
An Efficient PIR Construction Using Trusted
Hardware

Yanjiang Yang1,2, Xuhua Ding1, Robert H. Deng1, and Feng Bao2

1 School of Information Systems, Singapore Management University,
Singapore 178902

2 Institute for Infocomm Research, Singapore 119613

Abstract. For a private information retrieval (PIR) scheme to be de-
ployed in practice, low communication complexity and low computation
complexity are two fundamental requirements it must meet. Most ex-
isting PIR schemes only focus on the communication complexity. The
reduction on the computational complexity did not receive the due treat-
ment mainly because of its O(n) lower bound. By using the trusted hard-
ware based model, we design a novel scheme which breaks this barrier.
With constant storage, the computation complexity of our scheme, in-
cluding offline computation, is linear to the number of queries and is
bounded by O(

√
n) after optimization.

1 Introduction

Private Information Retrieval (PIR) was first formulated by Chor et. al. in [5].
It offers a strong privacy assurance since it disallows any leakage of user query
information. Although PIR should be the ideal privacy guardian of commercial
database users, this did not happen. The reason is its prohibitively high cost, as
pointed out by Sion and Carbunar [12]. Their analysis shows that a carefully de-
signed PIR scheme with sophisticated cryptographic techniques costs even more
time delay than the most trivial solution of transferring the entire database. The
culprit for this unexpected effect is the expensive computation cost, which dom-
inates the overall time delay. In the standard PIR model, the lower computation
bound is obviously O(n) where n is the database size. A new model based on
trusted hardware was introduced in [7, 8], which has a logarithm communication
complexity and constant online computational complexity. Nonetheless, those
schemes are not practical either, since they have to periodically shuffle the en-
tire database. Considering the scale of modern databases, a full database shuffle
disrupts the database service.

The objective of this paper is to narrow the gap between the ideality and
the practicability of PIR. We construct a practical PIR scheme using the same
trusted hardware model as in [7, 8, 14]. With a constant storage cost of the
trusted hardware, our construction requires O(log n) communication cost and
O(
√

n) computation cost per query including constant online computation and
amortized offline computation.

Related Work Many PIR constructions were proposed to reduce the communi-
cation complexity, including [4, 11, 9, 10, 2]. As shown in [13, 7, 8, 14], the com-
munication complexity can be reduced to O(log n) by using a trusted hardware

2 Yanjiang Yang, Xuhua Ding, Robert H. Deng, and Feng Bao

embedded in the database server. In this model, a trusted hardware is able to
perform encryptions/decryptions and has a secret cache of reasonable size for
storing retrieved data items. Further advantage of this type of schemes is the
O(1) online computation cost for each query. However, all of them require a
database re-encryption and re-shuffle whenever the cache is full. Since the avail-
able space in the cache decreases linearly with the number of queries, a full
database shuffle is performed frequently which requires O(n) operations.

The previous work focusing on computation cost reduction is [3], where
Beimel et. al. proposed a new model called PIR with Preprocessing. This model
uses k servers each storing a copy of the database. Before a PIR execution, each
server computes and stores polynomially-many bits regarding the database. This
approach reduces both the communication and computation cost to O(n1/k+ε)
for any ε > 0. However, it requires a storage of a polynomial of n bits, which
is infeasible in practice. A recent scheme [15] improves the communication and
computation complexity to O(log2 n) with a cache storing O(

√
n) records.

We notice that the trusted hardware based PIR model is similar to the model
in ORAM [6]. But we stress that the ”square root” complexity in [6] and our
result are in different context. The square root solution of ORAM requires a
sheltered storage storing

√
n words, which is equivalent to using a cache storing√

n items in the PIR model. Our scheme in this work, however, only uses a
constant size cache.

Roadmap We define the system model and the security notion of our scheme in
Section 2. A basic construction is presented in Section 3 as a steppingstone to
the full-fledged scheme in Section 4. Performance of our scheme is discussed in
Section 5, and Section 6 concludes the paper.

2 System Model and Definition

System Model Our scheme follows the trusted hardware model used in [8, 7,
14]. The architecture consists of a group of users, a database D modeled as
an array of n data items of equal length denoted by d1, d2, · · · dn, respectively,
and a database host H where D is stored. A trusted component denoted by
T is embedded in H. To retrieve di, a user sends to T a query specifying the
index i. T then interacts with H which operates over the encrypted database,
and at the end of the execution, T returns di to the user. We assume that the
communication channel between users and T is confidential.

T is a tamper-resistant hardware with a cache for storing up to k data items,
k ¿ n. No other entity (except T itself) is able to tamper T’s protocol executions
or access its private space including the cache. T is capable of performing certain
cryptographic operations, such as symmetric key encryptions/decryptions and
pseudo-random number generation. In practice T can be implemented by using
a specialized trusted hardware such as IBM PCIXCC [1].

Security Definition The adversary in our model is the database host H, which has
polynomial-bounded computational power, and attempts to derive information

An Efficient PIR Construction Using Trusted Hardware 3

from the PIR protocol execution. The adversary is able to not only observe
accesses to its space, including all read/write operations on the database, but
also query the database like a legitimate user.

We use access pattern to describe the information observed by the ad-
versary within a time period of protocol execution. When T accesses H’s space
including the memory and disks, H observes the data in use and the involved
positions. The access pattern of length m ≥ 1 is defined as a sequence of m
elements 〈α1, · · · , αm〉, where each αi represents the information observed by H
during an access to H’s space. We use AD to denote the set of all possible access
patterns generated by querying the database D.

The security notion in ORAM [6] is used here to measure the information
leakage from PIR query executions. A secure PIR scheme should ensure that
the adversary does not gain additional information about the queries from the
access pattern, except the a-priori information. This notion is similar to perfect
secrecy defined for ciphers where an adversary obtains no additional information
about the plaintext from the ciphertext. More formally, let Q be the random
variable representing a user query, whose value is the index of the requested
item, denoted by q ∈ [1, n]. Pr(Q = q), or simply Pr(q), denotes the probability
that a query is on dq. Then, the notion of privacy is defined as:

Definition 1. A PIR scheme is secure, iff for every database of n ∈ N items,
given a user query, for every valid access pattern, the conditional probability for
the event that the query is on any index q is the same as its a-priori probability,
i.e. ∀D = {d1, · · · , dn},∀q ∈ [1, n],∀A ∈ AD,Pr(Q = q|A) = Pr(Q = q). ¤

3 Basic Construction

3.1 Overview

We briefly recall the idea of the schemes in [8, 7, 14] which are the predecessor of
ours. During the system initialization, the database is encrypted and permutated
by a trusted authority. All subsequent retrievals are operated upon the encrypted
database. The database service is provided in sessions. A session starts when T’s
cache is empty and ends when it is full. During a session, T retrieves the requested
item from the database if it is not in the cache; otherwise, a random item is read.
At the end of the session, the entire database is shuffled, and then a new session
commences. The objective of database shuffles is to re-mix the touched records
within the database, so that the database host has no idea whether a record in
the newly shuffled database has ever been read.

We observe that shuffling the entire database is not indispensable, as long
as user queries generate access patterns of identical distribution. Based on this
observation, we in in this work propose a new PIR scheme with partial shuffles,
where only those records that have ever been accessed are shuffled. We also
design a novel twin retrieval method, which forces user queries to generate access
patterns of the same distribution. A conceptual view of the protocol execution
is as follows. A record is labeled black if it has ever been accessed. Otherwise,

4 Yanjiang Yang, Xuhua Ding, Robert H. Deng, and Feng Bao

it is white. During the system initialization, T generates a secret key sk for a
semantically secure cipher, and a secret random permutation σ : [1, n] → [1, n].
Every item di in D and its index i are encrypted under sk and written into the
σ(i)-th position of D0 as a record. In the rest of the paper, we refer to an entry
in the original database D and its location as item and index, and refer to an
entry in the encrypted database and its location as record and position. We use
di to denote the i-th item in D, and ai to denote the i-th record in the shuffled
database. After D0 is generated, all records in D0 are initially white.

Our PIR service also proceeds in sessions, and the encrypted database in the
s-th session is denoted by Ds. During a session, for each user query T executes
a twin retrieval : if the requested item di is in the cache, T reads one random
black record and one random white record from Ds; otherwise, T reads the
corresponding record and reads one random record in a different color. After
the cache is full, T then generates a new random secret permutation πs+1 for
all black records and updates Ds into Ds+1 by shuffling and re-encrypting all
black records. Those white records remain intact. After the partial shuffle, H
only knows that a black record has ever been read, but does not know in which
session and how many times it has been accessed.

The key problem in implementing this approach is how T securely decides
whether a record is black or white. While the label bits of the black records are
set, T can not directly access H to check those bits since the access implicates
that those records are sought by T. In the following, we assume that T’s cache
is big enough to accommodate the positions of all black records, so as to facil-
itate better understanding the idea of our new PIR approach. We remove this
assumption in Section 4 by introducing an improved construction.

3.2 A Basic PIR Scheme

We use an array B to keep the black positions in an ascending order. If ax is a
black record and B[i] = x, we say that i is the B-Index of ax. B is stored in H’s
space and maintained by H: whenever a record is read, it updates B. We use
Bs to denote B’s state in the beginning of the s-th session. T copies B into its
cache before a session starts. During a session, B is updated, whereas T’s copy
is not changed. Note that for each record read into the cache, T needs to store
the corresponding data item and its index in the cache. We denote the cache
content by C and use C.Ind to denote the set of all stored indices.

A permutation πs, s ≥ 1, specifies the mapping between the sets of black
positions in Ds and D0. It is essentially a permutation of B-indexes of all black
records. Let Z|B| = {1, 2, · · · , |B|}. Formally, the permutation πs : Z|B| → Z|B|,
is defined as: πs(i) = j if and only if Ds[Bs[j]] and D0[Bs[i]] contain the same
item, which is D[σ−1(Bs[i])]. Note that σ is a mapping between all entries in
D0 and D. The relations among these notations are D

σ=⇒ D0
πs−→ Ds. With

Bs, πs and σ, we are able to locate a record in Ds for a given item index. The
PIR protocol proceeds in sessions shown below.

Session 0. T executes k queries using the retrieval algorithm in [14]. Specifi-
cally, for a query on the i-th item of D, i ∈ [1, n], if the requested one is not in

An Efficient PIR Construction Using Trusted Hardware 5

T’s cache C, T reads the σ(i)-th record from D0 into C. Otherwise, T retrieves
a random record. At the end of the session, T generates a new random secret
permutation π1 : [1, k] → [1, k]. It shuffles the k black records according to π1

while leaving the white records intact. Since all records to be shuffled are in C, T
simply re-encrypts and writes them out sequentially to generate D1, and clears
the cache.

Session s ≥ 1. When session s starts, C is empty. T processes k/2 queries in
the session. For a user query, T executes Algorithm 1 shown below. At the end
of the session, T executes Algorithm 2 to shuffle all black records.

Algorithm 1 Basic Twin Retrieval Algorithm in Session s ≥ 1. Input: a query on
i, i ∈ [1, n], Bs[1, (s + 1)k/2]. Output: the item di ∈ D.

1: Through the secure channel, T accepts a query from the user requesting the i-th
item in D.

2: if i 6∈ C.Ind then
3: j = σ(i).
4: binary-search j in Bs; /*we do not elaborate the binary-search algorithm since it

is a standard one*/
5: if exists u, s.t. Bs[u] = j then
6: di is black; Read Ds[Bs[πs(u)]] as di and read a random white record;
7: else
8: di is white; read a random black record and read Ds[j] as di;
9: end if

10: else
11: read a random black record and a white record from Ds into C.
12: end if
13: return di to the user.

We now explain the retrieval algorithm (Algorithm 1) and the shuffle algo-
rithm (Algorithm 2). In Algorithm 1, T searches Bs to determine the color of
the requested record. For a white record, T directly uses its image under σ to
read the data, since it has never been shuffled. For a black records, T computes
its B-index under πs and then looks up Bs to locate its position in Ds. Since Bs

is inside T’s cache, all accesses are not visible to the server. For a query execu-
tion, H only observes one read to a black record and one read to a white record.
After k/2 queries, the cache is full, where half are black and half are white. B
maintained by H now has (2 + s)k/2 entries.

The partial shuffle is to mix the black records including those newly retrieved
during the session, so that they are randomly relocated in Ds+1. The basic idea of
the algorithm is the following: T updates the black positions in Ds sequentially.
For each black position, T figures out the location of its preimage under πs+1.
If the preimage is in C, T finds the next position whose preimage is not in C
(as shown in Step 5, 6, 7). The computation of the preimage location involves
the composition of π−1

s+1 and πs. Since π−1
s+1’s range is larger than πs’s domain, a

translation from an index in Bs+1 to Bs is needed (Step 8). As Bs+1 is actually
a combination of sorted Bs and the white positions (positions of newly retrieved
white records) in sorted C, we are ensured that Bs+1[i] = Bs[i − δ] (Step 8),

6 Yanjiang Yang, Xuhua Ding, Robert H. Deng, and Feng Bao

Algorithm 2 Basic Partial Shuffle Algorithm executed by T at the end of s-th session,
s ≥ 1. Input: B with (2 + s)k/2 black records, cache C with k/2 black and k/2 white
records; Output: Ds+1

1: scan B. For each item in the cache, calculate its index in B.
2: secretly generate a random permutation πs+1 : Z|B| → Z|B|.
3: for (i = i′ = 1; i ≤ sk/2; i ++) do
4: j = π−1

s+1(i
′);

5: while σ−1(Bs[j]) ∈ C.Ind and i′ ≤ sk/2 do
6: i′ = i′ + 1; j = π−1

s+1(i
′); /∗find one not from C∗/

7: end while
8: count δ as the number of white indexes in C which are smaller than j,
9: compute v = πs(j − δ); read Ds[Bs[v]].

10: if i 6= i′ then
11: Re-encrypt Ds[Bs[v]] into Ds+1[B[i]];
12: else
13: Insert Ds[Bs[v]] to cache. Retrieve the corresponding item from C and re-

encrypt it to Ds+1[B[i]].
14: end if
15: i′ = i′ + 1;
16: end for
17: write the remaining k records in C to Ds+1 accordingly, securely eliminate πs−1.
18: copy B into the cache as Bs+1. End the session.

where δ is the number of white indices in C smaller than i. The average cost of
finding δ is O(log k) (The cost can be reduced to O(1) by keeping two copies
of B in the cache and using pointers to link them.). Among the variables used
in Algorithm 2, B[i] points to the black position in Ds+1 for writing whereas
Bs[i′] points to the black position in Ds for reading. None of them decreases.
Therefore, the overall complexity is O(sk log k).

3.3 Security Analysis

Due to the length limit, we only formalize the security of our scheme by pre-
senting the following lemmas, whose proofs are available in Appendix. Lemma 1
shows that the basic partial shuffle (Algorithm 2) is uniform in the sense that
after the partial shuffle at the end of Session s, the previous black records in
Ds and the white records retrieved during the session are randomly re-located
to Ds+1. Thus, all black records appear indistinguishable to H. Then, Lemma 2
claims that at any time, the access patterns for any two queries of the basic
twin retrieval algorithm (Algorithm 1) have the same distribution. Finally, by
the results of Lemma 1 and Lemma 2, we prove in Theorem 1 that the basic
PIR scheme is secure, satisfying Definition 1.

Lemma 1 (Uniform Shuffle). The basic partial shuffle algorithm performs a
uniform shuffle on all black records. Namely, ∀s > 0, ∀, i ∈ Bs,

Pr(Ds[] ' D0[i] |A0,R0, · · · ,As−1,Rs−1) = 1/|Bs|,

An Efficient PIR Construction Using Trusted Hardware 7

where Al and Rl, l ∈ [0, s − 1] are the access pattern and the reshuffle pattern
for the l-th session, respectively. Ds[] ' D0[i] means Ds[] and D0[i] have the
same plaintext.

Lemma 2 (Uniform Access). Let Q be the random variable for the requested
item’s index in D. Let (X, Y) be the two-dimensional random variable for the
positions of the black record and the white record accessed in the twin retrieval
algorithm corresponding to Q. ∀q1, q2 ∈ [1, n], suppose A is the access pattern
when Q = q1 or Q = q2 is executed, then Pr((X = x, Y = y) | A, Q = q1) =
Pr((X = x, Y = y) | A, Q = q2).

Theorem 1 (Security of PIR). Let AK be the access pattern of K database
accesses. For query Q, ∀q ∈ [1, n], ∀K ∈ N, ∀AK , Pr(Q = q | AK) = Pr(Q = q).

4 A Construction Without Storage Assumption

In this section, we propose an improved scheme without assuming T’s capability
in storing B. As we mentioned earlier, the exposure of accesses to B leads to
security breaches, since it indicates that the accessed ones are entries pertaining
to the query in execution. Informally, the access to B requires a PIR-like solution.
A trivial solution is to treat B as a database and to run a PIR query on it.
Surely, the cost of this approach seriously counteracts our effort to improve the
computational efficiency. We design a much more efficient solution due to the
fact that T has the prior knowledge of those accesses.

4.1 Auxiliary Data Structures

Management of Black Positions. Recall that Ds is a result of a partial
shuffle under the permutation πs : Z|B| → Z|B|. We use |B| pairs of tuples 〈x, y〉
to represent this mapping, where x ∈ Zn is a position in D0 and y ∈ Zn is the
corresponding position under πs in Ds. T selects a deterministic symmetric key
encryption scheme e(·) and a secret key u. Let fu(x) = H(eu(x)), where H is
a hash function. These |B| half-encrypted pairs are stored in an sorted array
L = [(fu(x1), y1), (fu(x2), y2) · · · , (fu(x|B|), y|B|)], where y1 < · · · < y|B|. Note
that the sequence of y-values in L is exactly array B, which explains why we
leave y-values in plaintext. However, B is updated by H due to query executions
whereas L is not. We also build a complete binary search tree Γ where the tuples
in L are the leaves in the following manner: from left to right, the leaves are
sorted in an ascending order of fu(x) values. All the |B| − 1 inner nodes are
integers randomly assigned by T according to their left and right children.

T makes use of L and Γ to decide whether an item is a white or black record,
and to read a specific or random black record.

– To read an item with index x: If fu(σ(x)) is smaller than the leftmost leaf
or larger than the rightmost leaf of Γ , T immediately knows that σ(x) is a
white position. Otherwise, it runs a binary search for fu(σ(x)) in Γ . Suppose

8 Yanjiang Yang, Xuhua Ding, Robert H. Deng, and Feng Bao

that the search ends at a leaf node 〈fu(x′), y〉. If fu(x) = fu(x′), y is the
position of the requested item; otherwise, y is taken as a randomly selected
black position.

– Random search: Starting from the root, T tosses a coin at each level to select
either the left child or the right child as the next node to read. In the end,
it returns a leaf.

L and Γ are (re)constructed at the end of each session. L is initialized when T
executes the partial shuffle under πs whose algorithm is explained Section 4.2.
During a shuffle, T sequentially writes to those positions stored in B, which
is exactly y-values in L. Therefore, for each data item di relocated to the black
position stored at B[r], T sets L[r] = 〈fu(σ(i)), B[r]〉, where u is a new encryption
key. Once L is established, construction of Γ is straightforward.

Management of White Positions. We need to manage white records as
well. The |B| black records virtually divide the database into white segments, i.e.
blocks of adjacent white records. We use an array W [] in H’s space to sequentially
store these white segments, such that W [i] = 〈l, m,M〉 indicating that the i-th
white segment in the database starts from the record al and contains m white
records. We set W [i].M =

∑i−1
j=1 W [j].m+1 such that al is the W [i].M -th white

record in the database. Different from L and Γ , W is managed by H. T makes
use of W to read white records in the following manner.

– To read the white record with index x: T runs a binary search on W for the
address σ(x), such that it stops at W [i], such that W [i].l ≤ σ(x) < W [i+1].l.
Then, it reads the σ(x)-th records from Ds.

– Random search: T generates r ∈R [1, n− |B|]. Then it runs a binary search
on W for the r-th white record in Ds, such that it stops at W [i], such that
W [i].M ≤ r < W [i + 1].M . Finally, it returns y = W [i].l + r −W [i].M .

For both cases, H only observes two search paths, which H cannot differentiate
the two types of retrievals.

We need to store more information in C as well. Suppose that T retrieves a
record aj into C. A new entry is created as a tuple (BIndex, Color, Ind,Data)
where Ind and Data are the corresponding item’s index and value, respectively;
Color is set to ’B’ if aj was black before retrieval; otherwise Color is set to ’W’;
BIndex is set to aj ’s B-Index with respect to D0. We use C[i] to denote the i-th
entry of the cache, C.Ind to denote the set of all entries’ Ind values, C.BIndex
to denote the set of all entries’ BIndex values. Note that Bs is no longer used,
as B is not stored in C.

4.2 The Improved Scheme

We are now ready to present the scheme. It proceeds in a similar way as the
basic scheme in Section 3.2. The difference is that since Session 1, T executes
Algorithm 3 for a query execution and Algorithm 4 for the partial shuffle. Algo-
rithm 3 shows how to process a query during the s-th session, s ≥ 1. Note that
|B| = (s + 1)k/2 when session s starts.

An Efficient PIR Construction Using Trusted Hardware 9

Algorithm 3 Improved Twin Retrieval Algorithm in Session s ≥ 1, executed by T.
Input: a user query on i ∈ [1, n]. Output: the data item di ∈ D.

1: Through the secure channel, T accepts a query from the user requesting for the
i-th item in D.

2: min = B[1]; max = B[(s+1)k/2]; /∗(min, max) is the range of black positions.∗/
3: i′ = σ(i);
4: if i ∈ C.Ind then
5: randomly search Γ which returns 〈fu(x), y〉. Then jb ← y.
6: randomly search W which returns jw.
7: else
8: if i′ < min or i′ > max then
9: randomly search Γ which returns 〈fu(x), y〉. Then jb ← y.

10: else
11: search Γ for fu(i′) which returns 〈fu(x, y)〉. Then jb ← y.
12: end if
13: if fu(x) = fu(i′) then
14: randomly search W which returns jw.
15: else
16: search W for i′, which returns 〈l, m, M〉. Then jw ← i′.
17: end if /∗Note that fu() is deterministic.∗/
18: end if
19: read the jb-th and the jw records from Ds, and creates two new entries for them

C accordingly; return di to the user.

Access Pattern of Retrievals We use As to denote the access pattern produced by
Algorithm 3. There are three types of accesses to H’s space. The first type is the
database accesses. For simplicity, we use the accessed black and white positions,
denoted by (αi, α

′
i), as the access pattern in the i-th query execution. The second

type is the accesses to W during the searches. The output of a binary search on
W determines the involved search path. Furthermore, the output of a search can
be derived by observing the subsequent database access. Therefore, the second
type of accesses does not reveal extra information. We do not include it in As.
The third type is the retrieval of elements in Γ . Similar to the previous reasoning,
the access to Γ does not divulge extra information and is not included either.
According to Algorithm 3, totally k/2 queries are executed in a session. Thus, the
access pattern produced during the s-th session is As = 〈α1, α

′
1, · · · , αk/2, α

′
k/2〉.

The access pattern in Session 0 is an exception, since one record is retrieved per
query: A0 = 〈α1, · · · , αk〉.

Algorithm 4 shows how to perform a partial shuffle at the end of the s-th
session. Note B has expanded from (s+1)k/2 elements to (s+2)k/2 elements due
to the k/2 retrievals of white records in this session. The partial shuffle process
requires (s + 2)k/2 database writes and sk/2 database reads. We remark that
the computation cost for constructing Γ ′ is not expensive for the following two
reasons. First, those operations are memory based integer comparisons, which
are much cheaper than database accesses. Second, the sorting process can be
done by H.

10 Yanjiang Yang, Xuhua Ding, Robert H. Deng, and Feng Bao

Algorithm 4 Improved Partial Shuffle Algorithm executed by T at the end of s-th
session, s ≥ 1. Input: cache C with k/2 black and k/2 newly retrieved white records;
Output: Ds+1, Γ ′ and L′

1: scan B and assign the BIndex field for each entry in C. Specifically, for every
1 ≤ b ≤ |B|, if ∃a ∈ [1, k], s.t. σ(C[a].Ind) = B[b], then set C[a].BIndex = b.

2: generate a secret random permutation πs+1 : Z|B| → Z|B|, and a new encryption
key u′.

3: for (i = i′ = 1; i ≤ sk/2; i ++) do
4: j = π−1

s+1(i
′);

5: while σ−1(B[j]) ∈ C.Ind and i′ ≤ sk/2 do
6: i′ = i′ + 1; j = π−1

s+1(i
′); /∗find one not from C∗/

7: end while
8: count δ as the number of white indexes in C which are smaller than j,
9: compute v = L[πs(j − δ)].y; Read Ds[v]. Suppose that Ds[v] = Esk(x, dx).

10: if i′ = i then
11: Re-encrypt Ds[v] into the Ds+1[B[i]];
12: L′[i] ← 〈fu′(σ(x)), B[i]〉;
13: else
14: insert a 4-tuple 〈0, ’B’, x, dx〉 into C.
15: find l ∈ [1, k] satisfying C[l].BIndex = π−1

s+1(i). Insert Esk(C[l].Ind, C[l].Data)
to Ds+1[B[i]].

16: L′[i] ← 〈fu′(σ(C[l].Ind)), B[i]〉.
17: end if
18: i’=i’+1
19: end for
20: write the remaining k records in the cache to Ds+1 and assign L′ accordingly.
21: construct Γ ′ based on L′ and discard πs, L, Γ .

Access Pattern of Shuffles We use Rs to denote the access pattern produced by
Algorithm 4 at the end of the s-th session. There are three types of accesses.
The first type is the accesses to B. However, since all accesses to B are in a
predetermined order, they do not leak any information (they can be generated
correctly by H without observing the execution). We exclude them from Rs.

The second type is the read and write accesses to the database. According to
our algorithm, a read access is always followed by a write access. The sequence
of the writes are known to H before the shuffle, since it follows the sequence
of positions in B. Furthermore, the contents of the writes are new ciphertext
under a semantic secure encryption. Therefore, the access pattern of writes does
not expose information to H. Considering the read pattern only, we use αi, the
position of the i-th read access, to represent the access pattern.

The third type of accesses is the read operations on L and the write operations
on L′. Every write to L′ is always preceded by a read access to the database.
Moreover, the sequence of writings to L′ and the contents of L′, except those
encryptions, can be determined by H without observing the execution. Therefore,
the write accesses on L′ do not leak information. Every read operation on L
exposes the touched index of L and a black position y. However, the exposed

An Efficient PIR Construction Using Trusted Hardware 11

black position y can also be determined by observing the subsequent database
read. Since L is known to H, knowing the black position y naturally implies the
knowledge of its position in L. Thus, it suffices to represent the access pattern
only using the database accesses, i.e.Rs = 〈α1, · · · , αsk/2〉, where αi ∈ [1, n], 1 ≤
i ≤ sk/2.

The shuffle at the end of Session 0 is a special case, where all records to be
shuffled are in T’s cache. T simply writes them out to the corresponding positions
following the permutation π1, in which case, R0 = ∅.

4.3 Security Analysis

Security analysis of the improved scheme is based on that of the basic scheme.
By Lemma 3 and Lemma 4, we show that the improved partial shuffle algorithm
(Algorithm 4) and the improved twin retrieval algorithm (Algorithm 3) also
perform a uniform shuffle and a uniform access, respectively. This in turn implies
that Theorem 1 also holds for the improved scheme.

Lemma 3. Lemma 1 also holds for the improved partial shuffle algorithm (Al-
gorithm 4).

Proof (sketch) We compare the access patterns of the improved scheme with
those of the basic scheme. The analysis in Section 4.1 has shown that the accesses
to Γ and L do not leak extra information. Both shuffle patterns have the same
distribution, since they are only determined by the permutations in use. Thus
the proof for Lemma 1 is also valid for Algorithm 4. ¤

Lemma 4. Lemma 2 also holds for the improved twin retrieval algorithm (Al-
gorithm 3).

Proof (sketch) The only difference between patterns generated by Algorithm 1
and Algorithm 3 is that the latter uses the search of Γ to generate a random
black record. Nonetheless, under the random oracle mode, the function fu(·)
outputs a random number. ¤

5 Scheme Complexity

The communication cost of our scheme remains the same as other hardware-
based PIR schemes [8, 7, 14]. Namely, it requires O(log n) communication com-
plexity, as the user inputs a logn-bit long index of the desired data item, and T
returns exactly one item of constant length. The database read/write are counted
as a part of the computation cost. Note that O(log n) is the lower bound of com-
munication complexity for any PIR construction.

When considering the computational complexity, we regard an access to the
host H’s space and a decryption/encryption as one unit of operation. In the s-th
session, a query retrieval using Algorithm 3 requires O(log(sk)) operations due
to the task of a binary search in Γ . A partial shuffle at the end of the s-th session

12 Yanjiang Yang, Xuhua Ding, Robert H. Deng, and Feng Bao

requires O(sk log k) operations. Thus, the overall computation cost in all s-th
sessions is O(s2k log k) for totally (2+s)k/2 query executions. Consequently, the
average cost per query for s sessions is O(s log k), which is independent of the
database size.

When the session number s reaches the order of n, the advantage of our
scheme diminishes. A remedy to this problem is to shuffle the entire database at
the end of the t-th session. The full shuffle resets the system to its initial state
(Session 0). All records are colored white again, as the traces of all previous
accesses are removed. Since an early full shuffle might not be able to fully exploit
the benefits of partial shuffles, it is necessary to determine an optimal t. Recall
that a full shuffle costs O(n) operations. With a full shuffle for every t sessions,
the total cost for s sessions becomes O((t2k log k + n)s/t) and the average cost
per query is O(t log k + n/tk) which is minimal when t log k = n/tk. Therefore,

the optimal value for t is
√

n
k log k . The cost per query becomes O(

√
n log k

k).

A comparison of our scheme against other PIR schemes is given in Table 1.
Note that all previous hardware-based schemes [7, 8, 13, 14] claim O(1) compu-
tation complexity since they only count the cost of database accesses. In fact,
all of them requires O(log k) operations to determine if an item is in cache. Our
scheme also has O(1) database read/write, though we need an additional cost for
a binary search in Γ . For those PIR schemes without using caches, the computa-
tion cost per query is at least O(n). From the table, it is evident that our scheme
substantially outperforms all other PIR schemes in terms of average query cost
by paying a slightly higher price of online query processes.

Table 1. Comparison of Computation Performance.

Schemes
Cost of online query
process

Average overall cost
per query

Our scheme O(logs+logk) O(s log k)

Our scheme with full-shuffles O(logs+logk) O(
√

n log k
k

)

Scheme in [14] O(1) O(n/k)

Scheme in [7, 8] O(1) O(n log n
k

)

Scheme in [13] O(1) O(n)

Other PIR schemes without
using caches

O(n) O(n)

Notations: n: the database size; s: the number of sessions; k: the size of the cache,
k << n.

6 Conclusion

All existing PIR schemes have O(n) computational cost for each query. In this
paper, we broke this barrier using a novel approach for database retrieval and
shuffle. The average cost per query is reduced to O(s) where s is the number
of queries, or O(

√
n) in maximum if an optimization is used. We proved the

security of our scheme.

An Efficient PIR Construction Using Trusted Hardware 13

Acknowledgement

This research is partly supported by the Office of Research, Singapore Manage-
ment University.

References

1. Arnold, T., and Doorn, L. V. The ibm pcixcc: A new cryptographic coprocessor
for the ibm eserver. IBM Journal of Research and Development 48 (May 2004).

2. Beimel, A., Ishai, Y., Kushilevitz, E., and Raymond, J.-F. Breaking the
o(n1/(2k−1)) barrier for information-theoretic private information retrieval. In Pro-
ceedings of IEEE FOCS’02 (2002), pp. 261–270.

3. Beimel, A., Ishai, Y., and Malkin, T. Reducing the servers computation in pri-
vate information retrieval: PIR with preprocessing. In Proceedings of CRYPTO’00
(2000), pp. 55–73.

4. Chor, B., and Gilboa, N. Computationally private information retrieval. In
Proceedings of the 29th STOC’97 (1997), pp. 304–313.

5. Chor, B., Kushilevitz, E., Goldreich, O., and Sudan, M. Private information
retrieval. In Proceedings of IEEE FOCS’95 (1995), pp. 41–51.

6. Goldreich, O., and Ostrovsky, R. Software protection and simulation on
oblivious rams. Journal of the ACM 43, 3 (1996), 431–473.

7. Iliev, A., and Smith, S. Private information storage with logarithm-space secure
hardware. In Proceedings of International Information Security Workshops (2004),
pp. 199–214.

8. Iliev, A., and Smith, S. Protecting client privacy with trusted computing at the
server. IEEE Security & Privacy 3, 2 (2005), 20–28.

9. Kushilevitz, E., and Ostrovsky, R. Replication is not needed: single database,
computationally private information retrieval. In Proceeding of the 38th IEEE
FOCS’97 (1997), pp. 364–373.

10. Kushilevitz, E., and Ostrovsky, R. One-way trapdoor permutations are suf-
ficient for non-trivial single-server private information retrieval. In Proceedings of
Eurocrypt’00 (2000), pp. 104–121.

11. Ostrovsky, R., and Shoup, V. Private information storage. In Proceedings of
the 29th STOC’97 (1997), pp. 294 – 303.

12. Sion, R., and Carbunar, B. On the computational practicality of private infor-
mation retrieval. In Proceedings of NDSS’07 (2007).

13. Smith, S., and Safford, D. Practical server privacy with secure coprocessors.
IBM Systems Journal 40, 3 (2001), 683–695.

14. Wang, S., Ding, X., Deng, R., and Bao, F. Private information retrieval using
trusted hardware. In Proceedings of the 11th ESORICS’06 (2006), pp. 49–64.

15. Williams, P., and Sion, R. Usable PIR. In Proceedings of NDSS 2008.

Appendix

Proof of Lemma 1: (Sketch) This proof is nearly the same as Lemma 1 in [14]
with the only difference being what records to be shuffled. An intuitive expla-
nation is that we can treat the black record set pointed by Bs as a database in

14 Yanjiang Yang, Xuhua Ding, Robert H. Deng, and Feng Bao

[14]. There exist two critical points of the proof. 1) For any record in the cache,
the probability of a black position in Ds being chosen as the shuffle destination
is exactly 1

Bs
. In other words, its image position in Bs is uniformly selected.

This is obvious since its is determined by a random πs. As it is written from
the cache, the selection of the position is independent of those access patterns.
2) For any record not in the cache, its preimage position in the previous shuffle
was uniformly chosen from black positions in Ds−1 pointed by Bs−1. This is
addressed by using induction on s. ¤

Proof of Lemma 2: (Sketch) Assume that Q is executed at session s. We prove
the theorem by examining the cases when s = 0 and s ≥ 1.
I: s = 0. The theorem clearly holds as D0 is a random permutation of D. There-
fore, for each instance of Q on D, its image Y on D0 is uniformly distributed.
X is always 0.
II: s ≥ 1. According to the algorithm, for a query Q, a black record and a white
record are read. Define I = {i|i ∈ [1, n], i ∈ C} containing the indices whose
corresponding items are in the cache, and J1 = σ−1(Bs) \ I containing the
indices of black records, but presently not in the cache, and J2 = [1, n]\ (I ∪J1),
containing the indices whose corresponding items have never been accessed so
far. To prove the theorem, it is sufficient to demonstrate that for any q ∈ [1, n],
Pr((X = x, Y = y) | A, Q = q) remains the same in the following cases covering
all possibilities of q.

– Case (1) q ∈ J1. T reads the corresponding black record and a random white
record from Ds. Due to Lemma 1, the corresponding record could be in any
position in Bs with the same probability. Therefore Pr(X = x | A, q) = 1

|Bs| .
Y is a random retrieval, which is independent of A. Therefore, Pr((X =
x, Y = y) | A, Q = q) = (1

|Bs| ,
1

n−|Bs|).
– Case (2) q ∈ J2. T reads a random black record and the corresponding

white record from Ds. The position of the white records is determined by σ.
Therefore, Pr(Y = y | A, q) = 1

n−|Bs| . X is a random retrieval independent
from A. Therefore Pr((X = x, Y = y) | A, Q = q) = (1

|Bs| ,
1

n−|Bs|).
– Case (3) q ∈ I. Both X and Y are randomly retrieved. So Pr((X = x, Y =

y) | A, Q = q) = (1
|Bs| ,

1
n−|Bs|)

This completes the proof. ¤

Proof of Theorem 1: (Sketch) It is equivalent to prove that ∀K ∈ N, Pr(AK |
Q = q) = Pr(AK). Fix a session s, we prove the theorem by using induction on
the size of AK .
I: When K = 1, our target is to prove that Pr(X = x, Y = y | Q = q) =
Pr(X = x, Y = y), ∀x, y ∈ [n].

Pr(x, y) =
∑n

i=1 Pr(x, y |i)Pr(i). Consider Pr(x, y | i). There are two cases:

– The record corresponding to i is in Bs. Therefore, Pr(x) = 1
|Bs| , due to the

initial permutation; Pr(y) = 1
n−|Bs| due to random access.

An Efficient PIR Construction Using Trusted Hardware 15

– The record corresponding to i is in [n]\Bs. Therefore, Pr(x) = 1
|Bs| , due to

random access; Pr(y) = 1
n−|Bs| due to the initial permutation.

Thus, in both case Pr(x, y | i) = (1
|∆| ,

1
n−|∆|) for both cases. Obviously, Pr(x, y |

i) = Pr(x, y | j) for all i, j ∈ [1, n]. Consequently, Pr(x, y) = Pr(x, y | q) ∑n
i=1 Pr(i) =

Pr(x, y | q),∀q ∈ [1, n].

II: Suppose that when K = k−1, the equation holds. We then prove that it still
holds when K = k, i.e. Pr(Ak | Q = q) = Pr(Ak). Without loss of generality, let
Ak = Ak−1 ∪ (x, y), where (X = x, Y = y) is the k-th database read.

Pr(Ak−1, (x, y) | q) = Pr(Ak)
Pr(Ak−1, x, y, q)

Pr(q)
= Pr(Ak−1, (x, y))

Pr(x, y | Ak−1, q)Pr(Ak−1, q)
Pr(q)

= Pr(Ak−1, (x, y))

Pr(x, y | Ak−1, q) =
Pr(Ak−1, x, y)
Pr(Ak−1 | q)

Pr(x, y | Ak−1, q) = Pr(x, y | Ak−1)
(∵ induction assumption)

Note that there are three exclusive cases for Q = q.

1. Q = q occurs after the k-th database access;
2. Q = q is the query for the k-th database access;
3. Q = q occurs prior to the k-th database access.

We proceed to prove that the above equation holds for all three different cases.

Case 1: Obviously, in this scenario, Ak−1 and (x, y) are independent of Q = q.
Therefore, Pr(x, y | Ak−1, q) = Pr(x, y | Ak−1).

Case 2: Note that

Pr(x, y | Ak−1) =
n∑

q=1

Pr(x, y | Ak−1, q)Pr(q | Ak−1)

, where Q = q is the query corresponding (x, y). Due to Lemma 2, Pr(x, y |
Ak−1, q) = Pr(x, y | Ak−1, q

′), ∀q, q′ ∈ [1, n]. Therefore,

Pr(x, y | Ak−1) = Pr(x, y | Ak−1, q)
n∑

i=1

Pr(i | Ak−1)

. According to the induction, Pr(i | Ak−1) = Pr(i), we have Pr(x, y | Ak−1) =
(x, y | Ak−1, q)

16 Yanjiang Yang, Xuhua Ding, Robert H. Deng, and Feng Bao

Case 3: Let Q′ be the random variable for the k-th query which generates (x, y).
Considering all possible values of Q′, denoted by q′, we have

Pr(x, y|Ak−1, q) =
n∑

q′=1

Pr(x, y | Ak−1, q, q
′)Pr(q′ | Ak−1, q)

Note that Pr(x, y | Ak−1, q, q
′) = Pr(x, y | Ak−1, q

′) since (x, y) is determined
by Q′ and Ak−1 according to our PIR algorithm. Therefore,

Pr(x, y|Ak−1, q) =
n∑

q′=1

Pr(x, y | Ak−1, q
′)Pr(q′ | Ak−1, q)

Since Q′ = q′ is independent of Ak−1 and Q = q, thus

Pr(x, y|Ak−1, q) =
n∑

q′=1

Pr(x, y | Ak−1, q
′)Pr(q′ | Ak−1)

= Pr(x, y | Ak−1)

¤

