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Abstract—In this paper, we have developed a HiTi (Hierarchical MulTi) graph model for structuring large topographical road maps to

speed up the minimum cost route computation. The HiTi graph model provides a novel approach to abstracting and structuring a

topographical road map in a hierarchical fashion. We propose a new shortest path algorithm named SPAH, which utilizes HiTi graph

model of a topographical road map for its computation. We give the proof for the optimality of SPAH. Our performance analysis of

SPAH on grid graphs showed that it significantly reduces the search space over existing methods. We also present an in-depth

experimental analysis of HiTi graph method by comparing it with other similar works on grid graphs. Within the HiTi graph framework,

we also propose a parallel shortest path algorithm named ISPAH. Experimental results show that inter query shortest path problem

provides more opportunity for scalable parallelism than the intra query shortest path problem.

Index Terms—Shortest Path, digital road maps, grid graphs, parallel shortest path computation, HiTi graph model.
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1 INTRODUCTION

1.1 Motivation

IN navigation systems, a primary function is to find
possible routes from the current location (e.g., where a

driver is currently positioned) to the destination (e.g., where
the driver wants to go) with a minimum expected cost. For
this purpose, they use a topographical road map which is in
the form of the following recursive relation:

topographical road mapðsource;destination; costÞ;

where the cost attribute indicates, for example, a minimum

expected time of travel from point source to point destination.

Another applicable cost can be the shortest distance

between the two end points.
One of the major difficulties of navigation systems is the

size of the topographical road map data. It requires about

2.4 Gbytes of storage to store a small 100 mi� 100 mi map

discretized at 100 feet intervals [4], [24]. Thus, the size of

data involved is very large when larger maps are

considered. Minimum cost route computation with this

large amount of road map data requires a significant

amount of computation time. Since navigation systems are
real-time systems, it is critical to compute a minimum cost

route satisfying a time constraint.
We have developed a HiTi graph model of very large

recursive relations (e.g., topographical road maps), for

efficiently computing the optimal minimum cost path. The

HiTi graph model follows the recommendation of
Shekhar et. al [39]. The basic idea of the HiTi graph
model is to partition a large graph into smaller subgraphs
and pushing up the precomputed shortest paths between
the boundary nodes of each subgraphs in a hierarchical
manner.

Multiple levels of geographical boundaries (e.g., cities,
counties, and states) can be easily mapped into the
hierarchical structure of a HiTi graph model. Various
levels of hierarchical abstractions can also serve as the basis
for efficient storage management for large road maps. Thus,
it provides the basis for the development of a more
controlled storage management suitable for navigation
systems with limited available storage (e.g., navigation
system inside an automobile). Based on the HiTi graph
model, we propose a new single pair minimum cost path
algorithm named SPAH. We show that the shortest path
computed by SPAH is optimal. We also experimentally
show that SPAH dramatically reduces the explored search
space. Further, we analyze SPAH by varying edge cost
distribution and the number of hierarchical levels of HiTi
graphs.

However, the performance of SPAH in a single processor
environment is not good when multiple SPSP (Single Pair
Shortest Path) computation requests are given simulta-
neously. This is defined as inter query SPSP problem. Inter
query SPSP problem deals with parallelizing multiple SPSP
computations. Inter query SPSP problem arises, say, in the
domain of automobile navigation systems, where many
vehicles send their shortest route computation requests to a
central server. Then, the server must be able to handle these
multiple SPSP computation requests satisfying a real-time
constraint. In this paper, we have also developed and
analyzed the performance of a parallel algorithm, named
ISPAH, for inter query SPSP problem which is based on the
HiTi graph model.
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1.2 Informal Description of HiTi Graphs

Consider a topographical road map viewed as a directed
graph GðV ;EÞ. Nodes in V correspond to discretized grid
points representing map objects in a road map. Edges
ðx; y; costÞ in E correspond to the connections between the
nodes x and y with cost (e.g., distance) in V . Then, arbitrary
shaped boundaries (e.g., political regional boundaries)
partition a road map GðV ;EÞ into a set of Component
ROad Maps (CROM). Each CROM can be viewed as a
subgraph SG with its boundary nodes defining the
boundary of the CROM. Connectivity between CROMs is
represented by the connectivity of their boundary nodes.
One CROM has direct connections with another, if
boundary nodes of the former are directly connected to
boundary nodes of the latter. We call this kind of
connectivity cut connections of CROMs. For each CROM,
we precompute the minimum cost path for each pair of
connected boundary nodes of that CROM. These precom-
puted minimum cost paths are called path view connections
of that CROM. Note that the path view connections do not
capture the global minimum cost path in G but the local
minimum cost path on that CROM only. By using the cut
and path view connections, we can partition the entire road
map. Examples of cut and path view connections of CROMs
are shown in Fig. 1.

A HiTi graph is a graph whose nodes are the boundary
nodes of the CROMs and edges are the path view and cut
connections of CROMs. Note that a CROM can be defined
to contain a set of CROMs, thus creating a multilevel
hierarchy. Thus, we first need to determine a set of the
lowest level CROMs which exclusively partition an entire
road map. We call these CROMs level 1 CROMs. Then, we
can recursively construct a set of level k CROMs by
grouping a set of geographically adjacent level k-1 CROMs
where k � 2. These sets of level 1; 2; . . . ; k CROMs form a
complete balanced tree structure where the root node of the
tree is a whole road map. Note that in this tree structure, the
number of hierarchical levels is limited by the memory
requirement for path view connections.

The rest of the paper is organized as follows: Section 2
discusses related works. Section 3 discusses a formal
framework and description of the HiTi graph. In Section 4,
we propose a new SPSP algorithm SPAH that takes
advantage of the HiTi graphs. Performance analysis of
SPAH on grid graphs is given in Section 5. In Section 6, we
present an efficient updating algorithm for the HiTi graph,
essential for road navigation to reflect the dynamic traffic
conditions. We also show the efficiency of the update

algorithm for HiTi graph in this section. In Section 7, we
compare our HiTi graph method with other similar works
both theoretically and experimentally. Section 8 discusses a
new parallel algorithm ISPAH for inter query SPSP problem.
We give performance analysis of this algorithm in this
section. Finally, Section 9 gives concluding remarks.

2 RELATED WORKS

There have been many research efforts reported in the
literature that focus on the shortest path computation
problem in database domain. Previously suggested transi-
tive closure or graph traversal algorithms [2], [8], [13], [16],
[17], [20], [33], [35], [42] are not directly applicable to
topographical_road_map (source, destination, cost) for the
computation of a minimum cost path due to the very large
volume of data they have to search. Thus, we need an
efficient database organization method for structuring the
topographical road map to speed up the computation of a
minimum cost path. In this regard, two different ap-
proaches have been studied in the past. One approach is
to develop a database structure which gives a suboptimal
minimum cost path quickly. The other approach is to
develop the database structure which gives an optimal
shortest path, primarily based on the precomputed shortest
path information.

For the suboptimal shortest path generation, Ishikawa
et al., Shapiro et al., Liu et al., and Huang et al. used
road hierarchies (i.e., Freeways, Highways,..., Side roads)
to speed up minimum cost routes [14], [18], [27], [37],
[43]. They used multiple levels of hierarchical details of
road maps to cut down the unnecessary search space.
Huang et al. [14] proposed a hierarchical graph model
which classifies edges according to road types. Ishikawa
et al. [18] applied Dijkstra’s algorithm to the hierarchi-
cally structured road maps. Shapiro et al. [37] proposed a
new graph structure, named LGS (Level Graph Structure),
which models the road hierarchies theoretically. Based on
LGS, Shapiro et al. gave a new algorithm which generates
approximate shortest paths rapidly. Their study showed
that the length of the path produced by LGS converges
rapidly to that of the actual minimum cost path as the
distance between the source and destination nodes
increases. Liu et al. [27] studied integrating Dijkstra’s
algorithm with a knowledge-based approach and case-
based reasoning for computing a minimum cost path.

For the optimal shortest path generation, Agrawal and
Jagadish recently studied a data organization technique
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which precomputes and stores some partial path informa-
tion [4]. They use the precomputed partial path information
to prune the search space when computing a minimum cost
path. While their approach speeds up the computation of a
minimum cost path, it does not optimize processing
minimum cost path queries based on road map navigation.
The reason is that their approach still requires searching all
the intermediate nodes on a minimum cost path. In
navigation systems, it may not be necessary for a navigator
to know all the intermediate nodes on a minimum cost path.

The problem would be very serious if we need to
compute a minimum cost path on a large topographical
road map where its discretized interval is fine-grained and
two end nodes on the path are far apart. To cope with this
problem, some researches in database systems as well as AI
and Pattern Recognition domains have suggested using the
hierarchical abstraction of topographical road maps [7], [9],
[11], [21], [22], [36], [34], [41]. Jing et al. proposed the
HEPV(Hierarchical Encoded Path View) approach [21], [22].
Their basic idea is to divide a large graph into smaller
subgraphs and organize them in a hierarchical fashion by
pushing up border nodes. However, the HEPV approach
suffers from the excessive storage overhead for maintaining
a large amount of precomputed path information. This is
because the HEPV approach precomputes the shortest
paths between all the member nodes (including the
boundary nodes) of each subgraph only within that
subgraph.

Similar to the HEPV approach, Goldman et. al. proposed
the Hub Indexing method [11]. The primary difference
between the two methods is the amount of the precom-
puted paths information for each subgraph. In the Hub
Indexing method, instead of precomputing all-pair shortest
paths for each subgraph, as in HEPV, it precomputes the
shortest paths between the boundary nodes of each
subgraph and its interior nodes (i.e., nonboundary nodes
of each subgraph). We believe that HEPV and Hub Indexing
schemes will have a problem when large road maps have to
be considered. In investigating this problem, Shekhar et. al.
[39] have analyzed the materialization tradeoffs between
the storage overhead with runtime computations of the
stored precomputed information. Their analysis has shown
the usefulness of the materialization tradeoffs in computing
the shortest paths involving the boundary nodes of each
subgraph. In Section 7, we compare our HiTi graph method
with HEPV and Hub Indexing methods both theoretically
and experimentally.

Little research has been done on parallel SPSP algorithms.
Mohr and Pasche [31] studied the intra query SPSP problem,
which deals with parallelizing a single transaction of SPSP
computation. They developed a new parallel SPSP algorithm
named OTOpar. OTOpar uses two processors where each
processor uses A* algorithm with Manhattan distance
estimation to build its corresponding tree, one rooted at the
source node and the other rooted at the destination node.
Their analysis shows that the performance improvement is
limited by only two processors, which is not scalable at all.

3 FORMAL FRAMEWORK AND DESCRIPTION OF THE

HITI GRAPH

A topographical road map can be viewed as a directed
graph GðV ;EÞ, where each node in V represents map

objects (i.e., the intersecting points of the roads) in a road
map. Edges ðx; y; cÞ in E correspond to the connections
between the nodes x and y with the cost (e.g., distance) c in
V . Suppose that GðV ;EÞ is partitioned into a set of
subgraphs (i.e., SG1ðV1; E1Þ, SG2ðV2; E2Þ, . . . , SGnðVn; EnÞ )
such that:

V1 [ V2 [ � � � [ Vn ¼ V ; E1 [E2 [ � � � [ En � E

Vi \ Vj ¼ ; and Ei \Ej ¼ ; where

1 � i; j � n and i 6¼ j:

Definition 3.1. For subgraphs SGiðVi; EiÞ, SGjðVj; EjÞ, where
i 6¼ j, let �ðSGi; SGjÞ denote the set of cut edges between Vi

and Vj, namely the set of edges in

fðx; y; cÞjx 2 Vi; y 2 Vj or vice versag:

Let �ðSGiÞ ¼ �ðVi; V � ViÞ.
Definition 3.2. Given a collection of subgraphs

SG ¼ fSG1; SG2; . . . ; SGmg;

define �ðSGÞ ¼
S

i;j;i 6¼j �ðSGi; SGjÞ. For a given subgraph
SGi 2 SG, let

�SGðSGiÞ ¼
[
i6¼j

�ðSGi; SGjÞ:

Then, �SGðSGiÞ is named the cut edge set for SGi with respect
to SG.

Definition 3.3. Given a collection of subgraphs

SG ¼ fSG1; SG2; . . . ; SGmg;

let �ðSGiÞ denote the set of all the outgoing edges in
�SGðSGiÞ. Then, �ðSGiÞ is named the semicut edge set for
SGi.

Definition 3.4. Given a collection of subgraphs

SG ¼ fSG1; SG2; . . . ; SGmg;

let  ðSGiÞ denote the set of vertices of Vi that have at least one
incoming or outgoing edges in�SGðSGiÞ. Then,  ðSGiÞ is called
boundary nodes set of SGi.

Set  i, boundary nodes of SGi in Definition 3.4, consists

of those nodes in Vi that are directly connected to/from the

nodes outside of Vi. For example, consider Fig. 2 where a

digraph G and its subgraphs SG1, SG2, and SG3 are shown.

Set  ðSG2Þ of subgraph SG2 is { G, H, M, O }. Each subgraph

is described and identified by its boundary nodes since they

exclusively belong to one subgraph. Based on boundary

nodes of SG1
i , Definition 3.3 gives the formal definition of

path view edge set !i of SGi.

Definition 3.5. Given a collection of subgraphs

SG ¼ fSG1; SG2; . . . ; SGmg;

let

!ðSGiÞ ¼ fðx; y; fcðx; yÞÞjðx; yÞ 2 ð ðSGiÞ

�  ðSGiÞÞ ^ ðx �!fcðx;yÞ
y in SGi ^ x 6¼ yg:

JUNG AND PRAMANIK: AN EFFICIENT PATH COMPUTATION MODEL FOR HIERARCHICALLY STRUCTURED TOPOGRAPHICAL ROAD MAPS 1031



Function fcðx; yÞ gives the shortest path cost (i.e., from node x

to y) computed only within SGi.

As an example of Definitions 3.3, 3.4, and 3.5, Table 1

shows the corresponding values of  ðSGiÞ, �ðSGiÞ, and

!ðSGiÞ of the three subgraphs shown in Fig. 2.
The above definitions can be generalized into multi-

levels. Given a directed graph GðV ;EÞ, we construct a
subgraph tree T whose nodes are subgraphs of G. T is
identified as follows:

. The root node is GðV ;EÞ.

. A node v of T representing the subgraph SG of G
has children v1; v2; . . . ; vm representing subgraphs
SG1; SG2; . . . ; SGm, where the subgraphs sets fSGig
form a partition of SG.

. We use the notation SGk
i to denote the ith subgraph

on the kth level of the tree (where the leaves of the
tree are at the level 1).

By observing the structure of the subgraph tree T , we

know that all subgraphs in the tree are related to each other

in a complete balanced tree structure. The root node of the

tree is considered as a level k+1 subgraph and it has all level

k subgraphs as child nodes. Recursively, each node

symbolizing a level k subgraph has a set of level k� 1

subgraphs as child nodes. All leaf nodes of T symbolize

level 1 subgraphs. This subgraph tree T is named level kþ 1

if the root symbolizes level k+1 subgraph (i.e., GðV ;EÞ). The

following Fig. 3 shows an example of level 3 subgraph tree.

This tree structure shows a level 3 subgraph SG3
1 ¼ G

induced by the nodes in three level 2 subgraphs (i.e., SG2
1,

SG2
2, and SG2

3). It also shows three level 2 subgraph SG2
1,

SG2
2, and SG2

3 induced by the nodes in the six level 1

subgraphs SG1
1, SG1

2, SG1
3, SG1

4, SG1
5, and SG1

6.
For each level k subgraph SGk

i of T , there exists

corresponding level k boundary nodes set (i.e.,  ki ) , level k

cut edge set (i.e., �k
i ), level k semicut edge set (i.e., �k

i ), and

level k path view edge sets (i.e., !k
i ). They are formally

defined in Definitions 3.6 and 3.7.

Definition 3.6. Let SGk ¼ fSk
i g. Further let �k ¼ �ðSGkÞ,

�k
i ¼ �SGkðSGk

i Þ, and let �k
i be the set of all the outgoing edges

in �k
i . Similarly, let  ki denote the set of vertices of V k

i that have

at least one incoming or outgoing edges in �k
i .

Definition 3.7. Given a collection of subgraphs

SGk ¼ fSGk
1; SG

k
2; . . . ; SG

k
mg;

let

!k
i ¼ fðx; y; fcðx; yÞÞjðx; yÞ 2 ð ki �  ki Þ

^ ðx �!fcðx;yÞ
y in SGk

i ^ x 6¼ yg:

Function fcðx; yÞ gives the shortest path cost (i.e., from node x

to y) computed only within SGk
i .

Based on semicut edge and the path view edge sets defined

above, the formal definition of HiTi graph is given as below:

Definition 3.8. A HiTi graph is a directed labeled graph defined

in terms of semicut and path view edge sets associated with all

nodes of a subgraph tree T . A level kþ 1 subgraph tree T

defines a level k HiTi graph. It is represented by HkðV k; EkÞ,
where V k ¼

Sk
i¼1

S
j¼1 

i
j and Ek ¼

Sk
i¼1

S
j¼1f�i

j [ !i
jg � fig.

We have introduced basic concepts and formal defini-

tions of a level k HiTi graph in this section. It is easy to see

that the overhead of a level k HiTi graph comes from the

size of path view edge sets, j
Sk

i¼1

S
j¼1!

i
jj. Thus, for the HiTi

graph model to be efficient, j
Sk

i¼1

S
j¼1!

i
jj should be

minimized. Since the size of path view edge sets depend

on the number of boundary nodes created, it is important to

come up with an effective hierarchical fragmentation

method for a graph GðV ;EÞ by minimizing the number of

boundary nodes for each level subgraph.
There exists ways of fragmenting planar graphs such as

road maps so that the boundary nodes for each subgraph

form a small set. McCormick et al. proposed the optimal

graph decomposition algorithm having an exponential time

complexity [28]. The planar graph decomposition, first

shown by Lipton and Tarjan [26], has been exploited to

yield hierarchical decompositions of such graphs by Miller

et al. [29], [30]. Houstma et al. proposed a center-based

greedy graph decomposition algorithm which relies on the

manual picking of good center nodes [12]. Huang et al. later

proposed a good planar graph decomposition algorithm,

called spatial partitioning, which clusters graph links into

partitions based on spatial proximity [15]. Their experi-

mental analysis showed that the spatial partitioning method

works well for fragmenting road maps into subgraphs with

the number of their boundary nodes minimized.
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4 OPTIMAL SHORTEST PATH COMPUTATION IN A

HITI GRAPH

In this section, we discuss the use of a HiTi graph for

computing a shortest path on GðV ;EÞ. We first introduce a

set of basic notations which will be used in the rest of this

paper.

Definition 4.1. Let SG represent a subgraph of graph GðV ;EÞ.
Then, PCSGðx; yÞ and SPCSGðx; yÞ represent the path cost

and the shortest path cost from the nodes x to y only within

SG, respectively.

Definition 4.2. Assume set X consist of a set of subgraphs (i.e.,

nodes) of a level kþ 1 subgraph tree T . Then,

Aj
T ðXÞ ¼

f yjy is a level j ancestor subgraph of the subgraph in Xg;

AT ðXÞ ¼
Skþ1

j¼1 Aj
T ðXÞ, and

CT ðXÞ ¼ fY jY is a child subgraph of the subgraph in Xg:

Note that CT ðfSG1
i gÞ ¼ fSG1

i g for all the level 1 subgraphs

SG1
i (i.e., leaf nodes) of T .

Definition 4.3. Assume set X consist of a set of subgraphs. Then,

	ðXÞ and 
ðXÞ consist of semicut and path view edge sets of

all the subgraphs in X, respectively.

�ðXÞ ¼ 	ðXÞ [
ðXÞ;

and �ðXÞ consists of boundary node sets of all the

subgraphs in X.

Definition 4.4. Let SGl
i and SGl

j be two distinct level l
subgraphs defined in a level k subgraph tree T . Then,
lcaðSGl

i; SG
l
jÞ denote their least common ancestor subgraph.

The examples of Definitions 4.2, 4.3, and 4.4 are
illustrated through the level 4 subgraph tree T shown in
Fig. 4. Assume that X ¼ fSG1

8; SG
1
11g. Then,

A1
T ðXÞ ¼ fSG1

8; SG
1
11g;

A2
T ðXÞ ¼ fSG2

4; SG
2
5g;

AT ðXÞ ¼ fSG1
8; SG

2
4; SG

3
2; SG

4
1; SG

1
11; SG

2
5g;

CT ðXÞ ¼ fSG1
8; SG

1
11g;

CT ðS2
AðXÞÞ ¼ fSG1

8; SG
1
9; SG

1
10; SG

1
11; SG

1
12g;

	ðXÞ ¼ f�1
8; �

1
11g;


ðXÞ ¼ f!1
8; !

1
11g;

�ðXÞ ¼ f 18;  111g;

and lcaðSG1
8; SG

1
11Þ is SG3

2.

4.1 Optimality of the Shortest Path Computed on
the HiTi Graph

In order to prove the optimality of the shortest path cost
computed on the HiTi graph, we present the following four
theorems. The first three theorems will be used in proving
the last theorem, which shows the optimality of the shortest
path computation on the HiTi graph.

Theorem 4.1 shows that the shortest path cost between
any pair of boundary nodes of a level l subgraph is the same
as the one computed on the level l� 1 semicut and path view
edge sets of child subgraphs of the level l subgraph.
Furthermore, this theorem gives us the basis for efficiently
computing level l path view edge sets. That is, by using
Theorem 4.1, we can recursively compute level l path view
edge set !l

i only using level l� 1 path view and semicut edge
sets, �ðCT ðSGl

iÞÞ.
Theorem 4.1. Let SGl

i be a level l subgraph node in a level
kþ 1 subgraph tree T , where k � 1 and 1 � l � kþ 1. Let
CT ðSGl

iÞ ¼ fSGl�1
1 ; SGl�1

2 ; . . . ; SGl�1
p g. For any pair of

boundary nodes x, y 2 �ðCT ðSGl
iÞÞ, we have

SPCSGl
i
ðx; yÞ ¼ SPC�ðCT ðSGl

iÞÞðx; yÞ:

JUNG AND PRAMANIK: AN EFFICIENT PATH COMPUTATION MODEL FOR HIERARCHICALLY STRUCTURED TOPOGRAPHICAL ROAD MAPS 1033

Fig. 4. An example of level 4 subgraph tree T .

Fig. 3. An example of level 3 subgraph tree T.



Proof. The proof is given in the appendix. tu

Theorem 4.2 gives an efficient method to compute the
shortest path cost on a level l subgraph SGl

i when both
source and destination nodes, neither of them are level
l� 1 boundary nodes, are inside the same child subgraph
SGl�1

q of SGl
i in a level kþ 1 subgraph tree. Instead of

searching all the edges in SGl
i for the computation, it

shows that it only needs to search the edges in SGl�1
q and

the level l� 1 semicut and path view edge sets of all the
child subgraphs of SGl

i.

Theorem 4.2. Let SGl
i be a level l subgraph node in a level

kþ 1 subgraph tree T , where k � 1 and 1 � l � kþ 1. Let
SCðSGl

iÞ ¼ fSGl�1
1 ; SGl�1

2 ; . . . ; SGl�1
p g. For any node pair

x, y 2 SGl�1
q , where 1 � q � p, the following holds:

SPCSGl
i
ðx; yÞ ¼ SPCSGl�1

q [�ðCT ðSGl
iÞÞðx; yÞ.

Proof. The proof is given in the appendix. tu

Theorem 4.3 gives an efficient method to compute the
shortest path cost on a level l subgraph SGl

i when source
and destination nodes are respectively in the two distinct
children subgraphs SGl�1

u and SGl�1
v of SGl

i in a level kþ 1
subgraph tree. Instead of searching all the edges in SGl

i for
the computation, it shows that it only needs to search the
edges in SGl�1

u and SGl�1
v , and the level l� 1 semicut and

path view edge sets of all the child subgraphs of SGl
i.

Theorem 4.3. Let SGl
i be a level l subgraph node in a level kþ 1

subgraph tree T , where k � 1 and 1 � l � kþ 1. Let
CT ðSGl

iÞ ¼ fSGl�1
1 ; SGl�1

2 ; . . . ; SGl�1
p g. For any node pair

x 2 SGl�1
u , y 2 SGl�1

v , where 1 � u; v � p and u 6¼ v, then
SPCSGl

i
ðx; yÞ ¼ SPCSGl�1

u [SGl�1
v [�ðCT ðSGl

iÞÞðx; yÞ.
Proof. The proof is given in the appendix. tu

Based on Theorems 4.1, 4.2, and 4.3 above, Theorem 4.4
proves that, for any pair of nodes in GðV ;EÞ, the shortest
path cost computed on a selected part (i.e., subgraph) of a
level k HiTi graph together with not necessarily distinct
two level 1 subgraphs is the same as the one computed on
GðV ;EÞ.
Theorem 4.4. Let a level kþ 1 subgraph tree T be constructed

from GðV ;EÞ, where k � 1 and T defines a level k HiTi
graph HkðV k; EkÞ. For any node pair x 2 SG1

i and y 2 SG1
j ,

we have SPCGðx; yÞ ¼ SPCSG1
i[SG1

j[Dðx; yÞ such that
D ¼ �ðCT ðAT ðfSG1

i ; SG
1
jgÞÞÞ.

Proof. The proof is given in the appendix. tu

From Theorem 4.4, it is easy to see how a HiTi graph can
significantly reduce the search space necessary for a shortest
path computation. That is, without using a HiTi graph, the
search space would be GðV ;EÞ. Furthermore, Theorem 4.4
allows more controlled storage management that is suitable
for navigation systems (e.g., automobile navigation system)
where available storage is limited. This is possible because
we do not need to have an entire GðV ;EÞ to compute the
shortest path. Instead, by Theorem 4.4, we only need a
selected part of the level k HiTi graph and two level 1 edge
sets (i.e., one for a source node and the other for a
destination node).

We take a level 4 subgraph tree in Fig. 4 to exemplify
Theorem 4.4. Assume that we want to find the shortest path
from a source node START in SG1

1 to a destination node
DEST in SG1

19. Then, the necessary search space is at most
E1

1 [ E1
19 together with the corresponding semicut and path

view edge sets of the subgraphs enclosed by the dotted
rectangles in Fig. 4.

4.2 Shortest Path Algorithm SPAH

We now describe the Shortest Path Algorithm named
SPAH based on Theorem 4.4. Algorithm SPAH is shown
in Fig. 5. SPAH consists of two steps. The first step, by
taking advantage of Theorem 4.4, selects the necessary
search space by marking the subset of nodes in
fV 1

1 ; V
1
2 ; . . . ; V

1
n1
g with an edge level number. Each marked

edge level number represents the lowest level number of
the edges, which are incident to the marked node, SPAH
can traverse. In the second step, SPAH applies a variation
of A� algorithm to the selected search space obtained in the
first step. A� uses the function fðu;DEST Þ to estimate the
cost of the shortest path from node u to DEST . In the
domain of road maps, the function fðu;DEST Þ computes
the Euclidean distance between the node u and DEST . This
is possible because the coordinates (i.e., longitude and
latitude) of all nodes on a road map are assumed to be
available. Assuming (u:x; u:y) and (DEST:x;DEST:y) are
the corresponding coordinates of the nodes u and DEST ,
fðu;DEST Þ computes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDEST:x� u:xÞ2 þ ðDEST:y� u:yÞ2

q
:

Since Euclidean distance always underestimates the actual
shortest path between node u and DEST , A� finds the
optimal shortest path. The detailed proof for the optimality
of A* algorithm is found in [10].

SPAH traverses the edges, incident to the marked nodes,
from node START in SG1

i to node DEST in SG1
j to find the

optimal shortest path cost. For this computation, SPAH
takes advantage of the precomputed shortest path costs
stored in path view edge sets. Although the precomputed
shortest path costs are not necessarily the global shortest
path on GðV ;EÞ, SPAH guarantees giving the correct
global shortest path by using a specially created subgraph
tree, which is proven in Theorem 4.4. The subgraph tree
provides information about which subgraphs can be
skipped in the computation of the global shortest path.

Edge traversal of SPAH consists of two phases, the
ascending and descending phases. During the ascending and
descending phases, SPAH traverses edges in a nondecreas-
ing and nonincreasing edge level order, respectively. Note
that each of the considered paths has its own thread of
processing. Some of the paths are still in the ascending
phase, whereas the others are in the descending phase.

The preceding Fig. 4 also shows an example of the search
progress in SPAH when the source and destination nodes
are in SG1

1 and SG1
19, respectively. The five dotted

rectangles in the figure include the subgraphs whose path
view and semicut edge sets are selected by step 1 of SPAH as
the necessary search space. At step 2, SPAH first traverses
the edges in subgraph SG1

1ðV 1
1 ; E

1
1Þ until it reaches the

boundary nodes of SG1
1. It then enters into the ascending
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phase in which the semicut and path view edges with

nondecreasing level number are traversed. The sequence of

edge traversal in the ascending phase is illustrated by the

dotted arrows with number 1, 2, 3, 4, 5, and 6. The number

represents the order of the search progress. When SPAH

encounters the boundary nodes of SG3
3, it enters into the

descending phase where the semicut and path view edges

with nonincreasing level numbers are traversed. The

sequence of edge traversal in the descending phase is

illustrated by the dotted arrows with number 7, 8, 9, 10, and

11. When SPAH reaches the boundary nodes of SG1
19, it

traverses the edges in subgraph SG1
19ðV 1

19; E
1
19Þ until it

reaches the destination node.
After obtaining the shortest path cost from SPAH, a

navigator (e.g., driver) may want to find a more fine-

grained path connection on some edges (i.e., high-level

edges) with a level number greater than 0. This can be

accomplished by specializing a high-level edge. High-level

path view edges are specialized by representing them in

terms of lower level edges. For this purpose, we keep actual

shortest path information for each corresponding path view

edges. A high-level semicut edge cannot be specialized in

terms of lower level edges. This is because all semicut edges

in [k
i¼1[j¼1�

i
j are the edges in GðV ;EÞ.

5 PERFORMANCE ANALYSIS

For the analysis of Algorithm SPAH, we create two-
dimensional grid graphs GðV ;EÞ with four adjacent
nodes. Two-dimensional grid graphs are considered as
typical examples of road maps [24], [38]. In grid graph G,
jV j, and jEj are equal to 800� 800 nodes and 4� 800�
799 directed edges. From GðV ;EÞ, we create a level 4
subgraph tree T , where each level 1 subgraph SG1

i ðV 1
i ; E

1
i Þ

has jV 1
i j ¼ 100� 100, jE1

i j ¼ 4� 100� 99. Thus, the level 4
subgraph tree T consists of 64 level 1, 16 level 2, 4 level 3,
and 1 level 4 subgraphs, which are shown in Fig. 6.

We use the above level 4 subgraph tree ST to generate a
level 3 HiTi graph for the analysis of SPAH in the following
sections.

5.1 Comparison between SPAH and A* Algorithm

To show the search space savings of SPAH over the
traditional A* algorithm (presented in [38]), we create five
level 3 HiTi graphs where 10 � j 1i j � 20 and where the
edge cost is generated based on a uniform distribution
[100,120] with five different seeds. We represent j 1i j as the
total number of boundary nodes defined on level 1
subgraph SG1

i . Next, we create five plain grid graphs
which are simply unions of �1 and level 1 subgraphs used
in the above five level 3 HiTi graphs. For each level 3 HiTi
graph and plain grid graph created above, we compute
20 different shortest paths randomly prefixed pairs of
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source and destination nodes. Let Hn and An be the total
number of edges visited by SPAH and A*, respectively.
Note that throughout this paper, we multiply the estima-
tion of fðu;DEST Þ by 100 to normalize the estimation with
respect to the edge cost. The number 100 is used for this
normalization because the Euclidean distance between two
adjacent nodes is 1 and the edge cost between two nodes is
at least 100. We compare SPAH and A* by observing the
ratio An=Hn. These values are then averaged over the five
different level 3 HiTi and plain grid graphs with the same
source and destination nodes. They are shown in Fig. 7
where the numbers on x axis represent 20 ordered <
source; destination > pairs with path length increasing
from 1 to 20.

Fig. 7 clearly shows how effectively Algorithm SPAH
cuts down the search space over the traditional A*
algorithm. It is interesting to observe that the ratio An=Hn

increases rapidly as the path lengths from source to
destination increase. This occurs because the search space
A* algorithm needs to explore grows exponentially,
whereas that of SPAH grows very slowly due to the
hierarchical structure of HiTi graphs.

5.2 Effects of Edge Cost Distribution

In this section, we study the effects of edge cost distribu-
tions on the performance of SPAH. For this study, we
generate 4� 5 (i.e., four uniform distributions with five
seeds) level 3 HiTi graphs where 10 � j 1i j � 20. Note that
the four uniform distributions [100,120], [100,200], [100,300],
and [100,500] correspond to 20 percent, 100 percent,
200 percent, and 400 percent variations of edge costs,
respectively. We apply SPAH to each level 3 HiTi graph by
randomly creating 50 different < source; destination >

pairs and then averaging the cost. Let MA and MD

symbolize SPAH when the estimator fðu;DEST Þ gives
Euclidean distance and zero (i.e., no estimation), respec-
tively. Fig. 8 shows the effect of edge cost distributions on
the performance of SPAH in terms of Hn. Note that the
values of Hn are averaged over five seeds.

When fðu;DEST Þ gives Euclidean distance estimation,
the performance of SPAH deteriorates as the variation of
edge cost is increased. The primary reason is that

increasing the variation degrades the quality of Euclidean

distance estimation to the shortest path. This degradation

of Euclidean distance estimation seems to have a more

severe impact on the performance of MA initially (i.e.,

between 20 percent and 200 percent) than for the rest (i.e.,

between 200 percent and 400 percent). Unlike MA, MD

gives a very stable performance with varying edge cost

distribution. Since Euclidean distance estimation constitu-

tes the computational overhead, MD is better suited for

topographical road maps with large edge cost variations

than MA.

5.3 Effects of the Number of Hierarchical Levels

We examined the effects of different levels of HiTi graphs on

the performance ofSPAH (i.e., MA and MD). We constructed

different levels of HiTi graph out of the same set of level 1

subgraphs. For this analysis, we create two (i.e., 4 � j 1i j � 8

and 10 � j 1i j � 20Þ � 5 (i.e., an edge cost distribution

[100,200] with five seeds) level 3 HiTi graphs. Similarly, we

create 2� 5 level 1 and level 2 HiTi graphs. Then, we measure

average Hn of MA and MD the same way as we did in

Section 5.2. They are shown in Tables 2 and 3.
As we can see from Tables 2 and 3, higher level HiTi

graphs do not necessarily guarantee the better performance

when using SPAH than the lower level HiTi graphs. It

depends on the average search space for SPAH. The

average search space for SPAH on a level k HiTi graph,

represented by 2k, is formulated as follows:
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Fig. 6. A 800� 800 grid graph partitioned according to the level 4

subgraph tree.

Fig. 7. Performance comparison between A* and Algorithm SPAH.

Fig. 8. Effect of edge cost on the performance of MA and MD.



2k ¼2 � jej þ
Xnk

i¼1

j!k
i j þ

2

nk

Xnk�1

i¼1

j!k�1
i j þ 2

nk�1

Xnk�2

i¼1

j!k�2
i jþ

� � � þ 2

n3

Xn2

i¼1

j!2
i j þ

2

n2

Xn1

i¼1

j!1
i j:

Note that jej represents the average total number of edges in
a level 1 subgraph and nl represents the total number of
level l subgraphs where 1 � l � k. If 2p < 2q, where p > q,
then SPAH is likely to perform better on the higher level p
HiTi graph than on the lower level q HiTi graph. Otherwise,
the higher level HiTi graph is not likely to provide a
performance advantage over the lower level HiTi graph.
Table 4 shows the values of 21, 22, and 23 corresponding to
levels 1,2, and 3 HiTi graphs used in Tables 2 and 3.

Table 4 verifies our conjecture on the performance of
SPAH for different levels of HiTi graphs. An interesting
thing to note from Tables 2 and 3 is that the search space
(i.e., Hn) does not vary significantly going beyond a level 1
HiTi graph. This is because our experiments were done with
the grid graphs having the property that the difference
between 2i and 2iþ1 does not vary significantly as i

increases. We believe that, for most road maps, this is the
case. As a result, creating higher level HiTi graphs does not
contribute to the reduction in computation time. From this
observation, we can conclude that a level i HiTi graph is
good enough for road map applications where the
difference between 2i and 2iþ1 is small.

5.4 Memory Requirement

A* shortest path algorithm has been shown to be more
efficient than the breadth-first search single pair shortest
path algorithm when the database can fit in main memory
[24], [32]. This is likely to be the case for Algorithm SPAH.
That is, since SPAH processes the whole graph in terms of
path view and semicut edge sets of the smaller subgraphs, it
might be expected that each time the average main memory
need will be small.

For a more detailed analysis of the above claim, we use a
simplified analytical model suggested in [22]. In this model, a
grid graph GðV ;EÞ is exclusively partitioned into a set of n1

level 1 subgraphs where jV j ¼ v ¼ m�m and n1 ¼ f � f .
The total number of boundary nodes is 2mðf � 1Þ � 2

ffiffiffiffiffiffiffiffi
vn1

p
.

On average, each level 1 subgraph has v=n1 nodes. Since there
are at most

ffiffiffiffiffiffiffiffiffiffi
v=n1

p
boundary nodes on each side of a level 1

subgraph, a level 1 subgraph can have up to 4
ffiffiffiffiffiffiffiffiffiffi
v=n1

p
boundary nodes. Then, we use the following four parameters
represented in terms of v and n1.

. n1: the number of level 1 subgraphs that exclusively
partition a grid graph GðV ;EÞ,

. nj ¼ n1=4
j�1: the number of level j subgraphs,

. bj ¼ 4� ð2j�1
ffiffiffiffiffiffiffiffiffiffi
v=nj

p
Þ: the average number of bound-

ary nodes for each level j subgraph, and
. wj ¼ bj � ðbj � 1Þ: the average size of level j path view

edge set.

Let MRk be the average size of the part of the level k HiTi
graph SPAH needs to load into main memory in the worst
case (i.e., when lcaðSG1

i ; SG
1
j Þ is kþ 1). Based on Theorem 4.4

and the above simplified analytical model, we can formulate
MRk as follows:

MRk ¼ nkwk=nkþ1 þ 2nk�1wk�1=nk þ 2nk�2wk�2=nk�1

þ � � � þ 2n1w1=n2:

In Fig. 9, we compare the memory requirements of
SPAH when levels 1, 2, and 3 HiTi graphs are used. We
fixed the number of level 1 subgraphs (i.e., n1) at 64 and
measure MR1, MR2, and MR3 by varying the number of
nodes in G from 100� 100 to 800� 800.

Fig. 9 shows that the average memory requirements of a
level 3 HiTi graph increases very sharply with the increase
of the number of nodes. However, for a level 1 HiTi graph,
its memory requirement is increasing very slowly. For
example, its memory requirement at 640,000 nodes are
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TABLE 2
Effects of Level HiTi Graphs on Hn when 10 � j 1i j � 20

TABLE 3
Effects of Levels HiTi Graphs on Hn when 4 � j 1i j � 8

TABLE 4
Effects of Levels of HiTi Graphs on 2k

Fig. 9. Memory requirement of levels 1, 2, and 3 HiTi graphs.



10 Mbytes, which is small enough to fit into main memory.
Although the average memory size HiTi graphs require is
not much as it was shown in Fig. 9, it may not fit in main
memory for some cases. In those cases, SPAH should
compute SPSP on a disk-based HiTi graph by reducing I/O
cost as much as possible. For this, we need efficient spatial
access methods for path computation queries over network
data such as road maps. Network data should be efficiently
clustered based on connectivity of nodes rather than
geographic proximity.

A few have done research in connectivity-based access
methods [3], [6], [13], [17], [25]. However, these proposed
methods are not suitable for aggregate queries, e.g., path
evaluation, over general networks including road maps.
Shekhar and Liu proposed an efficient access method,
CCAM, to efficiently support aggregate queries over
general networks such as road maps [40]. Their experiments
with path computations on the Minneapolis road map show
the efficiency of the CCAM method. We believe that the
CCAM method can be applied to store a HiTi graph on the
disk to reduce I/O cost for SPSP computation.

6 UPDATING A HITI GRAPH

In a HiTi graph, it is necessary to modify the graph
whenever there are updates on the costs of the edges in
GðV ;EÞ. For example, road maps need to be updated as
traffic conditions change. Thus, an efficient updating
algorithm for a HiTi graph is essential for applications like
road navigation. In Fig. 10, we give an efficient updating
algorithm for a level k HiTi graph.

The update cost of our algorithm in Fig. 10 is linear with
respect to the number of subgraphs in a level kþ 1
subgraph tree T . That is, the influence of changing an edge
cost is limited to the path view edge sets of the ancestor
subgraphs of the level 1 subgraph the link is in and path
view edge sets of all other subgraphs are unaffected. This is
possible because the shortest paths are precomputed
between all the boundary nodes of each SGl

i only within
SGl

i, where 1 � l � k and 1 � i � nl. Thus, when changing
an edge cost, the update cost, UC, is the size of the path view

edge sets that needs to be recomputed as shown in step 7 in
Fig. 10. For a more detailed analysis of UC, we use a
simplified analytical model mentioned in Section 5.4. For a
level k HiTi graph, UC is formulated as

Pk
l¼1 wj. To see how

UC behaves when varying the number of level 1 subgraphs
updated, assume that 64 level 1, 16 level 2, and 4 level 3
subgraphs are defined on a grid graph G of 10,000 nodes.
Fig. 11 shows the update costs of levels 1, 2, and 3 HiTi
graphs.

We observe in Fig. 11 that the update costs of levels 1 and
2 HiTi graphs are increasing almost linearly with the
increase of the number of level 1 subgraphs changed.
However, the update cost of a level 3 HiTi graph is
increasing linearly from 1 to 16 subgraphs, and jump
sharply to a higher cost at 17 subgraphs and so on. This is
because lower level path view edge sets updated are likely to
belong to the same next higher level path view edge set that
needs to be recomputed. As a result, the jump of the update
cost occurs when the updated lower level path view edge
sets have different next higher level path view edge sets that
need to be recomputed. The above tendency is also shown
in a level 2 HiTi graph in the figure, although the jump of
the update cost is shown to be relatively small compared to
that in a level 3 HiTi graph. We conclude that a HiTi graph
provides an efficient structure which allows the edges in the
higher level path view edge sets to be less sensitive to the
updates at lower level edges.
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Fig. 10. Updating algorithm for a level k HiTi graph.

Fig. 11. Update costs for levels 1, 2, and 3 HiTi graphs.



While our approach focuses on maintaining the different
levels of path views (i.e., the precomputed shortest paths), a
significant amount of research has been done on maintain-
ing materialized views of the transitive closures including
path information [1], [5], [19], [23]. In their approaches,
incremental update techniques are used to avoid recomput-
ing the entire transitive closures from scratch. However,
their update techniques do not provide the upper bound
where an update propagation is limited as is the case in our
approach. This is because their materialized view of
transitive closures are not based on the graph decomposi-
tion like a HiTi graph model. Thus, in the worst case, most
of the materialized view of transitive closures may have to
be updated.

7 COMPARISON WITH OTHER SIMILAR WORKS

In this section, we analyze other similar works in comparison
with our HiTi graph model. Two research results are quite
relevant to the HiTi graph approach. They are HEPV and
Hub Indexing methods [21], [22], [11]. In the HEPV method, it
first generates an FPV(Flat Path View) for each subgraph by
precomputing all-pair shortest paths only within the corre-
sponding subgraph.1 By utilizing the path information in all
FPVs, it then constructs a supergraph for all subgraphs. The
supergraph captures the path information between the
boundary nodes of each subgraph. HEPV constructs an
FPV for the supergraph by precomputing globally optimal
all-pair shortest paths between the boundary nodes of all
subgraphs. We call this FPV as SFPV from hereon.

In the Hub Indexing method, it generates a distance table
for all subgraphs by precomputing the shortest path costs2

between the boundary nodes of each subgraph and its
interior nodes (i.e., nonboundary nodes of each subgraph)
only within it’s corresponding subgraph. We denote the
part of the distance table as PDT that contains the shortest
path information corresponding to each subgraph. The Hub
Indexing method also generates a Hub Set for all subgraphs
by precomputing the globally optimal all-pair shortest
paths between the boundary nodes of all subgraphs.

Like the HiTi graph method, these two methods also
limit the influence of changing an edge cost to the confines
of the subgraph the link is in, and all other subgraphs
remain unaffected. However, all the shortest paths stored in
SFPV and the Hub Set are affected by an update due to their
global optimality. By considering the characteristics of the
above two methods, we believe that they will have more
storage overhead and update maintenance problems when
large road maps have to be considered.

Unlike HEPV and Hub Indexing methods, the HiTi
graph model does not suffer from the excessive storage
overhead for maintaining a large amount of precomputed
path information. This is because in the HiTi graph model,
we only precompute the shortest paths between the
boundary nodes of each subgraph only with respect to that
subgraph. The reduction in the storage overhead of a HiTi
graph model over that of the HEPV and Hub Indexing

approaches, also gives much less update cost than the other
two approaches, since the amount of the shortest path
recomputation necessary for updating the HiTi graph is a
lot less than for the HEPV and Hub Indexing approaches.

For a more detailed analysis, we reuse a simplified
analytical model mentioned in Section 5.4. Since the Hub
Indexing method deals with only level 1 subgraphs, for a
fair comparison between these three methods, we only
consider level 1 subgraphs for this analysis.3 Thus, from
hereon, mentioned otherwise, we denote level 1 subgraphs
as just subgraphs. We use the following five parameters
represented in terms of v and n1:

. v: the total number of nodes in a grid graph GðV ;EÞ,

. n1: the number of level 1 subgraphs that exclusively
partition a graph GðV ;EÞ,

. t ¼ 2
ffiffiffiffiffiffiffiffi
vn1

p
: the total number of boundary nodes for G,

. b1 ¼ 4
ffiffiffiffiffiffiffiffiffiffi
v=n1

p
: the average number of boundary

nodes for each level 1 subgraph, and
. i1 ¼ v=n1 � b1: the average number of interior nodes

of each level 1 subgraph.

By utilizing the above five parameters, we analyze each
method in terms of update cost, storage overhead, and SPSP
computation time. We represent the update cost in terms of
the number of affected precomputed shortest paths that
need to be recomputed. The storage overhead is repre-
sented by the total number of the precomputed shortest
paths. SPSP computation time gives the computational
complexity of each method.

We first discuss the cost of updates when changing an
edge cost. For the HEPV approach, the cost consists of the
cost of updating an FPV, i.e., ðb1 þ i1Þðb1 þ i1 � 1Þ and that
of a supergraph, i.e., tðt� 1Þ. In the Hub Indexing method,
the cost consists of updating the Hub Set, i.e., tðt� 1Þ, and
PDT, i.e., b1i1. In the HiTi graph method, the cost is
updating a path view edge set, i.e., b1ðb1 � 1Þ.

Next, we discuss a storage overhead for each method.
For the HEPV method, the storage overhead comes from
the size of all FPVs, i.e., ðb1 þ i1Þðb1 þ i1 � 1Þn1, and the size
of SFPV, i.e., tðt� 1Þ. For the Hub Indexing method, the
overhead consists of the size of the distance table, i.e., b1i1k1,
and the size of the Hub Set, i.e., tðt� 1Þ. For the HiTi graph
method, the storage overhead is the size of all the path view
edge sets, i.e., b1ðb1 � 1Þn1.

Finally, we discuss SPSP computation time for each
method. The detail SPSP computation algorithms for the
HEPV and Hub Indexing methods are given in [11], [21],
[22]. For the HEPV method, the time complexity is
dominated by searching a necessary portion, i.e., b21, of
SFPV. For the Hub Indexing method, the time complexity
mainly comes from searching PDT (i.e., searching a
subgraph with cost i21) and a part of the Hub Set, i.e., b21.
For the HiTi graph method, the time complexity consists of
searching two level 1 subgraphs, i.e., 2i21, and a level 1 HiTi
graph, i.e., t2. We summarize the performance comparison
of all three methods in Table 5.

We now analyze the performance of the HEPV , Hub
Indexing, and HiTi graph methods experimentally by using
the results given in Table 5. In Fig. 12, we first measure
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1. The shortest paths computed here are not necessarily globally optimal.
2. Like the HEPV approach, the shortest paths are not necessarily

globally optimal.
3. In HEPV and HiTi graph methods, general multilevel subgraphs are

also handled.



update cost, storage overhead, and SPSP computation time for
each method by varying the number of subgraphs, i.e., n1

defined on a grid graph of 10,000 nodes. Fig. 12a shows that
the update cost of a HiTi graph is much better than that of
the HEPV and Hub Indexing methods. This is because the
influence of changing an edge cost in the HiTi graph
method is only limited to the path view edge set of the
corresponding subgraph the link is in. However, in the
HEPV and Hub Indexing methods, the influence of the
update is propagating not only to FPV and PDT for the
corresponding subgraph but also to SFPV and the Hub Set.
Note that the update cost in the Hub Indexing method are
smaller than the one in HEPV since PDT, i.e., b1i1 is much
smaller than the size of the FPV, i.e, ðb1 þ i1Þðb1 þ i1 � 1Þ.

We also note that the update cost in the HiTi graph
method is decreasing with the increase in the number of
subgraphs. However, the update costs of the HEPV and
Hub Indexing methods are decreasing up to 25 and 16
subgraphs, respectively, and then start to increase narrow-
ing down their gaps. This happens because of the following
two reasons:

. Increasing the number of subgraphs in the HEPV
and Hub Indexing methods has a positive effect on
reducing their update costs up to 25 and 16
subgraphs, respectively.

. After that, the FPV size, i.e., tðt� 1Þ, of the super-
graph and the Hub Set size, i.e., tðt� 1Þ are becoming
the dominant factor of their update costs.

From this, we think that the update cost for HEPV and Hub
Indexing methods will be almost the same for a grid graph
having a large number of subgraphs. Fig. 12b shows that the
storage overhead of the HiTi graph method is not sensitive
to the varying number of subgraphs as opposed to the
HEPV and Hub Indexing methods.

The storage overhead of the HEPV and Hub Indexing
methods has similar characteristics as those of their update
costs. The justification for this is given by the same two
reasons given above. For a SPSP computation cost, Fig. 12c
shows that the HEPV and Hub Indexing methods4 give the
comutation time that is much less than that for the HiTi
graph model. This is expected from Table 5. Fig. 12c also
shows the optimal number of subgraphs (i.e., 36 subgraphs)
for the HiTi graph method given the grid graph size fixed
at 10,000 nodes. In general, by considering update cost,
storage overhead, and SPSP computation time, we can decide
the optimal number of subgraphs for each of the three
methods when the size of a graph is fixed. For example, the
optimal number of subgraphs for the Hub Indexing method
is 16, 25, or 36 depending on which cost factor is given the
highest priority.

In Fig. 13, we measure update cost, storage overhead, and
SPSP computation time for each method by varying the
number of nodes in grid graphs from 100� 100 to
150� 150, 200� 200, 250� 250, . . . , and 400� 400. Note
that we fixed the number of subgrapahs at 36. Figs. 13a and
13b shows that the HiTi graph method outperforms the
HEPV and Hub Indexing methods in terms of update cost
and storage overhead. However, in terms of SPSP computa-
tion cost, the HEPV method outperforms the rest of two
methods as shown in Fig. 13c. Note that the performance of
the Hub Indexing method is always between the HiTi graph
and HEPV methods. The above performance tendency can
be explained by the amount of precomputed shortest paths
stored in each method. That is, the amount of precomputed
shortest paths are increased from the HiTi graph to the Hub
Indexing and HEPV methods.

8 HITI GRAPH-BASED INTER QUERY PARALLEL

SHORTEST PATHS COMPUTATION

In this section, we study the parallel processing for
computing inter query shortest path based on the HiTi
graph. Efficient and fast computation of multiple single pair
shortest paths are very critical for those automobile
navigation systems where all route computations are
performed on a single server. For this purpose, we propose
a new inter query parallel shortest path algorithm named
ISPAH in the following section.

8.1 Description of ISPAH Algorithm

Before describing ISPAH, we first compare SPAH with
OTOpar [31]. OTOpar uses two processors where each
processor uses A* algorithm with Manhattan distance
estimation to build its corresponding tree, one rooted at
the source node and the other rooted at the destination
node. Note that SPAH is an improved A* algorithm which
takes advantage of the HiTi graph. Thus, for fair
comparison, we modified OTOpar so that it also utilizes
the HiTi graph. In other words, in the modified OTOpar
named MOTOpar, we use SPAH for building two trees
from both source and destination nodes. Note that we use
Euclidean distance for the lower bound estimation in
MOTOpar. This is because Manhattan distance estimation
does not guarantee the optimal shortest path generation.

We implemented SPAH and MOTOpar on a BBN
GP1000 shared memory multiprocessor system, which has
a nonuniform memory architecture. The BBN GP1000
multiprocessor currently consists of 85 nodes, each one
with 4MBytes of local memory, linked together by a high-
speed butterfly switch. In this system, the globally shared
memory is the sum of the memories local to all processors.
Thus, the size of available main memory increases with an
increasing number of nodes in the system. The BBN GP1000
system can have up to 250 processing nodes.
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TABLE 5
Cost Comparisons of the HEPV , Hub Indexing, and HiTi Graph Methods

4. Note that the computation time in HEPV and Hub Indexing methods is
decreasing with the increase of the number of subgraphs.



For our analysis, we create two-dimensional grid graphs

GðV ;EÞ with four adjacent nodes as we did in Section 5. In

grid graph G, jV j, and jEj are equal to 400� 400 nodes and

4� 400� 399 directed edges. From GðV ;EÞ, we create a

level 4 subgraph tree ST where each level 1 subgraph

SG1
i ðV 1

i ; E
1
i Þ has jV 1

i j ¼ 50� 50, jE1
i j ¼ 4� 50� 49. The
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Fig. 13. Cost comparison on the varying sizes of grid graphs having 36 subgraphs. (a) Update cost, (b) storage cost, and (c) SPSP computation cost.

Fig. 12. Cost comparison on a grid graph of 10,000 nodes with varying number of subgraphs. (a) Update cost, (b) storage cost, and (c) SPSP

computation cost.



level 2 subgraph tree ST consists of 64 level 1, 16 level 2,
four level 3, and one level 4 subgraphs. Based on the above
level 4 subgraph tree, we create a level 1 HiTi graph which
will be used throughout this section. To show performance
comparison between MOTOpar and SPAH, we create five
level 3 HiTi graphs where 3 � j 1i j � 8 and where the edge
cost is generated based on a uniform distribution [100,120]
with five different seeds. Note that j 1i j is the total number
of boundary nodes defined on level 1 subgraph SG1

i .
Fig. 14 shows that SPAH performs better than

MOTOpar, which is a different result from the one given
in [31]. The results can be explained by the following two
reasons. The first reason is that the HiTi graph structure
significantly reduces the advantage of using the two tree
expansion approach given in [31]. In other words, the most
of the nodes in the two level 1 subgraphs (i.e., where source
and destination nodes are in) are already explored when
two trees start to include the nodes in a HiTi graph. The
second reason is that the lower bound estimation of
MOTOpar is Euclidean distance which provides a lot
tighter bound than Manhattan distance of OTOpar in [31].
As a result, compared with OTOpar, MOTOpar takes much
longer time to stop building the two trees before it finds the
shortest path.

Since SPAH outperforms MOTOpar, we use SPAH as
the unit operation for parallelizing inter query shortest
paths computation. In other words, SPAH performs the
computation of each shortest path in parallel. The detail
description of the inter query parallel shortest path
algorithm, named Inter SPAH (ISPAH), is shown in Fig. 15.

Algorithm ISPAH executes SPAH in parallel on a BBN
GP1000 shared memory multiprocessor system. For SPAH
running on each processor, it accesses both local memory and
globally shared memory for the computation. Algorithm

SPAH accesses the globally shared memory only when it
needs to access GðV ;EÞ or level k HiTi graph HkðV k; EkÞ.
Other than that, SPAH accesses the local memory. Note that
there is no memory access contention for reading or writing a
local memory. In the following section, we analyze the
performance of ISPAH.

8.2 Performance Evaluation of ISPAH

We implemented ISPAH on a BBN GP1000 shared
memory multiprocessor system. In our experiment, we
used the same grid graph as described in Section 8.1. Based
on these data sets, we computed 43 randomly prefixed
shortest paths. The performance is then measured in terms
of the average speedup Tn, where Tn represents the total time
taken by n processors to compute M shortest paths. We
express the speedup Sn of n processors as T1=Tn.

Fig. 16 shows Sn as n is increased from 1 to 43. As we can
see from Fig. 16, the speed up of ISPAH increases almost
linearly up to 10 processors, after 10 it is beginning to level
off, and after 25 processors, the performance begins to
deteriorate. This occurs because of the globally shared
memory access contentions. In ISPAH, all processors have
to access a single HiTi graph in a globally shared memory,
which causes a severe memory access contention when
more than 25 processors are used.

In order to verify our conjecture of this memory access
contention, we modified ISPAH so that an entire level k
HiTi graph HkðV k; EkÞ is replicated on the local memory of
each processor. This revised ISPAH is named a Modified
ISPAH (MISPAH).

We analyzed MISPAH the same way as we did for
ISPAH. Fig. 17 shows the speedup of MISPAH up to 43
processors showing the advantage of replicating a level k
HiTi graph on each processor. Although MISPAH per-
forms better than ISPAH, it is scalable up to 41 processors.
From this analysis, we conclude that the parallel processing
for inter query SPSP (Single Pair Shortest Path) problems is
much more promising than intra query SPSP problems.

9 CONCLUSION

In this paper, we developed a new graph model, called a
HiTi graph model, for very large topographical road maps.
HiTi graphs provide a powerful formal framework for
structuring topographical road map data in a hierarchical
fashion. We first showed that our proposed shortest path
algorithm SPAH, based on HiTi graph model, significantly
reduces the search space for computing the minimum cost
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Fig. 15. ISPAH algorithm.

Fig. 14. Performance of SPAH and MOTOpar.



path over a very large topographical road map. We
formally prove that the shortest path computed by SPAH
is optimal. The memory requirement of the HiTi graph,
and the efficient HiTi graph updating algorithm, essential
for many navigation systems to reflect dynamic traffic
condition, are also investigated. Last, the HiTi graph
method is compared with other similar works such as the
HEPV and Hub Indexing methods, both theoretically and
experimentally in terms of update cost, storage overhead, and
SPSP computation cost.

We then studied parallel processing for inter query SPSP
problem on topographical road maps. We show that the
speedup of the parallel version of SPAH increases almost
linearly for up to 10 processors on a shared memory
multiprocessor system. However, this algorithm is scalable
for up to 25 processors. We then presented an improved
version of this algorithm which reduces the memory access
conflicts through partial data replication. This algorithm is
scalable for up to 41 processors.

APPENDIX

Theorem 4.1. Let SGl
i be a level l subgraph node in a level kþ 1

subgraph tree T , where k � 1 and 1 � l � kþ 1. Let
CT ðSGl

iÞ ¼ fSGl�1
1 ; SGl�1

2 ; . . . ; SGl�1
p g. For any pair of

boundary nodes x, y 2 �ðCT ðSGl
iÞÞ, we have

SPCSGl
i
ðx; yÞ ¼ SPC�ðCT ðSGl

iÞÞðx; yÞ:

Proof. Let PSGl
i
ðx; yÞ represent a path from the boundary

nodesx to y. Then, for any pathPSGl
i
ðx; yÞ, all the boundary

nodes on it as well as the two end nodes can be represented

sequentially by the node sequence, x; z1; z2; . . . ; zm; y.

Hence, its path cost can be represented by

PCSGl
i
ðx; yÞ ¼PCSGl

i
ðx; z1Þ þ PCSGl

i
ðz1; z2Þ

þ � � � þ PCSGl
i
ðzm; yÞ:

By the principle of optimality, the shortest path cost
SPCSGl

i
ðx; yÞ can be denoted by:

SPCSGl
i
ðx; yÞ ¼SPCSGl

i
ðx; z1Þ þ SPCSGl

i
ðz1; z2Þ

þ � � � þ SPCSGl
i
ðzm; yÞ:

In the boundary node sequence, every two successive
boundary nodes correspond to either the boundary node
entering a subgraph in CT ðSGl

iÞ and the boundary node

leaving that subgraph or vice versa. Therefore, every
successive pair of nodes in the boundary node sequence
x; z1; z2; . . . ; zm; y belong to the same set of level l� 1
semicut and path view edge sets, say ðx; z1Þ 2 �ðSGl�1

j1
Þ;

ðz1; z2Þ 2 �ðSGl�1
j2

Þ; � � � ; ðzm; yÞ 2 �ðSGl�1
jm

Þ

with 1 � j1; j2; � � � ; jm � p. As the shortest path cost

SPSGl
i
ðx; z1Þ can be obtained from �ðSGl�1

j1
Þ, we would

have SPCSGl
i
ðx; z1Þ ¼ SPC�ðSGl�1

j1
Þðx; z1Þ. For a similar

reason, we have SPCSGl
i
ðz1; z2Þ ¼ SPC�ðSGl�1

j2
Þðz1; z2Þ, and

so on, until SPCSGl
i
ðzm; yÞ ¼ SPC�ðSGl�1

jm
Þðzm; yÞ. Thus, the

shortest path cost SPCSGl
i
ðx; yÞ can be represented by:

SPCSGl
i
ðx; yÞ ¼SPC�ðSGl�1

j1
Þðx; z1Þ þ SPC�ðSGl�1

j2
Þðz1; z2Þ

þ � � � þ SPC�ðSGl�1
jm

Þðzm; yÞ:

From this, we know that the shortest path cost

SPCSGl
i
ðx; yÞ can be computed by using only the edges

in �ðCT ðSGl
iÞÞ. Thus, we have proven the theorem that

SPCSGl
i
ðx; yÞ ¼ SPC�ðCT ðSGl

iÞÞðx; yÞ. tu

Theorem 4.2. Let SGl
i be a level l subgraph node in a level kþ 1

subgraph tree T , where k � 1 and 1 � l � kþ 1. Let

SCðSGl
iÞ ¼ fSGl�1

1 ; SGl�1
2 ; . . . ; SGl�1

p g. For any node pair

x, y 2 SGl�1
q , where 1 � q � p, the following holds:

SPCSGl
i
ðx; yÞ ¼ SPCSGl�1

q [�ðCT ðSGl
iÞÞðx; yÞ.

Proof. All paths from x to y can be classified into two

categories:
Case 1. The path consists solely of edges from SGl�1

q .
Case 2. The path consists of edges not only from SGl�1

q

but from other level l� 1 subgraphs in CT ðSGl
iÞ.

For paths of Case 1, the path cost from x to y is
represented by PCSGl�1

q
ðx; yÞ. If all paths from x to y are

of this kind, then we know that the shortest path from x
to y is also defined in SGl�1

q . That is,

SPCSGl
i
ðx; yÞ ¼ SPCSGl�1

q
ðx; yÞ:

Any path of Case 2 consists of edges of SGl
i which can

be represented by the node sequence x; z1; z2; . . . ; zm; y.
As this path contains edges of other level l� 1 subgraphs
CT ðSGl

iÞ, it would leave SGl�1
q and eventually come back.

Therefore, the path contains at least two boundary nodes
a and b, such that a; b 2 �ðSGl�1

q Þ and a 6¼ b. Choose a to
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Fig. 17. Performance of MISPAH.Fig. 16. Performance of ISPAH.



be the first such node and b to be the last such node on
this path. The path cost of this particular path can be
denoted by:

PCSGl
i
ðx; yÞ ¼ PCSGl

i
ðx; aÞ þ PCSGl

i
ða; bÞ þ PCSGl

i
ðb; yÞ:

Assume the node sequence of the shortest path is
x; � � � ; a; � � � ; b; � � � ; y. By the principle of optimality, we
have

SPCSGl
i
ðx; yÞ ¼ SPCSGl

i
ðx; aÞ þ SPCSGl

i
ða; bÞ þ SPCSGl

i
ðb; yÞ:

As the shortest path SPSGl
i
ðx; aÞ consists only of edges

of SGl�1
q , it falls into Case 1. Thus, we have

SPCSGl
i
ðx; aÞ ¼ SPCSGl�1

q
ðx; aÞ. Similarily, we have

SPCSGl
i
ðb; yÞ ¼ SPCSGl�1

q
ðb; yÞ:

As for SPCSGl
i
ða; bÞ, by Theorem 4.1, we have

SPCSGl
i
ða; bÞ ¼ SPC�ðSCðSGl

iÞÞða; bÞ. Therefore, it follows
that the shortest path cost from x to y in the context of
SGl

i is given by:

SPCSGl
i
ðx; yÞ ¼ SPCSGl�1

q
ðx; aÞ þ SPC�ðCT ðSGl

iÞÞða; bÞ
þ SPCSGl�1

q
ðb; yÞ:

From this equation, we know that the shortest path
SPSGl

i
ðx; yÞ is in the following path set:

fSPSGl�1
q
ðx; aÞ þ SP�ðCT ðSGl

iÞÞða; bÞþ
SPSGl�1

q
ðb; yÞ j a; b 2 �ðSGl�1

q Þ ^ a 6¼ bg:

Thus, the shortest path cost SPCSGl
i
ðx; yÞ can be denoted

by:

SPCSGl
i
ðx; yÞ ¼ minðfSPCSGl�1

q
ðx; aÞ þ SPC�ðCT ðSGl

iÞÞða; bÞþ
SPCSGl�1

q
ðb; yÞ j a; b 2 �ðSGl�1

q Þ ^ a 6¼ bgÞ:

By combining Cases 1 and 2, we have

SPCSGl
i
ðx; yÞ ¼minðSPCSGl�1

q
ðx; yÞ;minðfSPCSGl�1

q
ðx; aÞ

þ SPC�ðCT ðSGl
iÞÞða; bÞ

þ SPCSGl�1
q
ðb; yÞ j a; b 2 �ðSGl�1

q Þ ^ a 6¼ bgÞÞ;

which, in turn, proves that

SPCSGl
i
ðx; yÞ ¼ SPCSGl�1

q [�ðCT ðSGl
iÞÞðx; yÞ:

ut

Theorem 4.3. Let SGl
i be a level l subgraph node in a level kþ 1

subgraph tree T , where k � 1 and 1 � l � kþ 1. Let
CT ðSGl

iÞ ¼ fSGl�1
1 ; SGl�1

2 ; . . . ; SGl�1
p g. For any node pair

x 2 SGl�1
u , y 2 SGl�1

v , where 1 � u; v � p and u 6¼ v, then
SPCSGl

i
ðx; yÞ ¼ SPCSGl�1

u [SGl�1
v [�ðCT ðSGl

iÞÞðx; yÞ.
Proof. Any path from x to y in SGl

i can be represented by
the node sequence x; z1; z2; . . . ; zm; y. It is obvious that
two nodes a and b must exist in this path where a 2
�ðSGl�1

u Þ and b 2 �ðSGl�1
v Þ since the path must ulti-

mately leave SGl�1
u and enter SGl�1

v . Choose a to be the
first such node and b to be the last such node on this
path. The path cost of SGl

i can be denoted by:

PCSGl
i
ðx; yÞ ¼ PCSGl

i
ðx; aÞ þ PCSGl

i
ða; bÞ þ PCSGl

i
ðb; yÞ:

Assume the node sequence of the shortest path from x
to y in SGl

i is x; � � � ; a; � � � ; b; � � � ; y. By the principle of
optimality, we have

SPCSGl
i
ðx; yÞ ¼ SPCSGl

i
ðx; aÞ þ SPCSGl

i
ða; bÞ þ SPCSGl

i
ðb; yÞ:

As the shortest path SPSGl
i
ðx; aÞ consists only of edges

from SGl�1
u , and the shortest path SPSGl

i
ðb; yÞ consists

only of edges from SGl�1
v , we have SPCSGl

i
ðx; aÞ ¼

SPCSGl�1
u
ðx; aÞ and SPCSGl

i
ðb; yÞ ¼ SPCSGl�1

v
ðb; yÞ. As for

SPCSGl
i
ða; bÞ, by Theorem 4.1, we have

SPCSGl
i
ða; bÞ ¼ SPC�ðCT ðSGl

iÞÞða; bÞ:

Thus, the shortest path cost SPCSGl
i
ðx; yÞ can be

represented by

SPCSGl
i
ðx; yÞ ¼ SPCSGl�1

u
ðx; aÞ þ SPC�ðCT ðSGl

iÞÞða; bÞ
þ SPCSGl�1

v
ðb; yÞ

From the above equation, we know that the shortest path

SPSGl
i
ðx; yÞ is in the following path set:

fSPSGl�1
u
ðx; aÞ þ SP�ðCT ðSGl

iÞÞða; bÞ
þ SPSGl�1

v
ðb; yÞ j a 2 �ðSGl�1

u Þ
^ b 2 �ðSGl�1

v Þg:

Accordingly, the shortest path cost SPCSGl
i
ðx; yÞ can be

denoted by:

SPCSGl
i
ðx; yÞ ¼ minðfSPCSGl�1

u
ðx; aÞ þ SPC�ðCT ðSGl

iÞÞða; bÞ
þ SPCSGl�1

v
ðb; yÞ j a 2 �ðSGl�1

u Þ
^ b 2 �ðSGl�1

v ÞgÞ

which, in turn, proves

SPCSGl
i
ðx; yÞ ¼ SPCSGl�1

u [SGl�1
v [�ðCT ðSGl

iÞÞðx; yÞ:
ut

Theorem 4.4. Let a level kþ 1 subgraph tree T be constructed

from GðV ;EÞ, where k � 1 and T defines a level k HiTi

graph HkðV k; EkÞ. For any node pair x 2 SG1
i and y 2 SG1

j ,

we have SPCGðx; yÞ ¼ SPCSG1
i[SG1

j[Dðx; yÞ such that

D ¼ �ðCT ðAT ðfSG1
i ; SG

1
jgÞÞÞ.

Proof. Since a level kþ 1 T has SGkþ1
1 as the root node, we

have G ¼ SGkþ1
1 which gives

SPCGðx; yÞ ¼ SPCSGkþ1
1
ðx; yÞ:

Let l ¼ lcaðSG1
i ; SG

1
j Þ. Then, for l < t � kþ 1, x; y 2

At
T ðSG1

i Þ since At
T ðSG1

i Þ is the same as At
T ðSG1

j Þ. By the

Theorem 4.2, we have

SPCGðx; yÞ ¼ SPCAk
T
ðSG1

i Þ[�ðCT ðAkþ1
T

ðSG1
i ÞÞÞ

ðx; yÞ: ð1Þ

From (1), we can reduce the search space Ak
T ðSG1

i Þ by

recursively applying Theorem 4.2, while x; y 2 At
T ðSG1

i Þ
such that l < t � kþ 1. As a result, we have
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SPCGðx; yÞ ¼ SPC[t¼kþ1
t¼lþ1

�ðCT ðAt
T
ðSG1

i ÞÞÞ[Al
T
ðSG1

i Þ
ðx; yÞ: ð2Þ

Now, the reduced search space for (2) is defined as

[t¼kþ1
t¼lþ1 �ðCT ðAt

T ðSG1
i ÞÞÞ [Al

T ðSG1
i Þ ð3Þ

Then, the shortest path computed on (3) is the same as

the one computed on G. From Al
T ðSG1

i Þ in (3), we know

that CT ðAl
T ðSG1

i ÞÞ includes Al�1
T ðSG1

i Þ and Al�1
T ðSG1

j Þ,
where Al�1

T ðSG1
i Þ 6¼ Al�1

T ðSG1
j Þ. Since x 2 Al�1

T ðSG1
i Þ and

y 2 Al�1
T ðSG1

j Þ, we rewrite (3) by applying Theorem 4.3 as

[t¼kþ1
t¼lþ1 �ðCT ðAt

T ðSG1
i ÞÞÞ [Al�1

T ðSG1
i Þ

[Al�1
T ðSG1

j Þ [ �ðCT ðAl
T ðSG1

i ÞÞÞ:
ð4Þ

For Al�1
T ðSG1

i Þ in (4), we need to compute the shortest

paths from node x to the boundary nodes in

�ðAl�2
T ðSG1

i ÞÞ, and the shortest paths from the boundary

nodes in �ðAl�2
T ðSG1

i ÞÞ to the boundary nodes in

�ðCT ðAl�l
T ðSG1

i ÞÞÞ. For Al�1
T ðSG1

j Þ in (4), we need to

compute the shortest paths from node y to the boundary

nodes in �ðAl�2
T ðSG1

j ÞÞ, and the shortest paths from the

boundary nodes in �ðAl�2
T ðSG1

j ÞÞ to the boundary nodes

in �ðCT ðAl�l
T ðSG1

j ÞÞÞ. Then, by using Theorem 4.1, we

can rewrite (4) as

[t¼kþ1
t¼lþ1 �ðCT ðAt

T ðSG1
i ÞÞÞ [Al�2

T ðSG1
i Þ [Al�2

T ðSG1
j Þ[

[t¼l
t¼l�1; �ðCT ðAt

T ðSG1
i ; SG

1
j ÞÞÞ:

ð5Þ

Note that At
T ðSG1

i ; SG
1
j Þ is the same as At

T ðSG1
i Þ or

At
T ðSG1

j Þ for l < t � kþ 1. Similarly, we recursively

apply Theorem 4.1 to (5). Then, we have

[t¼kþ1
t¼lþ1 �ðCT ðAt

T ðSG1
i ÞÞÞ [A1

T ðSG1
i Þ [A1

T ðSG1
j Þ[

[t¼l
t¼1 �ðCT ðAt

T ðSG1
i ; SG

1
j ÞÞÞ:

ð6Þ

We simplify (6) and get the reduced search space for

computing the shortest path cost from the nodes x to y on

G as follows:

[t¼kþ1
t¼1 �ðCT ðAt

T ðSG1
i ; SG

1
j ÞÞÞ [ SG1

i [ SG1
j ð7Þ

From (6) and [t¼kþ1
t¼1 At

T ðSG1
i ; SG

1
j Þ ¼ AT ðSG1

i ; SG
1
j Þ, we

prove that SPCGðx; yÞ ¼ SPCSG1
i[SG1

j[Dðx; yÞ such that

D ¼ �ðCT ðAT ðfSG1
i ; SG

1
jgÞÞÞ. tu
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