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In recent years, techniques based on the deep detection model have achieved overwhelming improvements in the accuracy of
detection, which makes them being the most adapted for the applications, such as pedestrian detection. However, speed and
accuracy are a pair of contradictions that always exist and have long puzzled researchers. How to achieve the good trade-o�
between them is a problem we must consider while designing the detectors. To this end, we employ the general detector YOLOv2,
a state-of-the-art method in the general detection tasks, in the pedestrian detection. �en we modify the network parameters
and structures, according to the characteristics of the pedestrians, making this method more suitable for detecting pedestrians.
Experimental results in INRIA pedestrian detection dataset show that it has a fairly high detection speed with a small precision gap
compared with the state-of-the-art pedestrian detection methods. Furthermore, we add weak semantic segmentation networks
a
er shared convolution layers to illuminate pedestrians and employ a scale-aware structure in our model according to the
characteristics of the wide size range in Caltech pedestrian detection dataset, which make great progress under the original
improvement.

1. Introduction

�e category of pedestrian detection is subordinate to the
category of the target detection, which is a very popular
research subject for its importance in many �elds of com-
puter vision. Quite a few applications are inseparable from
the pedestrian detection technology, such as the intelligent
surveillance system and the autopilot system. Despite the
great improvements in accuracy, the task of pedestrian
detection is still a great challenge with various di�culties that
requires more meticulous design and optimization. Over the
past few decades, pedestrian detection methods have adopted
a variety of di�erent measures [1–4]. Some of the methods
are aimed at increasing the speed of detecting [1, 3]. On the
contrary, the other methods have focused on the accuracy
[5, 6]. While with the rapid development of the computer
hardware and the so
ware, the deep learning began to set
o� heat waves. Especially, Convolutional Neural Networks
(CNN) have appeared as the state-of-the-art technology in
the accuracy of a host of computer vision tasks. Andmethods
based on the deep learning usually precede the previous

traditional ones by a wide margin in the comprehensive
performance.

When the deep network is employed in the task of
pedestrian detection, a host of measures have analogous
computation pipelines. For the most of the detection frame-
works, they usually proceed in two phases. In the �rst
stage, utilizing the original image in the pixel level, they
are designed to extract the high-level spatial properties or
the high-level features in order to gain some regions of
interest. �en, the features of those regions are fed into a
classi�er or several classi�ers that judge if such a region
describes a pedestrian. Furthermore, some multiscale mea-
sures might be normally adopted to detect the objects at
distinct yardsticks for improving detection performance.�e
pipeline mentioned above regards the task of pedestrian
detection as a sort of classi�cation problem. �is is also
a conventional pipeline. In this paper, we will introduce
the YOLOv2 [7] network as our basic framework. Di�ering
from the conventional pipelines, it regards the detection
task as a regression problem with the higher speed and
accuracy.
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1.1. Previous Work. �e study of pedestrian detection has
gone through several decades, and all sorts of the tech-
nologies have been employed in the pedestrian detection,
many of which have had a signi�cant impact. Somemeasures
are aimed at improving the basic features utilized [8–10],
while others are intended to optimize the algorithms for
detection [5, 11]. Meanwhile, some of the techniques will
incorporate Deformable Parts Models [12] or take advantage
of the context [12, 13].

�ere are two signi�cantly important tasks in the �eld
of pedestrian detection. One is the contribution of Dollar
et al. [14]. �ey exploit a toolbox and a benchmarking
dataset for the public. Accordingly, a number of existing or
forthcoming methods could be evaluated without prejudice.
AndBenenson et al. [8] brought forward a paper that assessed
the comprehensive performance of multifarious features and
techniques. �e other is of Benenson et al. [3] who proposed
the fastest technique, reaching a speed of more than 100 fps,
which increases the speed of the pedestrian detection.

Since the deep learning entered the �eld of research,
pedestrian detection has been greatly improved in its accu-
racy [5, 13, 15]. Nevertheless, their running time has been
a bit slower, approximately a few seconds every image or
even more slowly. In addition, there are several impressive
methods employed in the deep network.

�e method, ConvNet [16], uses the convents for the
pedestrian detection. It will employ the means of convolu-
tional sparse coding to initialize each layer of the network
at the beginning and then �nely tune the whole network
subsequently for the �nal detection. RPN-BF [17] applies
Region Proposal Networks (RPN) proposed in general detec-
tor Raster R-CNN [18] to generate the candidate boxes
and the high-resolution convolutional feature maps as well
as the con�dence scores. And then it employs RealBoost
algorithm by using the information obtained to shape the
Boosted Forest classi�er. �e perfect fusion of the two stages
makes a good performance test for pedestrians. F-DNN [19]
is proposed for the fast and robust pedestrian detection
with a deep fusion neural network. �is architecture is able
to concurrently process several networks by improving the
processing speed. In order to bring all the possible resigns,
a detector is trained to employ the deep convolutional
network. For addressing a host of false positives introduced,
it introduces a strategy based on the fusion technique to
gain the �nal con�dence scores. Furthermore, the technique
integrates semantic segmentation network into the trunk
network to reinforce the pedestrian detector.

1.2. Contributions. In the application of deep learning, the
design of the structure and the setting of the parameters are
normally pivotal to get the good results in accuracy. Subtle
changes in parameters and structures may result in the quite
di�erent results in the overall performance of the system. In
the following, we intend to build upon the work of Redmon
et al. [7], attentively analyze and revise their models, and
then apply them to the pedestrian detection. We employ the
clustering algorithm mentioned in his paper to preprocess
the training dataset to get the initial candidate boxes. We

introduce certain technology for di�erent data, such as
multiscale, semantic fusion, and scale-aware. Experiments
show that our network used in the pedestrian detection could
get better results.

2. Based Detector

YOLOv2, an improved version of YOLO [20], is a detec-
tion model with the superior performance applied to the
general detection tasks. YOLOv2 could run at the di�erent
sizes employing a novel as well as the multiscale training
technique. Meanwhile it could o�er a rather good trade-
o� between speed and accuracy, being able to outperform
advanced techniques like Faster R-CNN, SSD and so on but
still run faster than those all.�e YOLOv2 network integrates
the extraction of the candidate boxes, the feature extraction,
the target classi�cation, and the target location into a single
deep network. �at enables end-to-end training and trans-
forms the traditional detection problem into a regression
problem. For achieving an e�cient and accurate pedestrian
detection, we introduce the general detector, YOLOv2, as the
basic framework of our pedestrian detection model, and then
make somemodi�cations in the structure and the parameters
of the network, adapting better for the pedestrian. For the
convenience of description, we name ourmodel YOLOBased
Pedestrian Detection, called Y-PD for short, in this paper.

2.1. Detection Algorithm. �e Y-PD model subdivides the
image into a � × � grid, and each grid will detect an
object if the center of this object falls into that grid cell.
Every grid will be given the � initial bounding boxes of
di�erent speci�cations. �en get � predicted bounding boxes(�, �, �, ℎ) and con�dence scores 	
��(
�����) de�ned as
(1) for corresponding boxes through the deep convolutional
network:

	
�� (
�����) = � (
�����) ⋅ �
�����ℎ���� (1)

�e score	
��(
�����) is meant to the probability of that
class felled into the box and the degree of �tting between the
object and predicted bounding boxes. �(
�����) denotes that
if they contain objects in this grid cell,they can be de�ned as
follows:

� (
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����� 
������ (2)

Ioutruth pred shown in (3) is the ratio of the union and
intersection of the ground truth and the predicted box:

�
�����ℎ���� = ���� (�
� (����ℎ) ∩ �
� (!��"))
���� (�
� (����ℎ) ∪ �
� (!��")) (3)

A
er getting those predicted boxes, Y-PD will employ a
nonmaximum suppression algorithm (NMS) whose e�ect is
shown in Figure 1 to eliminate the most of the redundant
predicted bounding boxes in order to reduce the di�culty of
the network learning. And then it deals with the remaining
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Figure 1: Nonmaximum suppression algorithm.

predicted bounding boxes through the deep convolutional
network and obtains the corresponding conditional class
probability 	
��(!���
� | 
�����), which depends on the
mesh cell that contains an object. �en we get the individual
bounding box con�dence prediction 	
��(!���
�) that is
de�ned as follows:

	
�� (!���
�) = � (!���
� | 
�����) ⋅ �
�����ℎ����
= � (����
�) ⋅ �
�����ℎ����

(4)

For an input image, the output predictions will be
encoded as a � × � × (� ∗ 5 + 1) tensor. 5 represents(�, �, �, ℎ, 	
��(!���
� | 
�����)), while 1 stands for the
con�dence of a single class, 	
��(!���
�).
2.2. Network Architecture. �e YOLOv2 network shown in
Figure 2 is designed to detect the general object, whose design
idea is similar to the Regions Proposal Network (RPN). �is
network removes the fully connected layer and employs the
convolutional network to predict the o�set of the bounding
box and the con�dence. However, its performance in the task
of pedestrian detection remains to be raised to a higher level.

Figure 3 is the network framework of our model Y-PD.
We can easily �nd the di�erences between YOLOv2 and Y-
PD. Our model has 23 convolution layers, 6 max pooling
layers, 3 reorganization layers, and 1 fusion layer. First, in
order to meet the size requirements for the subsequent
reorganization, we change the input size from 416×416 to
448×448. Second, aggregating feature maps from multiple
levels has been proved to be useful and important in many
computer vision tasks [21, 22] for their abilities to collect the
rich hierarchical representations. So we add the pass-through
layer fromone layer to two layers and extract the featuremaps
frommax4 and con5 5, respectively.�is technique is capable
of making full use of the lower level information and the
higher level information, which could increase the accuracy
of detection and location. A
er that, we reorganize the two
pass-through layers, making both of them the same size as
conv6 7, so that we can fuse the three layers into a fused layer.

In addition, the input image will be divided into a�×�
grid (shown in Figure 5) in the YOLOv2 network, which
makes the candidate bounding boxes have the equal density
distribution in the direction of X axis and Y axis. Normally,

however, the distribution of pedestrians in the X axis is more
intensive, while the distribution is sparse on the % axis such
as Figure 4. �is splitting technique will lead to a high miss
rate of the original network. In view of the above analysis, we
add a reorganization layer at the end of the model, equivalent
to splitting the input image into � × � (M>N, shown in
Figure 6), in order to increase the density of the direction of
the & axis.

2.3. Loss Function. To optimize the whole model, we employ
the original joint loss function shown in (5) that is designed
for YOLOv2:
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where 1obj � denotes if object presents to unit i and 1obj
ij means that the jth box predictor in unit i is in charge of
that prediction. �e �rst two terms of the formula are used
to predict the bounding boxes of objects. Furthermore, the
third item is designed to predict the con�dence scores of the
bounding boxes and the fourth item is applied to predict the
con�dence score without an object, while the last is intended
for predicting the category each cell belongs to.

2.4. Improvement in the Caltech Pedestrian Dataset

Scale-Aware Structure. �e Caltech Pedestrian Dataset is a
challenging and a commonly accepted dataset with a large
scale span. Normally, the large variance in size will result in a
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Figure 2: �e network architecture of YOLOv2.
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Figure 3: �e network framework of our model Y-PD.
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Figure 4: �e distribution of pedestrians. Figure 5: �e input image is divided into�×� grid (13 × 13).
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Figure 6: �e input image is divided into�×� grid (28 × 7).

great intraclass discrepancy, whichmay hurt the performance
of the detection model severely. In order to solve this
problem, we employ a scale-aware structure (see Figure 8)
inspired by the Scale-Aware Fast R-CNNNetwork (SA-Faster
R-CNN)[23]. We remove several convolution layers from the
backbone a
er conv6 3. And then change the downstream
layers into two subbranches which are responsible for the
large and small size separately. We add the weighted layers
to weigh the output feature maps of the two branches pixel by
pixel according to the parameter h of each cell. �e weights
of the two subbranches are wl and wh.

�l = 1
2 exp(−

ℎ − ℎ�
ℎ + ℎ�) (6)

�ℎ = 1 − �� (7)

�e �nal predicted con�dence scores sp and bounding-box
regression o�set tp can be computed as follows:

�� = �� × �� + �ℎ × �ℎ, (8)

�� = �� × �� + �ℎ × �ℎ, (9)

where ℎ� is the meant height of pedestrians on Caltech
dataset. ss and sl denote the output con�dence score of large-
size and small-size subbranches, respectively. ts and t l denote
the output bounding-box regression o�sets of large-size and
small-size subbranches, respectively.

Weak Semantic Segmentation. Semantic segmentation is
a pixel-wise classi�cation technique. We fuse weak semantic
segmentation networks into our model as a strong supervi-
sionmaking the most of semantic information of input image
and making the feature extraction of shared convolution lay-
ers concentrate more on pedestrians, which like illuminating
pedestrians.�e fusedweak semantic segmentation networks
constitute only a single convolution layer being attached to
conv6 3 for impacting shared convolution layers as far as
possible. For optimizing fused weak semantic segmentation

networks, we need minimize the loss function, for every
location j:

' ��� = ∑
�
' � (��, ��∗) (10)

where Ls is a so
max logistic loss, ��∗ is ground-truth
semantic label for location j, and Sj is output of network for
location j. �e joint loss function is as follows:

'
�� = ' + G' ��� (11)

where we set G = 0.2 by default. Furthermore, because of the
lack of semantic segmentation labels in Caltech Pedestrian
Dataset, we should make weak training labels to train fused
semantic segmentation networks. We utilize bounding boxes
of pedestrians to make weak training labels, the pixels inside
the bounding box are considered to be pedestrian, and the
pixels outside the bounding box are deemed to be scene (see
Figure 7).

3. Experimental Evaluation and Analysis

We conduct an extensive experimental campaign to evaluate
the performance of our detection model. All times reported
are for implementation in a single CPU core (4.0-4.2GHz) of
an Intel Core i7 6700k server with 8GB of RAM. A NVIDIA
GTX1080Ti GPU is used for CNN computations.

3.1. Dataset

INRIA Pedestrian Dataset. To perform the following exper-
iments, we recourse to the INRIA Pedestrian Dataset, a
commonly accepted, multiscales dataset with a certain chal-
lenge which is o
en used to evaluate the performance of
the pedestrian detection techniques. �e INRIA Pedestrian
Dataset is created in the research work [10] for detecting
the erect pedestrian in images and videos. It is subdivided
into two patterns: (1) raw images with the appropriate
annotations and (2) positive images normalized into 64x128
pixel with the raw negative images. We employ the train set
and the test set to train and validate our models, respectively,
which are contained in the raw images with the appropriate
annotations. In this dataset, only the upright persons whose
height are greater than 100 are signed in per image. However,
the annotation may be incorrect. Sometimes the part of the
bounding box labeled can be inside or outside the object,
whose in�uence can be ignored.

�e INRIA Pedestrian Dataset contains a train set and a
test set.�e train set has 614 positive images, with 1237 pedes-
trians. While the test set has 228 positive images, with 589
pedestrians. Images in dataset have the complex background
with an obvious light change. �e pedestrians, with di�erent
degrees of occlusion, wearing di�erent costumes, have many
kinds of scales and changing postures.

Caltech Pedestrian Dataset. �e Caltech Pedestrian
Dataset consists of a set of video sequences of 640×480
size taken from a vehicle driving in the urban environ-
ments. �e dataset includes some train (set00-set05) and
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Figure 7:�e weak semantic segmentation labels.
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Figure 8: �e network framework of our model Y-PD+SSW.

test (set06-set10) subsets. �ere are about 350000 bound-
ing boxes in 250000 frames with 2300 unique pedestri-
ans annotated. According to the condition of pedestrian,
a single object will be assigned one of the four labels,
including “person” (∼1900), “people” (∼300), and “person?”
(∼110) (only “person” and “people” will be used in our
experiment).

3.2. Evaluation Metrics. We recourse to the evaluation met-
rics de�ned by the Caltech pedestrian detection evaluation
protocol, which is developed byDollar et al. [24]. Particularly,
the performance of a method is assessed in the light of the
trade-o� between the number of false positives per image
(FPPI) and themiss rate (MR). Tomake it easier for readers to
understand, we will make a brief description of such metrics.
First, a ground truth is deemed tomatch a detected bounding
box, provided by pedestrian detection algorithm, if their
intersection over union (IOU) is greater than 50%. A ground
truth will be deemed as a False Negative (FN) or a miss
if it does not have a match. On the contrary, if a detected
box fails to match the ground truth, it will be regarded as
a False Positive (FP). �en the average number of proposals
per image detected as a pedestrian erroneously is regarded as
the average number of false positives per image (FPPI). And

the miss rate (MR) donates the ratio between the number of
False Negatives and the total number N of positive samples as
shown in

�J = K�
� (12)

Occasionally, we might replaceMR with Recall as shown in

J���LL = 1 −�J (13)

Typically, the miss rate value at 0.1 FPPI we pay special
attention to has been regarded as a reasonable working
condition for an available system in practice.

3.3. Experimental Process and Results

Pretraining Y-PD. We take advantage of the pretraining,
which means that the weights of the model are initialized
from the weights trained in ImageNet dataset. �is technique
is one of the most useful measures for improving the perfor-
mance of deep models, because the number of parameters
is generally far greater than the data collected for training.
And it makes the algorithm have a faster convergence rate
or utilize less available data to obtain the great results.
We compare the model without pretraining and observe
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Figure 10: �e loss curve with pretraining.

Table 1: �e e�ect of pretraining.

Model AP

Y-PD with pretraining 90.9%

Y-PD without pretraining 84.5%

the improvement in the accuracy in Table 1, that is, 6.4%.
Meanwhile, we can see from the training loss curves in
Figures 9 and 10 that the model trained with pretraining
converges faster and has a smaller ultimate loss than the one
without pretraining.

Compared with the Baseline in the INRIA Pedestrian
Dataset.We test all the mends we have taken and observe the
improvements compared with the baseline YOLOv2. Check
Table 2 for the details, where ChD donates a change in the

72.5% VJ
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22.2% ChnFtrs
19.9% ConvNet
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Figure 11: �e comparison of methods in the INRIA Pedestrian
Dataset (reasonable).

distribution in the direction of X axis and Y axis and AdL
donates an added pass-through layer. When we change the
distribution only, the average accuracy can increase 2.8%. If
we add pass-through layer only, the average accuracy refers
to an increase of 0.7%. While combining the above two
measures, the average accuracy is able to increase 3.3%.

Compared with the State-of-the-Art Algorithms in the
INRIA Pedestrian Dataset. To establish the performance
level of our model, we select several typical algorithms and
advanced algorithms to compare with the INRIA test data
for pedestrians. �e MR-FPPI curves are shown in Figure 11.
Furthermore, to embody the advantages of our model, we
present Table 3 that shows the average miss rate and the
speed of detection for some of the above methods. �e speed
of detection may not be very accurate for the reason of the
limited conditions, but the gap is not too big. Although the
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Table 2: Results in INRIA validation set.

Model FPS AP Improvement

YOLOv2(baseline) 84 87.6% -

YOLOv2+ChD 75 90.4% +2.8%

YOLOv2+AdL 73 88.3% +0.7%

YOLOv2+ChD+AdL(Y-PD) 73 90.9% +3.3%

Table 3: A comparison of speed and average miss rate among methods.

Model FPS (on GTX1080ti) Avg. miss rate

VJ <1 72.5%

HOG <1 46.0%

VeryFast >100 16.0%

SpatialPooling <1 11.2%

Y-PD (ours) 73 9.1%

RPN+BF ∼4 6.9%

F-DNN ∼6 6.8%

94.7% VJ
68.5% HOG
35.0% SSD
31.0% YOLO v2(baseline)

26.5% YOLO v3
24.4% Y–PD+S(ours)
18.4% Y–PD+SSW(ours)

27.6% Faster R–CNN

10
−3

10
−2

10
−1

10
0

10
1

false positives per image

m
is

s 
ra

te

1

.80

.64

.50

.40

.30

.20

.10

.05

Figure 12: Comparisons of the methods in the Caltech Pedestrian
Dataset (reasonable).

precision of our model is not as high as RPN+BF and F-
DNN, whose gap is only 2.2% and 2.3%, respectively, the
speed of the detection of ours is dozens of times as good
as theirs. Obviously, our model is able to achieve a better
trade-o� between speed and accuracy in INRIA test data for
pedestrians.

Compared with the state-of-the-art general detection algo-
rithms in the Caltech Pedestrian Dataset. From Figure 12,
we can realize that our model Y-PD+S and Y-PD+SSW
have better detection performance compared with YOLO v2,
Faster R-CNN, and YOLO v3 when tested in the Caltech
Pedestrian Dataset (see Table 4). And the model Y-PD+SSW
that employs a scale-aware structure increases by 6% com-
pared with Y-PD+S.

Table 4: A comparison of averagemiss rate among generalmethods.

Model Avg. miss rate

YOLO v2 (baseline) 31.0%

Faster R-CNN 27.6%

YOLO v3 26.5%

Y-PD+S(ours) 24.4%

Y-PD+SSW(ours) 18.4%

4. Summary

In this paper, we present a model named Y-PD for the
pedestrians detection based on YOLOv2. �e architecture of
Y-PD covers the characteristics of pedestrian distribution and
takes full advantage of low-level and high-level feature maps.
�e experiment result shows it can achieve a good trade-o�
between speed and accuracy in the INRIA test data for the
pedestrians. Furthermore, the model Y-PD+SSW employs
a scale-aware structure based on Y-PD and fuses the weak
semantic segmentation networks and make a great progress
in the Caltech dataset. However, because of the diversity of
size, resolution and so on, there is still a big gap between our
model and the state-of-art pedestrian methods. So our future
task will mainly work on designing of the better model of the
Caltech dataset for pedestrians.

Data Availability

�e data used to support the �ndings of this study are
available from the corresponding author upon request, and
you can also download the relevant dataset through some
links provided in Supplementary Materials.
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Supplementary Materials

(1)�e INRIADataset. INRIA dataset was collected as part of
research work on detection of upright people in images and
video.�e research is described in detail in CVPR 2005 paper
Histograms of Oriented Gradients for Human Detection

and their PhD thesis. �e dataset is divided into two
formats: (a) original images with corresponding annotation
�les and (b) positive images in normalized 64x128 pixel
format (as used in the CVPR paper) with original negative
images. �e data set contains images from several di�erent
sources: Images from GRAZ 01 dataset, though annotation
�les are completely new and images from personal digital
image collections taken over a long time period. Usually
the original positive images were of very high resolution
(approx. 2592x1944 pixels), so we have cropped these images
to highlight persons. Many people are bystanders taken
from the backgrounds of these input photos, so ideally there
is no particular bias in their pose. Few images are taken
from the web using google images. Only upright persons
(with person height > 100) are marked in each image.
Annotations may not be right; in particular at times portions
of annotated bounding boxes may be outside or inside the
object. (Supplementary Materials)
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