computational cost.

computational workload cost. This assumption can be
easily relaxed and be included in the total cost CP . The
overall cost for the partition strategy P, denoted by CP , can
be expressed as

CP � W1C
W
P �W2C

L
P with W1 �W2 � 1; �4�

where W1 and W2 represent the relative importance of the
computational workload cost and the communication cost,
respectively. For example, to implement a DVE system
wherein servers are distributed across the Internet, we may
want to assign more weight to W2 so as to reduce the
communication cost. On the other hand, if we used a
clustered-based architecture wherein servers are connected
within a LAN, then we may want to give more weighting to
W1. Lastly, the DVE partitioning problem is to find an
optimal partition P� such that

C�
P � min

P
CPf g: �5�

Before we discuss the proposed partitioning algorithm, we

need to show the following important result [21].

Theorem 1. The workload partitioning problem given in (5) is

NP-complete.

Proof. Let us consider the simplified version of the
workload partition problem where W2 � 0 (which
corresponds to the case that the network has an infinite
communication bandwidth and, therefore, the server-to-
server communication cost is negligible). Given a set of
nodes in V , we partition them into P disjoint subsets
V1; . . . ; VP such that[P

i�1
Vi � V and the partitioning cost is

CP �
X

P

i�1

X

a2Vi

w�a� �	�a� ÿ w�

�

�

�

�

�

�

�

�

�

�

:

The main idea is to transform the partitioning problem

to the subset sum problem [12], which is known to be

NP-complete.
The subset sum problem can be described as

follows: Given a positive integer B and a finite set
A � fa1; a2; . . . ; aNg where s�ai� 2 Z� denotes the size of
the element ai. The subset sum problem is to determine
whether there is a subset A0 � A such that the sum of the
sizes of the elements in A0 is exactly equal to B.

The transformation works as follows: For each avatar
in the virtual world, we create an element ai 2 A. Let
s�ai� equal the computational workload of the avatar ai,
that is, s�ai� � w�ai� �	�ai�. The communication cost
between any avatar is set to zero. For the workload
partition problem, we set the number of partitions as
P � k. The value of B in the subset sum problem is set to
1

k

PN
i�1

s�ai�. If an input instance of the subset sum
problem should return a yes, then it implies that we
can evenly divide the computational workload among
the k servers. If the answer is no, this implies that the
workload partitioning problem will have a load
imbalance cost which is greater than zero. The
transformation of a workload partitioning problem to
a subset sum problem can be achieved in polynomial
time. However, since the solution to the subset sum
problem is NP-complete, we can conclude that the work-
load partitioning problem is also NP-complete. tu

3.2 Exhaustive Partition (EP) Algorithm

One way to partition the avatars among different servers is
by the exhaustive approach, that is, given n avatars in the
DVE system and P servers, then each avatar can have at
most P choices. Let jPj denote the total number of partition
policies; thus, we have

jPj � �P ��P � � � � �P � � P n: �6�

Note that, although the exhaustive algorithm can find the
optimal partition policy (e.g., a partition which has the
minimum cost C�

P), this algorithm can only be applied to a
small scale DVE system. For example, for n � 16; P � 2, the
system needs to evaluate 65,536 different partition policies.
For a moderate sized DVE system with n � 16; P � 4, the
exhaustive algorithm requires approximately 4:3� 10

9

evaluations to find the optimal partition.

Lemma 1. The complexity of Exhaustive Partition Algorithm is
O�Pn�2n2�.

Proof. Let the number of avatars and the number of servers
be n and P , respectively. The complexity for calculating
the cost between two servers is O�n2�. For each partition
configuration, the complexity for calculating the cost
among all P servers is O�P 2n2�. We need Pn evaluations
to get an optimal solution because there are Pn partition
policies. Thus, the overall complexity of the EP algorithm
is O�P n�2n2�. tu

3.3 Partitioning Algorithm

Due to the NP-completeness nature of the problem in (5),
we propose the following efficient heuristic partitioning
algorithm. The general idea of the proposed partitioning
algorithm has the following steps

Partitioning Algorithm:

1. begin

2. Use the recursive bisection partitioning(RBP)

algorithm to find the initial partition PRBP ;

3. current_cost = CPRBP
;

4. difference = 1; i=1;
5. while (difference > d�){

6. Use the layering partitioning (LP) algorithm

to find a new partition P�i�;

7. Given P�i�, use the communication refinement

partitioning (CRP) algorithm

8. to find a new partition P0�i�;

9. difference = jCP0�i� ÿ current costj;

10. current_cost = CP0�i�;
11. i++;

12. }

13. final partition is P0�i�;

14. end

The partitioning algorithm has three key components,
namely, 1) the recursive bisection partitioning algorithm
(RBP), 2) the layering partitioning algorithm (LP), and 3) the
communication refinement partitioning algorithm (CRP). The
RBP algorithm uses a divide-and-conquer approach to find
the initial partition P1 that reduces the workload deviation
and interserver communication cost. The LP algorithm and
the CRP algorithm are derived from an elegant graph
partitioning technique [30], which is based on the linear

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1, JANUARY 2002

optimization principles [33], [35] to minimize the the
workload deviation and the interserver communication,
respectively. The algorithm will iterate the layering
partitioning algorithm and the communication refinement
partitioning algorithm until the difference of the total
partitioning cost is less than some predefined threshold
d�. In general, we can vary the value of this predefined
threshold so as to balance between the computational cost
of running this algorithm versus the desired level of
optimal partitioning. In Section 4, we show that the
proposed partitioning algorithm can efficiently find a
partition strategy that can reduce the total cost. In what
follows, we describe each of these three components in
detail.

3.3.1 Recursive Bisection Partition (RBP) Algorithm

The main idea about the recursive bisection partitioning
algorithm is to divide the avatars in the virtual world into
groups and then, based on a divide-and-conquered technique,
to find an initial partitioning strategy P1. In the recursive
bisection algorithm, we first assume that the AOI of avatar
is in the form of a circle with an average diameter of D. We
then divide up the virtual world into N disjoint squared
cells such that the area of a cell is equal to D2. The rationale
of dividing the virtual world into cells is that, with high
probability, most of the communication between avatars is
between neighboring cells. Fig. 4 illustrates that the virtual
world is divided into 32 disjoint cells.

Given the state of the DVE system, we can construct a
graph GRBP � �VRBP ; ERBP � based on the following steps:

1. For each cell ci, 1 � i � N , create a node vi in VRBP .
2. Let Sci be the set of avatars that reside in cell ci.

Compute the computational workload for cell ci,
which is equal to

P
aj2Sci

w�aj�.

3. For any two adjacent cells, ci and cj, create an edge
Eij between the node vi and vj such that the cost of
Eij, which is denoted by C�Eij�, is nonzero. The cost
of the edge Eij is computed based on the following
formula:

C�Eij� �
X

vi2Sci

X

vj2Scj

�Sci
;Scj

�I�vi; vj��

�
X

vj2Scj

X

vi2Sci

�Scj
;Sci

�I�vj; vi��:

The recursive bisection partitioning algorithm is based
on the concept of the divide-and-conquered technique.

Without the loss of generality, let us first present the RBP
algorithm for N cells system and the number of servers (P)
is equal to two. Let V n

k be the partition for the kth server
(where k � 1; 2; . . . ; P) with n � N cells. Initially, we set

V N
1 � VRBP � fv1; v2; . . . ; vNg ; V 0

2 � ;: �7�

Let PRBP �i� be the ith partition configuration and let
CPRBP �i�, the cost based on (4), be the cost of partition
configuration PRBP �i�. Based on the initial partition, we
have PRBP �0� � �V N

1 ; V 0
2 � and the corresponding CPRBP �0�.

We can then find the next partition policy PRBP �1� by
moving one cell from V N

1 to V 0
2 and compute the cost

CPRBP �1�. In finding the new partition PRBP �1�, we choose to
move a cell from the first server to the second server such
that the total cost CPRBP �1� is minimized. This can be
achieved by considering each cell in V N

1 and this process
takes linear time with respect to the total number of cells
(N) in the system. Formally, we have

PRBP �i� � �V Nÿi
1 ; V i

2 � i � 0; 1; . . . ; N; �8�

where PRBP �i� 1� can be derived by the following
recursive construction method:

PRBP �i� 1� ��V
�Nÿ�i�1��
1 ; V i�1

2 �

��V
�Nÿi�
1 ÿ fvjg; V

i
2 [fvjg�

for vj 2 V
�Nÿi�
1

and CPRBP �i�1� is minimized:

�9�

That is, we consider every node in V
�Nÿi�
1 such that in

choosing node vj, we minimized the cost of partition policy
PRBP �i� 1�. Note that CPRBP �0� and CPRBP �N� represent the
two extremes of the highest load imbalanced cost (i.e., all
cells are assigned to one server and there is no server-to-
server communication). Therefore, the RBP algorithm is to
choose a configuration that

PRBP �i
�� � fPRBP �i� j CPRBP �i� � min

0�j�N
fCPRBP �j�gg: �10�

The above bisection algorithm applies for P � 2. For a
larger number of P , we can first use the bisection
partitioning algorithm presented above, then choose a
partition that has the largest cost, and then apply the
bisection partitioning algorithm again. At the end of the
RBP algorithm, we obtain a partition strategy PRBP that
partitions the graph GRBP into P disjoint regions (or
VRBP � fV1 [� � � [VPg) such that all the nodes in Vi will
be assigned to the ith server.

Lemma 2. The complexity of Recursive Bisection Partition
Algorithm is O�N3�P ÿ 1��.

Proof. Let the number of cells and the number of servers be
N and P , respectively. The number of evaluation of the
partitioning configurations is N�P ÿ 1�. For each evalua-
tion, we need to calculate the cost between two servers,
the complexity isO�N2�. Therefore, the overall complexity
of the RBP Algorithm is O�N3�P ÿ 1��. Note that the
complexity of the RBP algorithm is much smaller than
the exhaustive approach because the number of cells
(N) is much smaller than number of avatars (n) in the
DVE system. tu

LUI AND CHAN: AN EFFICIENT PARTITIONING ALGORITHM FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 7

Fig. 4. A virtual world represented by 32 disjoint cells.

3.3.2 Layering Partitioning (LP) Algorithm

Although the RBP algorithm can produce a partition
strategy PRBP , there are several shortcomings in the
approach. For example, the computational complexity is
high (which we will illustrate in Section 4) and, at the same
time, the overall cost CPRBP

for PRBP can still be reduced
further. The main idea about the layering partitioning
algorithm is to label each avatar using a server number. The
label (or server number) serves as a possibility of moving the
corresponding avatar to a new partition which has that
server number. The decision of whether to move the avatar
can be formulated as a linear programming optimization
problem which we illustrate in this section.

Since we have obtained a partition PRBP from the
recursive bisection partitioning algorithm, we can relax the
assumption that the DVE world is divided up into cells. We
first have to construct a graph GLP � �VLP ; ELP � such that
each node in the graph represents an avatar. An edge
eij 2 E represents that avatar ai is within the AOI of avatar
aj and the cost of this edge eij is I�ai; aj�. The construction
of the graph GLP � �VLP ; ELP � is specified by the following
algorithm

Graph Construction Algorithm:

1. begin

2. for each avatar ai, create a node vi in GLP ;

3. for each vi 2 GLP , do { /* initiate */

4. initialize variables

connected�vi� � false;

5. initialize variables server_number�vi� � k

where vi 2 Vk and 1 � k � P ;
6. /* note that the server index k for Vk can be obtained

from the output of the RBP algorithm */

7. }

8. for vi 2 VLP do {

9. /* create edges and mark those nodes along the

partition boarder as connected */

10. for vj 2 VLP where i 6� j, do {

11. if vj is within the AOI of vi then {
12. create an edge eji in ELP ; /* eji is an

edge between vj and vi where

vi; vj 2 VLP */

13. set the weight of eji � I�vj; vi�;

14. if (server_num�vi� 6� server_num�vj�)

then {

15. connected�vi� � connected�vj� � true;

}
16. }

17. }

18. }

19. for all vi 2 GLP do { /* connect the remaining

nodes */

20. if (connected�vi� � false) then {

21. if ((there exists a node vj which is a

neighbor of vi) /* vj is a neighbor of vi if eij
exists */

22. and (connected�vj� � true)) then

23. connected�vi� � true;

24. if (connected�vi� � false) do {

25. find a nearest node vk such that

connected�vk� � true and

server_num�vi� � server_num�vk�;

26. create an edge eik 2 ELP ;

27. set weight of eik � I�vi; vk� or � > 0;

28. connected�vi� � true;

29. }

30. if (connected�vi� � false) do {

31. find a nearest node vk 2 GLP such that

connected�vk� � true;
32. create an edge eik 2 ELP ;

33. set weight of eik � I�vi; vk� or � > 0;

34. connected�vi� � true;

35. }

36. }

37. }

38. end

The purpose of the constructing graph GLP is to produce
a connected graph so that we can perform the layering step.
The motivation of the layering procedure is to identify
which node can be assigned to a different server so as to
reduce the overall cost. The layering procedure can be
described as follows:

First, a node vi is considered as a boarder node when there
exists a node vj such that

1. there exists an edge eij 2 ELP and
2. server num�vi� 6� server num�vj�. In other words,

node vi is along a partition boarder.

Let Sbn be the set of all boarder nodes in the graph GLP . For
each node vi 2 Sbn, we find a partition Vj� such that:

X

vk2Vj�

I�eik� � max
1�l�P

X

vk2Vl

I�eik�

()

:

Once we find that partition Vj� , we set the layer number of
the node vi, denoted by layer num�vi�, to j�. At this point, we
let Sl to denote the set of nodes that has an assigned layer
number. Note that Sl � VLP . The remaining step is to
consider all those nodes in VLP which have no layer number
yet. To accomplish this, let us consider a node vi which has
no layer number. For this node vi, we find a label j� such
that the sum of the weight from node vi to nodes with label
j� is

max
X

vk2Sl

I�eik�

 !

where layer num�vk� � j�:

Then, we set layer num�vi�, the layer number of node vi, as
j�. Now, for all those nodes that have the newly assigned
layer number, we add them to the set Sl. We repeat the
layer number assignment process for all nodes in VLP .

To illustrate the layer number assignment concept, Fig. 5
depicts a graph GLP with the corresponding edge weight.
All boarder nodes in the graph GLP are highlighted. Note
that graph GLP is divided into three partitions, namely,
Vi; Vj, and Vk. Fig. 6a shows the assignment of layer number
for the boarder nodes and Fig. 6b illustrates the assignment
of layer number for the remaining nodes.

After we finished layering all nodes in the graph GLP , we
can consider moving some of the nodes with layer number i

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1, JANUARY 2002

to server i, where 1 � i � P , so as to reduce the computa-
tion workload deviation (e.g., reduce the workload cost
according to (1)). The number of nodes that can be moved
can be formulated as a linear optimization problem. Let �ij

represent the number of nodes in partition Vi that can be
moved to partition Vj (e.g., these are the nodes that are in
partition Vi and with a layer number equal to j). For
example, in Fig. 6b, �ij � 2. Let jVij represent the total
number of nodes in partition Vi (e.g., in Fig. 6b), jVij � 7).
Let xij be the decision variable of the number of nodes that
we eventually move from partition Vi to Vj so as to reduce
the computation workload cost of the DVE system. We
would like to minimize the total number of movement, or
minimize

P

1�i6�j�P xij so as to achieve workload balancing
property.

The formulation of the linear optimization is

Minimize
X

1�i6�j�P

xij; �11�

which is subject to the following constraints:

0 � xij � �ij � jVij �12�

X

1�j 6�i�P

�xij ÿ xji� � jVij ÿ
1

P

X

N

j�1

w�aj� �	�aj�
ÿ �

for 1 � i � P:

�13�

The constraint in (12) ensures that the number of nodes that
we move from partition Vi to partition Vj is less than or
equal to the feasible number of candidate nodes. The
constraint in (13) ensures that the difference of the total

number of nodes that we move into server i and the total
number of nodes that move out of server i is equal to the
workload deviation of server i under the ideal load
balanced situation. In other words, we try to make sure
that the workload in server i is as close to the ideal
workload balanced situation as possible.

Lemma 3. The complexity of the Layering Partitioning
Algorithm is O�P 6�.

Proof. Let the number of partitions be P . We will have
P �P ÿ 1� variables and P �P ÿ 1� � P � P 2 constraints.
Although the number of iterations required for a linear
programming is problem dependent, a good estimate is
about 2�P 2 � P �P ÿ 1��. Thus, the overall complexity of
the LP algorithm is O�P 6�. tu

To illustrate this linear optimization solution technique,
let us consider the graph in Fig. 6b. The formulation is given
as follows:

Minimize xij � xik � xji � xjk � xki � xkj

subject to : xij � 2; xik � 5;xji � 3;xjk � 2; xki � 2;

xkj � 4

xij � xik ÿ xji ÿ xki � 7ÿ 6 � 1

xji � xjk ÿ xij ÿ xkj � 5ÿ 6 � ÿ1

xki � xkj ÿ xik ÿ xjk � 6ÿ 6 � 0:

The solution to the above optimization problem is xij � 1,
xik � xji � xjk � xki � xkj � 0. Therefore, we choose the
node that has a layer number equal to j in partition Vi

and move it to partition Vj. In selecting which node to
move, we start from the boarder nodes, then to the nodes in

LUI AND CHAN: AN EFFICIENT PARTITIONING ALGORITHM FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 9

Fig. 5. A graph GLP with boarder nodes (e.g., nodes in bold circle), edge weight, and three partitions Vi; Vj and Vk.

Fig. 6. Assigning labels to all nodes in GLP . (a) Assign labels to boarder nodes. (b) Assign labels to other nodes.

the inner layers. Note that during the node movement, only

those nodes which will not increase the communication cost

will be moved. After we moved a node vl from partition Vi

to Vj, we reassign the server number of node vl as

server num�vl� � j. The process stops when the number of

nodes moved is equal to the solution. The new partitioning

policy PLP for the graph GLP in Fig. 6b is given in Fig. 7.
Let the workload weighting, W1, and the communication

cost weighting, W2, equal 0.5. Assume the workload for

maintaining an avatar is 10. Then, before we apply the LP

algorithm, the cost of the partition generated by the RBP

algorithm is:

CW
P �

X

P

j�1

X

ai2Vj

w�ai� �	�ai� ÿ w�

�

�

�

�

�

�

�

�

�

�

�

�

0

@

1

A

� 10� � 7ÿ 6j j � 5ÿ 6j j � 6ÿ 6j j� � 20

CL
P � Cij � Cji � Cik � Cki � Cjk � Ckj

� �2� 3� � �1� 3� � �4� 2� 3� � �4� 4� 3�

� �4� 5� � �5� 2�

� 45

CP � W1C
W
P �W2C

L
P

� 0:5� 20� 0:5� 45 � 32:5:

After we applied the LP algorithm, the cost of the partition

generated by the LP algorithm is

CW
P �

X

P

j�1

X

ai2Vj

w�ai� �	�wi� ÿ w�

�

�

�

�

�

�

�

�

�

�

�

�

0

@

1

A

� 10� � 6ÿ 6j j � 6ÿ 6j j � 6ÿ 6j j� � 0

CL
P � Cij � Cji � Cik � Cki � Cjk � Ckj

� �1� 3� � �1� 3� � �4� 2� 3� � �4� 4� 3�

� �4� 5� � �5� 2�

� 44

CP � W1C
W
P �W2C

L
P

� 0:5� 0� 0:5� 44 � 22

We can see that the cost is reduced by more than 30 percent.

In Section 4, we will illustrate that, by using the layer

partitioning algorithm, there is a significant reduction in the

overall partition cost.

3.3.3 Communication Refinement Partitioning (CRP)

Algorithm

The layering partitioning (LP) algorithm is used to reduce
the overall computation workload cost of the system. In the
communication refinement partitioning (CRP) algorithm,
the objective is to reassign some nodes (or avatars) to
another partition so as to reduce the server-to-server
communication cost.

Given the partitioned graph GLP � fVLP ; ELPg from the
LP algorithm, let us consider all the boarder nodes.
Again, a node vi is considered as a boarder node when
there exists a node vj such that 1) there is an edge from
eij 2 ELP and 2) server num�vi� 6� server num�vj�. Let Sbn

be the set of all boarder nodes. For each vi 2 Sbn, we
compute ÿj, the communication cost to partition Vj, as

ÿj �
X

vk2Vj

I�eik� for 1 � j � P: �14�

Let ÿj� � max1�j�Pfÿjg. Then, ÿj� is the maximum commu-
nication due to node vi and this communication is to
partition Vj� . Then, the node vi 2 Sbn will be assigned a label
j�, that is, communication number�vi� � j�. The motivation
for finding the communication number is that, if we move
node vi to partition Vj� , then it is possible for us to reduce
the communication cost. We repeat this process for all
nodes in Sbn. At the end of this communication number
assignment, we have determined the possible partition
assignment of all those boarder nodes so as to reduce the
system communication cost.

In order to determine the final partition assignment, we
can formulate the problem as a linear optimization problem.
Let �ij denote the number of nodes in partition Vi that has
the communication number assignment equal to j. We
define yij as the decision variable of the number of nodes
that we eventually move from partition Vi to Vj so as to
reduce the communication cost of the system. We can
formulate the problem as

Maximize

X

1�i6�j�P

yij; �15�

subject to

0 � yij � �ij for 1 � i 6� j < P �16�

X

1�i<j

�yij ÿ yji� � 0 �0 � j < P �: �17�

The constraint in (16) ensures that the number of nodes that
we move from partition Vi to partition Vj is less than or
equal to the feasible number of candidate nodes. The
constraint in (17) ensures that the number of nodes that
move into server i and the number of nodes that move out
of server i is the same so as to maintain the workload
balancing property.

Lemma 4. The complexity of Communication Refinement
Partitioning Algorithm is O�P 6�.

Proof. This algorithm also uses the linear programming
technique. Let the number of partitions beP .Wewill have
P �P ÿ 1� variables and P �P ÿ 1� � P � P 2 constraints.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1, JANUARY 2002

Fig. 7. New partition after the LP algorithm.

The number of iterations required for linear programming
is problem dependent and a good estimate is
2�P 2 � P �P ÿ 1��. The time required for one iteration of
the linear programming is O�P �P ÿ 1� � P 2�. Thus, the
overall complexity for the linear programming is
O�P 6�. tu

Let us illustrate the communication refinement algorithm
given that we have the partitioned graph GLP in Fig. 7. The
optimization formulation is

Maximize xij � xik � xji � xjk � xki � xkj

subject to : xij � 0; xik � 1;xji � 0;xjk � 0;xki � 1;

xkj � 1

xij � xik ÿ xji ÿ xki � 0

xji � xjk ÿ xij ÿ xkj � 0

xki � xkj ÿ xik ÿ xjk � 0:

The solution to the above optimization problem is

xik � 1; xki � 1 and xij � xji � xjk � xkj � 0:

Therefore, we can exchange one node between partitions Vi

and Vk to reduce communication cost. The new partitioning
is given in Fig. 8.

After we apply the CRP algorithm, the cost of the
partition is

CW
P �

X

P

j�1

X

ai2Vj

w�ai� �	�wi� ÿ w�

�

�

�

�

�

�

�

�

�

�

�

�

0

@

1

A

� 10� � 6ÿ 6j j � 6ÿ 6j j � 6ÿ 6j j� � 0

CL
P � Cij � Cji � Cik � Cki � Cjk � Ckj

� 1� 1� �4� 2� 3� � �4� 2� 3� � �4� 5�

� �3� 5� 2�

� 39

CP � W1C
W
P �W2C

L
P

� 0:5� 0� 0:5� 39 � 19:5:

3.4 Parallel Partitioning Algorithm

In order to support a large virtual world that has many
graphical entities and, at the same time, support many
concurrent clients, we need to consider a large scale DVE
system. For this type of large scale DVE system, it usually

requires many servers so as to satisfy the enormous

computation demand. As the number of clients and servers

increases, so does the computational and communication

requirements to realize a high performance DVE system. In

order to satisfy the performance requirement, we need to

have a fast and efficient partition algorithm. In this section,

we introduce a parallel approach to perform the workload

and communication partition. For the ease of presentation,

assume that the number of servers we have is P � 2n,

where n 2 f1; 2; . . .g. In general, the parallel approach has

the following steps

Parallel Partition Approach:

1. begin
2. Divide the virtual world into n equal size regions,

we called them R1; . . . ; Rn;

3. Let Si (where i � 1; 2; . . . ; P) be the ith server in the

DVE system;

4. Assign the virtual world in region Ri to the set of

servers in fS�iÿ1�n�1; S�iÿ1�n�2; . . . ; S�i�ng.

5. for each virtual world in region Ri, do parallel {

6. Use the recursive bisection partitioning (RBP)
algorithm to find the initial partition PRBP ;

7. current cost � CPRBP
;

8. difference = 1; i=1;

9. while (difference > d�) {

10. Use the layering partitioning algorithm (LP)

to find a new partition P�i�;

11. Given P�i�, use the communication

refinement partitioning (CRP) algorithm
12. to find a new partition P0�i�;

13. difference = jCP0�i� ÿ current costj;

14. current cost � CP0�i�;

15. i++;

16. }

17. }

18. Combine these smaller virtual worlds into one

large virtual world;
19. Use the LP algorithm to find a new partition P�i�;

20. Use the CRP algorithm to find a new partition P0�i�

based on P�i�;

21. final partition is P0�i�;

22. end

LUI AND CHAN: AN EFFICIENT PARTITIONING ALGORITHM FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 11

Fig. 8. Example of the CRP refinement algorithm. (a) Partition before the CRP refinement. (b) Partition after the CRP refinement.

Consider the partitioning of a virtual world with 16
servers. This can be completed in two stages: In the first
stage, we can divide the virtual world into four smaller
virtual worlds and assign these small virtual worlds into
different servers. In the second stage, we apply the
partitioning algorithm we discussed in Section 3.3 to
partition each of the small virtual worlds. The partitioning
processes can be carried out in parallel for different servers.
From the experiments in Section 4, we see that the parallel
approach can have a comparable partitioning cost, as
compared to the sequential partitioning approach. The
advantage of the parallel approach is that the time required
for applying RBP, LP, and CRP algorithms to each small
virtual world will be much less than the time required for
applying these algorithms to the original large virtual
world. We also add one additional stage to the parallel
partitioning algorithm. In this additional stage, we
combine all the small virtual worlds and apply the LP
and CRP algorithms to the combined virtual world. As
we will illustrate in the next section, we can obtain a
partition which has a smaller cost than the sequential
partitioning algorithm.

4 EXPERIMENTS

In this section, we present experiments for the algorithm
that we discussed in the previous section and apply the
algorithm to both a small and a large scale virtual world.
For the small virtual world experiment, since the problem
state space is manageable, we can compare the performance
of our proposed algorithm with the exhaustive partitioning
algorithm, which guarantees to produce the optimal
partition policy P�. We also carry out experiments to
investigate the dynamic characteristics of avatars (e.g,
avatars that can move around, as well as joining and
leaving a virtual world session) and the effectiveness of
proposed parallel partitioning algorithm. In general, we use
three different methods to generate the position of each
avatar in the virtual world. These methods are

. Uniform Distribution. Let the position of an avatar
be �x; y� and the values of x and y are uniformly
distributed between �0; Vx� and �0; Vy�, where Vx is
the horizontal dimension of the virtual world and Vy

is the vertical dimension of the virtual world.
. Skewed Distribution. Given the size of the DVE

world as �Vx; Vy�, we divide the number of avatars in
the DVE system into four equal sized groups,
namely, Gi, i � 1; 2; 3; 4. Let �x; y� be the position of
the avatar in group Gi. The value of �x; y� is

generated in such a way that x is uniformly

distributed between 0; iVx

4

ÿ �

and y is uniformly

distributed between 0;
iVy

4

� �

. Under this scheme,

most of the avatars will be positioned within the

square area defined by the two coordinates �0; 0� and
Vx

4
;
Vy

4

h i

.

. Clustered Distribution. Given the size of the
DVE world as �Vx; Vy�, we generate avatars

around k � 1 clusters. First, we randomly generate
k points �x1; y1�; . . . ; �xk; yk� such that xi and yi are
uniformly distributed between �0; Vx� and �0; Vy�,
respectively. Then, we divide the number of avatars
in the DVE system into k equal-sized groups,
namely, G1; G2; . . . ; Gk. For each avatar in group
Gi, we generate its position in �x; y�, where

x �
0 if xi � dx�
 < 0

Vx if xi � dx�
 > Vx

xi � dx�
 otherwise:

8

<

:

�18�

and

y �
0 if yi � dy�
 < 0

Vy if yi � dy�
 > Vy

yi � dy�
 otherwise:

8

<

:

�19�

In our experiments, dx and dy are generated
uniformly between �ÿ1; 1� and the parameter

depends on the size of the virtual world. For
example, we set
 � 0:4 for the virtual world whose
size is of 4� 4 units and
 � 3:0 for the virtual
world whose size is of 25� 25 units.

4.1 Experiment 1: Small Virtual World

In this experiment, we use a small virtual world with a
dimension of 4� 4 units. The total number of avatars in this
virtual world is equal to 13 and the number of servers P is
equal to three. We set both the workload weighting,W1, and
the communication cost weighting, W2, to 0.5. The diameter
of the AOI of each avatar is equal to 1.

Table 1, Table 2, and Table 3 illustrate the experi-
mental results under the uniform, skewed, and clustered
location distributions, respectively. To illustrate, consider
the uniform distribution scenario in Table 1a. It indicates
that using the exhaustive partitioning algorithm, the
optimal (or minimum) system cost is 3.47 and it takes
1202.12 seconds to obtain the optimal partitioning config-
uration. Using our proposed partitioning algorithm, we first
use the RBP algorithm and it generates a partition with a
system cost of 3.47 and it takes less than 0:01 seconds to
generate the partitioning configuration. After we obtain this
initial partitioning configuration, we also apply the LP
and CRP algorithms. Note that, for this experiment, we
do not observe any cost reduction after we apply the LP
and CRP algorithms.2 For the uniform distribution, the
computation time for these two algorithms is again less
0.01 seconds. This means that we only spend 0.0025
percent of the exhaustive algorithm's computation time
and we are able to obtain a partition cost that is very close
to the optimal partition cost. Also, for this virtual world,
wherein avatars are uniformly distributed, if we have a
more stringent interative requirement d� (which dictates
the number of iteration for the partition algorithm we
presented in Section 3.3), we do not reduce the partition-
ing cost any further. This can be illustrated in Table 1b.
This indicates that, with a modest computational time of
0:03 seconds, we can find the optimal partition policy.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1, JANUARY 2002

2. However, as we will illustrate in other experiments (please refer
to Table 2 and Table 3), further cost reduction can be achieved by
executing LP and CRP algorithms after we obtain the initial partition
using the RBP algorithm.

LUI AND CHAN: AN EFFICIENT PARTITIONING ALGORITHM FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 13

TABLE 1

Small Virtual World wherein Avatars Are Scattered under Uniform Distribution

(a) System cost and computational time for the exhaustive and the proposed partitioning algorithm with d
�
� 0:01.

(b) System cost and computational time under different stopping threshold d
�.

TABLE 2

Small Virtual World wherein Avatars Are Scattered under Skewed Distribution

(a) System cost and computational time for the exhaustive and the proposed partitioning algortithm with d
�
� 0:01.

(b) System cost and computational time under different stopping threshold d
�.

TABLE 3

Small Virtual World wherein Avatars Are Scattered under Clustered Distribution

(a) System cost and computational time for the exhaustive and the proposed partitioning algorithm with d
�
� 0:01.

(b) System cost and computational time under different stopping threshold d
�.

When the positions of the avatar are distributed under

the skewed or clustered distribution, the exhaustive

algorithm can find the optimal partition policy with costs

of 5:45 and 4:39 and the computational times are 1; 290:88

and 1; 199:68 seconds. When we use our proposed partition

algorithm with d� � 0:01, we find the partition policies with

costs of 7:22 and 7:01 and the computational times are 0:01

and 0:05 seconds, respectively. These results are illustrated

in Table 2a and Tabel 3a, respectively. Table 2b and Table 3b

illustrate that, if we increase the iteration threshold to

d� � 0:0001, we can obtain a partition cost that is very close

to the optimal partition cost. These show the effectiveness of

our partition algorithm, that is, we only need to spend less

than 0.005 percent of the computational time of the

exhaustive algorithm and we are able to find a partition

policy that is very close to the optimal partition.

4.2 Experiment 2: Large Virtual World

In this experiment, we use a large virtual world with a
dimension of 25� 25 units with the total number of avatars
equal to 2,500 and the number of servers, P � 8. The radius
of the AOI of each avatar is equal to 0.5. Fig. 9 illustrates this
virtual world under three different avatar's location
distributions. Note that each point in these figures
represents a 3-dimensional avatar in the virtual world.

Table 4, Table 5, and Table 6 illustrate the experimental
results under the uniform, skewed, and clustered location
distributions, respectively. Since the size of the virtual
world is large, it is impossible to use the exhaustive
algorithm (since it has 8

2500 possible partition schemes). It
is important to observe that, by applying the proposed
algorithm, we can generate a good partition with much
lower execution time. For all location distributions, we
iterate the partitioning algorithm three times. For example,

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1, JANUARY 2002

Fig. 9. Virtual world with 25� 25 cells wherein avatars are scattered under (a) uniform, (b) skewed, and (c) clustered location distribution.

TABLE 6
Experimental Results wherein Avatars Are Scattered under Clustered Distribution

TABLE 5
Experimental Results wherein Avatars Are Scattered under Skewed Distribution

TABLE 4
Experimental Results wherein Avatars Are Scattered under Uniform Distribution

consider the scenario in Table 4. We use the RBP, LP, and
CRP algorithms in the first iteration (as indicate by the
iteration count) and, in the second and third iteration, we
only use the LP and CRP algorithms. After three iterations,
the system cost converges to a fixed value. For example, in
Table 4, the system cost reduces from 1; 160:03 to 358:07

and it takes less than 165 seconds to obtain this system
cost. For the scenario in Table 5, it takes a total of 228.23
seconds to obtain a system cost of 2; 136:24. For the
scenario in Table 6, it takes a total of 118.52 seconds to
obtain a system cost of 5,668.01. This shows that, for a large-
scale DVE system, we can use our proposed partition
algorithm to efficiently find a partition configuration that
has a reasonable system cost.

4.3 Experiment 3: Dynamic Moving Avatars

In this experiment, we use the same setting as in
Experiment 2. We assume that every 10 seconds, each
avatar will move to a new position with a probability of 0.3
and stay in current position with a probability of 0.7. If an
avatar should move, it will move to a random location
which is within its AOI. Since the initial partition is already
known (e.g., this is the partition we obtained from
Experiment 2), all we need to perform is to iterate the LP
and the CRP algorithms. Therefore, we start with the
partition configuration that we obtained from Experiment 2
and, for every 10 seconds, we move each avatar to a new

location with probability of 0.3. The second column in
Table 7, Table 8, and Table 9 indicate that, right after the
avatars' movement, there is a significant increase of system
costs (as compared with the system cost in Experiment 2).
We also periodically (every 10 seconds) apply our proposed
iterative algorithm and, each time we invoke the partition
algorithm, we iterate it three times. Table 7, Table 8, and
Table 9 illustrate the experimental results under the
uniform, skewed, and clustered location distributions,
respectively. It is important to observe that, by applying
the LP and CRP partitioning algorithms iteratively (in this
case, we iterate three times only), we can get a good partition
policy within short time intervals (less than 1.5 seconds).

4.4 Experiment 4: Dynamic Moving, Joining, and
Leaving of Avatars

In this experiment, we use the same setting as the one
in Experiment 3. That is, every 10 seconds, avatars will
move to another position with a probability of 0.3 or
stay in current position with a probability of 0.7.
Moreover, 50 avatars will leave the virtual world and,
at the same time, 150 avatars will join this virtual world.
Again, the system cost converges to a small value after
several seconds. Table 10, Table 11, and Table 12
illustrate the experimental results under the uniform,
skewed, and clustered location distributions, respectively. It
is important to observe that within a short period of time

LUI AND CHAN: AN EFFICIENT PARTITIONING ALGORITHM FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 15

TABLE 9
Experimental Results wherein Avatars Are Scattered under Clustered Distribution

TABLE 8
Experimental Results wherein Avatars Are Scattered under Skewed Distribution

TABLE 7
Experimental Results wherein Avatars Are Scattered under Uniform Distribution

(less than three seconds), we can get a good partition
scheme.

4.5 Experiment 5: Parallel Partitioning Algorithm

In this experiment, we use a very large virtual world, with a
dimension of 30� 30 units, the total number of avatars is
equal to 25,000, and the number of servers, P , is equal to
16. The radius of the AOI of each avatar is equal to 0.5.
Table 13, Table 14, and Table 15 illustrate the experi-
mental results under the uniform, skewed, and clustered
location distribution using the same setup as experiment 2.
Since the size of the virtual world is 10 times larger than the

large virtual world in experiment 2, we need to add more
servers to maintain the virtual world. As both the number
of clients and servers are large, the time needed in
partitioning the virtual world also increases tremendously.
To improve the performance, we use a parallel partitioning
algorithm which is described in Section 3.4. It is important
to observe that by using the parallel partitioning algorithm,
we can generate a good partition with much lower
execution time. First, we divide the very large virtual world
and assign each small region of the virtual world to a
server. For all divided virtual worlds, we iterate the
partitioning algorithm twice. During the first iteration, we
execute the RBP, LP, and CRP algorithms. For the second
iteration, we only execute the LP and CRP algorithms. After
two iterations, we observe that the parallel partitioning
algorithm can have a smaller system cost as compared to
the sequential partitioning algorithm used in experiment 2.
Another important point to note is that the parallel
partitioning algorithm only requires a very small fraction
of processing time, as comparedwith the sequential partition
algorithm. Table 16, Table 17, and Table 18 illustrate the

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1, JANUARY 2002

TABLE 13
Uniform Distribution

30� 30 cells, 16 partitions, 25,000 avatars

TABLE 14
Skewed Distribution

30� 30 cells, 16 partitions, 25,000 avatars

TABLE 15
Clustered Distribution

30� 30 cells, 16 partitions, 25,000 avatars

TABLE 10
Experimental Results of Dynamic Join and Leave wherein Avatars Are Scattered under Uniform Distribution

TABLE 11
Experimental Results of Dynamic Join and Leave wherein Avatars Are Scattered under Skewed Distribution

TABLE 12
Experimental Results of Dynamic Join and Leave wherein Avatars Are Scattered under Clustered Distribution

experimental results. Fig. 10 illustrates the processing time

under different approaches. As we can observed, the

parallel partitioning algorithm achieves a significant com-

putational reduction as compare to the sequential partition-

ing algorithm. Fig. 11 illustrates the partitioning cost under

different approaches. As we can observe, on each iteration,

both the sequential and the parallel partitioning algorithm

can reduce the overall system cost and that their system

TABLE 16
Combined Uniform World

30� 30 cells, 16 partitions, 25,000 avatars

TABLE 17
Combined Skewed World

30� 30 cells, 16 partitions, 25,000 avatars

TABLE 18
Combined Clustered World

30� 30 cells, 16 partitions, 25,000 avatars

Fig. 10. Processing time under different approaches.

costs are comparable. However, because the parallel
partitioning algorithm is more computational efficient, we
can apply this partitioning strategy for a large scale DVE
system.

5 CONCLUSION

With the advances in multimedia systems, parallel/dis-
tributed database systems and high speed networking
technologies, DVE systems are becoming increasingly
common in the scientific, industrial, and entertainment
industries. There is a growing need to increase the realism
and fidelity of DVE systems. Modeling and implementing
special effect, such as real-time atmospheric scenes, includ-
ing wind, smoke, clouds, haze, rain, and snow, will produce
a flood of traffic that may exceed computational and
communication capacity of a DVE system. In this paper,
we discuss the scalability problem in DVE and present
related techniques to solve this problem. To build a scalable
DVE system, we use a multiple servers DVE architecture.
Under the MSDVE architecture, there is a necessity to
balance the computational workload and, at the same
time, reduce the communication cost of a DVE system.
We formulate the partitioning problem and show that it
is NP-complete in general. We then propose a computation
efficient partitioning algorithm so that we can quickly
obtain an efficient partitioning policy P. Our experiments
show that our propose algorithm can achieve a significant
reduction in both communication and computation cost. We
also illustrate that we can adopt the partitioning algorithm
to a virtual world wherein 1) avatars can dynamically move
from one position to another position in the virtual world
and 2) avatars can dynamically join or leave the virtual
world. We present the parallel version of the partitioning

algorithm so as to obtain a partition policy for a very large

scale virtual world that allows many clients and dynamic

objects. The techniques we discuss and the partitioning

algorithm we propose can address the scalability issue of

designing a large scale DVE system.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees

for their helpful and insightful suggestions. This work is

supported in part by the Research Grants Council

Earmarked Grant and the Chinese Univeristy Hong Kong

Direct Research Grant.

REFERENCES

[1] S.T. Barnard and H.D. Simon, ªFast Multilevel Implementation of
Recursive Spectral Bisection for Partitioning Unstructured Pro-
blems,º Concurrency: Practice and Experience, vol. 6, no. 2, pp. 101-
117, 1994.

[2] S.T. Barnard and H.D. Simon, ªA Parallel Implementation of
Multilevel Recursive Spectral Bisection for Application to Adap-
tive Unstructured Meshes,º Proc. Seventh SIAM Conf. Parallel
Processing for Scientific Computing, pp. 627-632, Feb. 1995.

[3] T. Ballardie, P. Francis, and J. Crowcroft, ªCore Based Tree: An
Architecture for Scalable Multicast Routing,º Proc. ACM SIG-
COMM '93, pp. 85-95, Sept. 1993.

[4] F. Ercal, J. Ramanujam, and P. Sadayappan, ªTask Allocation onto
a Hypercube by Recursive Min-Cut Bipartitioning,º J. Parallel and
Distributed Computing, vol. 10, pp. 35-44, 1990.

[5] G. Fox, Graphical Approach to Load Balancing and Sparse Matrix
Vector Multiplication on the Hypercube. M. Schultz, ed., Berlin:
Springer-Verlag, 1988.

[6] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker,
Solving Problems on Concurrent Processors, Vol I. Prentice Hall,
1988.

[7] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison Wesley, 1987.

18 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1, JANUARY 2002

Fig. 11. System cost under different approaches.

[8] W. Broll, ªDistributed Virtual Reality for Everyone: A Framework
for Networked VR on the Internet,º Proc. IEEE Virtual Reality Ann.
Int'l Symp., Mar. 1997.

[9] D.E. Comer, Internetworking with TCP/IP: Volume I, Principles,
Protocols, and Architecture. Prentice Hall, 1995.

[10] S.E. Deering and D.R. Cheriton, ªMulticast Routing in Datagram
Internetworks and Extended LANs,º ACM Trans. Computer
Systems, vol. 8, pp. 85-110, May 1990.

[11] V. Firoiu and D. Towsley, ªCall Admission and Resource
Reservation for Multicast Sessions,º Proc. 15th Ann. Joint Conf.
IEEE Computer and Comm. Soc. (INFOCOM '96), 1996.

[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company,
1978.

[13] J.R. Gilbert, G.L. Miller, and S.H. Teng, ªGeometric Mesh
Partitioning: Implementation and Experiments,º Proc. Ninth Int'l
Parallel Processing Symp., pp. 418-427, Apr. 1995.

[14] B. Hendrickson and R. Leland, ªAn Improved Spectral Load
Balancing Method,º Proc. Sixth SIAM Conf., pp. 953-961, 1993.

[15] B. Hendrickson and R. Leland, ªMultidimensional Spectral Load
Balancing,º technical report, Sandia National Laboratory, Albu-
querque, 1993.

[16] B. Hendrickson and R. Leland, ªAn Improved Spectral Graph
Partitioning Algorithm for Mapping Parallel Computations,º
SIAM J. Scientific Computing, vol. 16, no. 2, pp. 452-469, 1995.

[17] B. Hendrickson and R. Leland, ªAn Multilevel Algorithm for
Partitioning Graphs,º Proc. Supercomputing, Dec. 1995

[18] B.W. Kernigham and S. Lin, ªAn Efficient Heuristic Procedure for
Partitioning Graphs,º Bell Systems Technology J., vol. 49, no. 2,
pp. 292-370, 1970.

[19] C.-J. Liao and Y.-C. Chung, ªTree-Based Parallel Load-Balancing
Methods for Solution Adaptive Finite Element Graphs on
Distributed Memory Multicomputers,º IEEE Trans. Parallel and
Distributed Systems, vol. 10, no. 4, Apr. 1999.

[20] J.C.S. Lui, M.F. Chan, T.F. Chan, W.S. Cheung, and W.W. Kwong,
ªVirtual Exploration and Information Retrieval System: Design
and Implementation,º Proc. Third Int'l Workshop Multimedia
Information Systems (MIS '97), 1997.

[21] J.C.S. Lui, M.F. Chan, K.Y. So, and T.S. Tam, ªBalancing Workload
and Communication Cost for a Distributed Virtual Environment,º
Proc. Fourth Int'l Workshop Multimedia Information Systems (MIS
'98), 1998.

[22] J.C.S. Lui, O.K.Y. So, and P.T.S. Tam, ªDeriving Communication
Sub-graph and Optimal Synchronizing Interval for a Distributed
Virtual Environment System,º Proc. IEEE Int'l Conf. Multimedia
Systems, June 1999.

[23] J.C.S. Lui, ªConstructing Communication Subgraphs and Deriving
an Optimal Synchronization Interval for Distributed Virtual
Environment Systems,º Accepted for publication, IEEE Trans.
Data and Knowledge Eng., 2001.

[24] M.R. Macedonia, D.P. Brutzman, M.J. Zyda, D.R. Pratt, P.T.
Barham, J. Falby, and J. Locke, ªNPSNET: A Multi-Player 3D
Virtual Environment over the Internet,º Proc. ACM Symp.
Interactive 3D Graphics, Apr. 1995.

[25] M.R. Macedonia and M.J. Zyda, ªA Taxonomy for Networked
Virtual Environments,º Proc. IEEE Int'l Conf. Multimedia Systems,
1996.

[26] M.R. Macedonia, M.J. Zyda, D.R. Pratt, and P. Barham, ªExploit-
ing Reality with Multicast Groups: A Network Architecture for
Large Scale Virtual Environments,º Proc. 11th DIS Workshop
Standards for the Interoperability of Distributed Simulation, pp. 503-
510, Sept. 1994.

[27] R. Muntz, J.R. Santos, and S. Berson, ªRIO: A Real-Time
Multimedia Object Server,º ACM Performance Evaluation Rev.,
vol. 25, no. 2, pp. 29-35, Sept. 1997.

[28] R.R. Muntz, J. Renato Santos, and S. Berson, ªA Parallel Disk
Storage System for Realtime Multimedia Applications,º J. In-
telligent Systems, vol. 13, no. 12, 1998.

[29] B. Nour-Omid, A. Raefsky, and G. Lyzenga, ªSolving Finite
Element Equations on Current Computers,º Parallel Computations
and their Impact on Mechanics, pp. 299-227, 1986.

[30] C.-W. Ou and S. Ranka, ªParallel Incremental Graph Partition-
ing,º IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 8, Aug.
1997.

[31] O. Stahl and M. Anderson, ªDIVE: A Toolkit for Distributed VR
Applications,º Swedish Inst. of Computer Science, SICS. http://
www.sics.se/dive/description.html. year???

[32] H. Simon, ªPartitioning of Unstructured Mesh Problems for
Parallel Processing,º Proc. Conf. Parallel Methods on Large Scale
Structural Analysis and Physics Applications, 1991.

[33] M.M. Syslo, N. Deo, and J.S. Kowalik, Discrete Optimization
Algorithms. Prentice-Hall, 1983.

[34] R.C. Waters and J.W. Barrus, ªThe Rise of Shared Virtual
Environments,º IEEE Spectrum, pp. 20-25, Mar. 1997.

[35] W.L. Winston, Introduction to Mathematical ProgrammingÐApplica-
tions and Algorithms. Duxbury Press, 1995.

[36] R. Williams, ªPerformance of Dynamic Load-balancing Algorithm
for Unstructured Mesh Calculations,º Concurrency, vol. 3, pp. 457-
481, 1991.

John C.S. Lui received the PhD degree in
computer science from the University of Califor-
nia, Los Angeles. While he was a graduate
student, he participated in a parallel database
project in the IBM Thomas J. Watson Research
Center. After his graduation, he joined a team at
the IBM Almaden Research Laboratory/San
Jose Laboratory and participated in research
and development of a parallel I/O architecture
and file system project. He later joined the

Department of Computer Science and Engineering of the Chinese
University of Hong Kong. His current research interests are in
communication networks, distributed multimedia systems, OS design
issues, parallel I/O, storage architectures, and performance evaluation
theory. He is a member of Tau Beta Pi, the ACM, the IEEE, and the
IEEE Computer Society. His personal interests include general reading
and films.

M.F. Chan received the Bachelor's and the
Master's degrees in computer science from the
Chinese University of Hong Kong. While he was
a graduate student, he participated in a Dis-
tributed Virtual Environment project led by
professor John C.S. Lui. After his graduation,
he worked as an IT Coordinator to promote IT
education in Hong Kong. He later joined Poly-
Asia computer company as a senior consultant.
His research interests have centered around

distributed VR systems, networks communication, and security. He is a
student member of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

LUI AND CHAN: AN EFFICIENT PARTITIONING ALGORITHM FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 19

