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Automatic monitoring of group-housed pigs in real time through porcine acoustic signals has played a crucial role in automated
farming. In the process of data collection and transmission, acoustic signals are generally interfered with noise. In this paper, an
effective porcine acoustic signal denoising technique based on ensemble empirical mode decomposition (EEMD), independent
component analysis (ICA), and wavelet threshold denoising (WTD) is proposed. Firstly, the porcine acoustic signal is
decomposed into intrinsic mode functions (IMFs) by EEMD. In addition, permutation entropy (PE) is adopted to distinguish
noise-dominant IMFs from the IMFs. Secondly, ICA is employed to extract the independent components (ICs) of the noise-
dominant IMFs. +e correlation coefficients of ICs and the first IMF are calculated to recognize noise ICs. +e noise ICs will be
removed. +en, WTD is applied to the other ICs. Finally, the porcine acoustic signal is reconstructed by the processed com-
ponents. Experimental results show that the proposed method can effectively improve the denoising performance of porcine
acoustic signal.

1. Introduction

With the development of precision livestock farming, it is
hard for breeders tomonitor porcine abnormal states. Sound
recognition, as one of the noncontact detectionmethods, has
been proven to be a valuable method to detect some diseases
[1]. But during the process of acoustic signals collection and
transmission, the recognition process is easy to be interfered
by noise which will exert a negative impact on the recog-
nition accuracy. +erefore, it is essential to eliminate the
noise before analyzing the acoustic signals.

Empirical mode decomposition (EMD) is an effective
automatic decomposition algorithm to analyze nonlinear,
nonstationary, and non-Gaussian signals [2], and basis
function is not required [3]. Because of this advantage, EMD
is extensively applied in many different fields, such as blind
source separation [4] and denoising [5]. +e most common
denoising method based on EMD is the threshold method of
EMD, which determines the signal-dominated and noise-
dominated intrinsic mode functions (IMFs) by the

threshold. +ere are two types of denoising strategies for the
threshold method of EMD. One is removing the noise-
dominated IMFs directly [6], and the other is denoising
IMFs by wavelet thresholding denoising (WTD) [7]. In
order to distinguish the noise-dominated IMFs and signal-
dominated IMFs, many methods have been proposed in-
cluding the energy entropies of the IMFs [8], the correlation
coefficients of the original signal and IMFs [9], and maxi-
mum variances of IMFs [10], among others. Ensemble
empirical mode decomposition (EEMD) is proposed to
overcome the problem of frequency aliasing of EMD [11].
+rough adding Gaussian white noise, EEMD can avoid
frequency aliasing to some extent. Some researchers have
achieved good results in noise removal through replacing
EMD with EEMD. Since the majority of useful information
is lost when applying the first denoising strategy [12], some
studies combine wavelet threshold denoising with the EMD
threshold method [13]. However, the application of the
wavelet threshold method in IMFs denoising may affect the
continuity of reconstructed signals [14].
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In order to effectively eliminate the noise produced in the
process of sound collection and transmission, EEMD-ICA-
WTD, which can be employed before porcine sound recog-
nition, is proposed in this paper. EEMD is used to decompose
the porcine acoustic signal into IMFs. +en noise-dominant
IMFs are distinguished by permutation entropy (PE). +e
independent components (IC) of noise-dominant IMFs are
extracted by independent component analysis (ICA). As the
first IMF contains much of the high-frequency noise [15], the
correlation coefficients of ICs and the first IMF are calculated
to recognize noise ICs. After that, the noise ICs are removed
and the other ICs are denoised byWTD. Finally, the processed
ICs are used to reconstruct the porcine acoustic signal. Ex-
perimental results show that the proposed method can
eliminate the noise in porcine acoustic signal efficiently.

+is paper is organized as follows: Section 1 introduces
the background significance of porcine acoustic signal
denoising and the methods commonly used to eliminate the
noises of different signals in recent years. Section 2 describes
the porcine acoustic signals and the individual methods,
including EEMD, PE, Fast-ICA, and WTD. +e process of
the proposed EEMD-ICA-WTD is presented in Section 3.
+e denoising performance evaluation indices, the simu-
lation process, results of EEMD-ICA-WTD, and compari-
sons with other methods are presented in Section 4.
Conclusions are drawn in Section 5.

2. Materials and Methods

+e materials of this study are porcine acoustic signals.
Below are the details of porcine acoustic signals. +e
methods are mainly comprised of EEMD, PE, Fast-ICA, and
WTD, with a detailed explanation given below.

2.1. Materials. In this study, the original data are collected
by an acoustic pickup device (ELITE model OS-100) from a
large-scale pig farm in Shanxi Province, China. +e sche-
matic of the installation of the acoustic pickup in the pig
farm is shown in Figure 1. +e replacement gilts (PIC) at
5∼10months old with weight ranging from 110 kg to 130 kg

were studied in these experiments. Five replacement gilts
were housed in a pigpen which is four meters wide and six
meters long. +e collection of sounds is controlled by the
program developed in the numerical computing software
(Python, ver. Python 3.5). +e sampling frequency of the
collected acoustic data is 1 kHz. +e porcine acoustic signals
we selected are scream [16] and cough [17], which are found
most commonly in the pigpen. See the data in the Sup-
plementary Material (available here) for the denoising ex-
periments of porcine acoustic signals. In order to analyze the
performance of the proposed method qualitatively, Gaussian
white noise is added to the porcine acoustic signals to obtain
signals with different signal-to-noise ratios (SNRs). In this
paper, SNRin is defined as an input SNR of the added white
Gaussian noise value and SNRout is defined as an output
SNR of denoised signal.

2.2. Methods. +e process of EEMD-ICA-WTD is mainly
comprised of porcine acoustic signal decomposition based
on EEMD, noise-dominant IMFs differentiation based on
PE, independent components extraction by Fast-ICA, and
denoising by WTD.

2.2.1. Porcine Acoustic Signal Decomposition Based on
EEMD. In this paper, the porcine acoustic signal is firstly
decomposed. EMD can decompose the signals into IMFs
from high to low frequency self-adaptively [18, 19], which is
based on the decomposition principle that any signal is
composed of IMFs [20]. +e IMF must satisfy two condi-
tions: (1) +e number of extreme points is equal to the
number of zero-crossings. Or the difference of the number of
extreme points and the number of zero-crossings is at most
1; (2) At any point, the mean value of the envelope defined
by the local maxima and the envelope defined by the local
minima is zero. +e process of EMD is as follows:

(1) +e local extreme points which are detected from the
original signal s(t) can be connected by cubic curve
spline and formed the upper and lower envelops.

Acoustic pickup

Figure 1: +e installation drawing of the acoustic pickup in piggery.
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And the list m1(t) is defined as the means of the
upper and lower envelopes.

(2) +e list h1(t) is defined as

h1(t) � s(t) − m1(t). (1)

If h1(t) satisfies the above two conditions of IMF, it
will be regarded as one of the IMF components:

c1(t) � h1(t), (2)

where c1(t) is the first IMF.

(3) +e residual list r1(t) is the difference between the
original signal s(t) and c1(t), which is defined as

r1(t) � s(t) − c1(t). (3)

(4) +e residual list r1(t) is regarded as original signal.
And then, repeat the steps 1–3. Finally, the other
IMFs c1(t), c2(t), . . ., cn(t) and the final residual rn(t)
(Res) can be obtained.

+erefore, the original signal s(t) is decomposed as
the sum of the IMF components and residual list
rn(t):

s(t) �n
i�1
ci(t) + rn(t), (4)

where n is the number of IMF components.

Classical EMD may cause frequency aliasing during
signal decomposition. In order to overcome this short-
coming, EEMD was proposed by Wu and Huang [11]. +e
structure of EEMD is similar to EMD. +e EEMD de-
composition is done according to the following steps [21]:

(1) Add a random Gaussian white noise signal ni(t) to
original signal s(t), which is defined as

si(t) � s(t) + ni(t), (5)

where si(t) is a synthetic signal after the ith iteration
adding white noise.

(2) Decompose si(t) by EMD into several IMFs and a
residual as

si(t) �n
j�1
cij(t) + rin(t), (6)

where cij(t) are the IMF components and rin(t) is the
residual.

(3) Repeat the process as described above N times and
add the different Gaussian white noises. +erefore,
the original signal adds the Gaussian white noise N
times. +e means of IMFs can be obtained as

cj(t) �
1

N
N
i�1
cij, (7)

where cj(t) is the jth IMF.

2.2.2. Identification of Noise-Dominant IMFs by PE.
Permutation entropy (PE), proposed by Bandt and Pompe
[22], is an average entropy parameter based on the statistical
attributes of time series elements [23]. It is sensitive to the
variations of signals. PE can be described as follows:

(1) For a given time series X� {x(i), i� 1, 2, . . ., n}, the
matrix of phase space reconstructionA is obtained as
[24]

A �

x(1) x(1 + λ) · · · x(1 +(m − 1)λ)
x(2) x(2 + λ) · · · x(2 +(m − 1)λ)
· · · · · · · · · · · ·
x(r) x(r + λ) · · · x(r +(m − 1)λ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where λ is the time delay, m denotes the em-
bedding dimension, and r is the number of vec-
tors in phase space reconstruction components,
r � n − (m − 1)λ.

(2) Each row of A can be arranged in ascending order
[25]:

x i + j1 − 1( λ( ≤x i + j2 − 1( λ( 
≤ · · · ≤x i + jm − 1( λ( , (9)

where j1, j2, . . ., jm are the column indexes of ele-
ments in reconstruction components.

(3) Since the embedding dimension ism, there will bem!
possible permutations. Each row of A can be rep-
resented by one of the permutations. Pj represents
the probability of jth permutation. +en, the PE can
be designated as follows [26]:

Hp(m) � − k
j�1
Pj lnPj, (10)

where Pj is the probability of jth permutation and k is
the number of possible permutations, k�m!.

(4) +e PE of order can be normalized as [26]

Hp �
Hp(m)
ln(m!) .

(11)

+e range of PE is 0 to 1. +e PE can be used to
recognize the IMF of noise [27]. +erefore, PE is
adopted to distinguish noise-dominant IMFs in this
paper.

2.2.3. Independent Components Extraction by Fast-ICA.
+e ICA, as one of the multivariate statistical methods, is
widely used in statistical sources separation [28]. It can
extract the independent components from the mixture with
unknown mixing coefficients [3].

+e independent sources can be denoted as s(t)� [s1(t),
s2(t), . . ., sK(t)]

T, where K is the number of independent
sources. +e observed signals can be defined as x(t)� [x1(t),
x2(t), . . ., xM(t)]

T, where M is the number of observed
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signals. A �
a11 · · · a1j
M · · · M
ai1 · · · aij

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ represents the matrix of mixing

coefficients. +e mixing relationship is defined as follows:

xi(t) �K
j�1
aijsj(t), i � 1, 2, . . .,M. (12)

+is function can be expressed by the matrix:

x(t) � A · s(t). (13)

+e aim of ICA is to estimate the inverse of the mixing
matrixW, which could be used to calculate the independent
signals.

y(t) �W · x(t) �W · A · s(t), (14)

where y(t) is the estimation of s(t), y(t)� [y1(t), y2(t), . . .,
yN(t)]

T.
Fast-ICA algorithm is one of the improved ICA algo-

rithms, which is widely utilized to estimate the orthogonal
matrix. Fast-ICA has higher convergence speed compared to
the conventional method and the step-size parameters are
not needed. In this paper, Fast-ICA is used to extract in-
dependent components from IMFs.

2.2.4. Denoising by WTD. Wavelet transform denoising
(WTD) is one of the denoising algorithms based on wavelet

transform (WT).WTcan decompose signals at different scales.
+e discrete wavelet transform (DWT) is calculated as follows:

WT(a, b) � 1��
2a

√ T
t�1
s(t) × ψ

t − b · 2a
2a

 , (15)

where a is the decomposition level, b is the parameter of
translation (for dyadic WT: b� 1), ψ is the wavelet basis
function, and T is the number of sampling points.

+e primary steps of WTD are described as follows:

(1) Decompose the original signal by WT with proper
wavelet basis function and decomposition level.

(2) +e threshold is performed by the selected proper
threshold method for high-frequency coefficients at
each decomposition scale. +e low-frequency
wavelet coefficient is kept unchanged.

(3) +e signal is reconstructed by the low-frequency
coefficients and high-frequency coefficients after
threshold processing.

It is crucial to select an appropriate threshold method for
WTD. +e common threshold selection methods fall into
soft threshold method and hard threshold method [29]. +e
hard threshold method causes breakpoint at the threshold
point. +e reconstruction coefficient of the soft threshold
method has good continuity [30]. +erefore, the soft
threshold method is adopted in this paper.

Porcine acoustic signal

EEMD

Selection of noise-dominant IMFs by PE

Noise-dominant IMFs Real IMFs

Fast-ICA

Removal of noisy ICs by correlation coe�cient

WTD

Transformation from DICs to DIMFs

Summation of DIMFs

Denoised porcine acoustic signal

IMF1 IMF2 IMFp... IMFp+1 IMFp+2 IMFn Res...

IMF1 IMF2 IMFp IMFp+1 IMFp+2 IMFn Res... ...

IC1 IC2 ICp...

DIC1 DIC2 ... DICq

DIMF1 DIMF2 ... DIMFq

Figure 2: +e process chart of the proposed denoising technique for porcine acoustic signal.

4 Mathematical Problems in Engineering



3. Proposed Methodology

�e process of the new efficient denoising technique pro-
posed in this paper is shown in Figure 2. It consists of five
main steps explained as follows:

(1) �e porcine acoustic signal is decomposed into IMFs
by EEMD. Sorted in the increasing order of IMFs, the
frequency distribution of the IMFs varies from high
to low. �e noise mainly concentrates in high fre-
quency. �erefore, the first few IMFs contain both
the information of porcine acoustic signal and noise
[15]. PE of each IMF is calculated. If PE is more than
0.5, the corresponding IMFwill be regarded as noise-
dominant one.

(2) Denoising the noise-dominant IMFs directly may
destroy the continuity of reconstructed signals. It is
harmful to the denoising effect [14]. �erefore, Fast-
ICA is used to extract the ICs of noise-dominant
IMFs to concentrate the noise and real information
and improve SNR of components.

(3) As the first IMF contains much of the high-frequency
noise [15], the correlation coefficients of ICs and the
first IMF are calculated. If the correlation coefficient
is more than 0.8, the IC will be regarded as noise and
will be removed.

(4) Denoise the other ICs by WTD. �e wavelet basis
function and decomposition level we selected are db6
and 3.
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Figure 3: �e time-domain waveforms of (a) porcine scream and (b) noisy scream.
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Figure 4: �e decomposition result of the noisy scream.
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(5) +e denoised ICs (DICs) are transformed to
denoised IMFs (DIMFs) through the matrix of
mixing coefficients. +en the porcine acoustic signal
is reconstructed by these DIMFs and real IMFs.

4. Results and Discussion

+is section introduces the simulation process and results of
EEMD-ICA-WTD. In order to verify the performance of
EEMD-ICA-WTD, the performance of the denoising is
compared with the other six methods.

4.1. Simulation Process and Result of EEMD-ICA-WTD.
In order to analysis the process and results of EEMD-ICA-
WTD, porcine scream and porcine cough are selected for
denoising, taking the noisy scream with 5 dB SNRin by
adding Gaussian white noise as an example. +e time-do-
main waveforms of porcine scream and noisy scream are
shown in Figure 3. +e sampling frequency of the collected
acoustic data is 1 kHz. +erefore, the porcine scream of 1 s
contains 1000 sampling points.

+e noisy scream is decomposed as step 1. +e time-
domain waveforms of IMFs and Res are shown in
Figure 4. +e noisy scream is divided into 9 IMFs

of different frequencies and 1 residual. Each IMF con-
tains different local characteristics of the original noisy
scream.

+e PE of each IMF is calculated as step 1.+e time delay
λ is commonly used as 1 and the embedding dimensionm is
commonly used as 3 [31]. In this paper, λ� 1, m� 3. +e PE
of each IMF is shown in Table 1.

Table 1 shows that the PEs of IMF1, IMF2, IMF3, IMF4,
and IMF5 are greater than 0.5. +erefore, these are noise-
dominant IMFs.

+e ICs of noise-dominant IMFs are extracted by Fast-
ICA as step 2.+e time-domain waveforms of ICs are shown
in Figure 5. It can be observed that each IC concentrates
more information.

+e correlation coefficients are calculated as step 3. +e
correlation coefficients of ICs and the first IMF are shown in
Table 2.

Table 2 shows that the correlation coefficient between
IC4 and the first IMF is larger than 0.8. +erefore, it should
be removed.

+e other ICs are denoised by WTD as step 4. +e
denoising results are shown in Figure 6.

+e end result of the reconstructed signal is shown in
Figure 7.

Table 1: PEs of noisy scream IMFs.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 Res

0.974 0.997 0.824 0.674 0.567 0.493 0.440 0.415 0.396 0

Table 2: Correlation coefficients of each IC and the first IMF.

IC1 IC2 IC3 IC4 IC5

0.3222 0.4656 0.2772 0.8460 0.3170
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Figure 5: +e time-domain waveforms of ICs.
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In order to evaluate the denoising performance of the
method quantitatively, the root mean square error (RMSE),
SNRout, and correlation coefficient (R) are adopted in this
article [32]:

RMSE �

����������������
1

T
∑T
t�1

s(t) − s′(t)[ ]2
√√

,

SNR � 101g
∑Tt�1s2(t)∑Tt�1 s(t) − s′(t)( )2 ,

R �
cov s′, s( )
σs′ · σs

,

(16)

where s(t) is the porcine acoustic signal, s′(t) is the
denoised porcine acoustic signal, T is the number of
sampling points, cov(s′, s) is the covariance of s′ and s, σs′
is the standard deviation of s′, and σs is the standard
deviation of s.

RMSE reflects the degree of error between the denoised
porcine acoustic signal and the original porcine acoustic
signal. �e smaller the value, the better the denoising effect.
SNRout reflects the ratio of the porcine acoustic signal to real
noise. �erefore, the higher the value, the less noise mixes. R
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Figure 6: �e denoising results of ICs by WTD.
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Figure 7: �e time-domain waveforms of the reconstructed porcine scream.

Table 3: �e denoising parameters of porcine scream.

RMSE SNRout R

0.1476 6.2831 0.8992

Mathematical Problems in Engineering 7



is used to evaluate the correlation between the denoised
porcine acoustic signal and the original porcine acoustic
signal. +e higher value represents the better denoising
effect.

+e performance of the denoising is shown in Table 3.

4.2. Comparison with OtherMethods. In order to verify the
performance of EEMD-ICA-WTD, six different denois-
ing methods are used as comparison methods. +ey are
EMD-TD [33], EMD-WTD [34], EEMD-TD [35], EEMD-
WTD [36], wavelet soft threshold denoising (WSTD)
[37], and multiband spectral subtraction (MBSS) [38]. To
verify the universality of the methods, two kinds of
porcine acoustic signals with different SNRins are
denoised. +e denoising results of different methods are
shown in Tables 4 and 5, where Table 4 is the denoising

results of porcine scream and Table 5 is the denoising
results of porcine cough.

+e results, shown in Tables 4 and 5, are compared with
different denoising methods evaluated using three param-
eters. According to the evaluations of RMSE, SNRout, and R,
the EEMD-ICA-WTD has lower RMSE, higher SNRout, and
R than the other six methods.

+e results show that the EEMD-ICA-WTD proposed
in this paper has the best denoising effects with different
SNRins not only for porcine scream but also for porcine
cough. +e EEMD-WTD has the second-best denoising
effects. Taking the denoising results for porcine cough as
an example, when the SNRin of porcine cough is 10 dB, the
values of RMSE, SNRout, and R after being denoised by
EEMD-ICA-WTD are 0.0646, 14.6788, and 0.9859, re-
spectively. +ese are close to the results of EEMD-WTD.
+e absolute differences of these three parameters between

Table 4: Denoising results of porcine scream.

SNRin Parameter
Denoising methods

EMD-TD EMD-WTD EEMD-TD EEMD-WTD WSTD MBSS EEMD-ICA-WTD

− 10
RMSE 0.4794 0.3594 0.3952 0.3682 0.4319 0.7362 0.3389

SNRout/dB − 3.9501 − 1.4474 − 2.2729 − 1.6579 − 3.0440 − 8.6582 − 1.0408
R 0.0633 0.3585 0.1723 0.3303 0.1762 0.0324 0.3701

− 5
RMSE 0.4379 0.3597 0.3774 0.3643 0.4101 0.5214 0.3339

SNRout/dB − 3.1633 − 1.2094 − 1.8728 − 1.5668 − 2.5937 − 3.9452 − 0.8091
R 0.1449 0.5380 0.2498 0.5343 0.3897 0.1167 0.5544

0
RMSE 0.4497 0.2533 0.3389 0.2601 0.2867 0.3241 0.2496

SNRout/dB − 3.3946 1.5894 − 0.9377 1.3619 0.5148 − 0.8852 1.4573
R 0.1972 0.7590 0.4029 0.7779 0.7683 0.7091 0.7810

5
RMSE 0.4460 0.1474 0.3483 0.1491 0.1506 0.1543 0.1432

SNRout/dB − 3.3242 6.2958 − 1.1767 6.1937 6.1054 6.2438 6.4831
R 0.2381 0.9047 0.3955 0.9064 0.9029 0.8823 0.9145

10
RMSE 0.4315 0.0971 0.3321 0.0944 0.0935 0.0951 0.0913

SNRout/dB − 3.0361 9.9147 − 0.7613 10.1594 10.2463 10.0864 10.3106
R 0.2038 0.9480 0.4088 0.9518 0.9531 0.9487 0.9569

Table 5: Denoising results of porcine cough.

SNRin Parameter
Denoising methods

EMD-TD EMD-WTD EEMD-TD EEMD-WTD WSTD MBSS EEMD-ICA-WTD

− 10
RMSE 0.4216 0.3100 0.3245 0.3163 0.3417 0.4775 0.3025

SNRout/dB − 2.4745 0.1955 − 0.1995 0.0217 − 0.6479 − 2.9245 0.2213
R 0.2337 0.4732 0.4832 0.4951 0.4389 0.2183 0.4978

− 5
RMSE 0.3447 0.2629 0.2666 0.2773 0.2946 0.3341 0.2442

SNRout/dB − 0.7254 1.6290 1.5076 1.1645 0.6390 − 0.4762 1.9498
R 0.3903 0.6406 0.6656 0.6736 0.6075 0.4097 0.6752

0
RMSE 0.4168 0.2048 0.2464 0.2042 0.2423 0.2658 0.1880

SNRout/dB − 2.3755 3.7967 0.1914 3.8236 2.3360 2.1935 4.0920
R 0.2767 0.7936 0.7359 0.8310 0.8257 0.7016 0.8353

5
RMSE 0.3941 0.1298 0.2762 0.1343 0.1362 0.1407 0.1224

SNRout/dB − 1.8887 7.7609 1.1993 7.4601 7.3379 7.2837 7.9737
R 0.2712 0.9237 0.7403 0.9332 0.9293 0.8819 0.9360

10
RMSE 0.2777 0.0721 0.0952 0.0692 0.0842 0.0743 0.0646

SNRout/dB 2.1711 13.8798 11.4739 14.2417 12.5417 13.7961 14.6788
R 0.6897 0.9805 0.9689 0.9854 0.9828 0.9829 0.9859
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EEMD-ICA-WTD and EEMD-WTD are 0.0046, 0.4371,
and 0.0005, respectively. With the increasing noise, the
advantages of EEMD-ICA-WTD are more obvious. When
the SNRin of porcine cough is − 10 dB, the absolute dif-
ferences of RMSE, SNRout, and R between EEMD-ICA-
WTD and EEMD-WTD are 0.0138, 0.1996, and 0.0027,
respectively. A large number of experiments for different
kinds of porcine acoustic signals verify the universality of
EEMD-ICA-WTD. In order to intuitively compare the
performances of different denoising methods for porcine

scream and porcine cough with different SNRins, the
histograms are shown in Figures 8 and 9. Each histogram
contains the denoising results of different methods with
different SNRins. Different colors represent different
SNRins. It can be observed that the RMSEs of EEMD-ICA-
WTD with different SNRins are lower than the other six
methods. And the SNRouts and Rs of EEMD-ICA-WTD
are higher than the other six methods. In summary, the
results show that the EEMD-ICA-WTDmethod is effective
and suitable for porcine acoustic signal.
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Figure 8: Denoising results for porcine scream with different SNRins: (a) RMSE, (b) SNRout, and (c) R.
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5. Conclusions

To improve the denoising performance of porcine acoustic
signal, an efficient denoising technique based on EEMD-
ICA-WTD is proposed in this paper. +e approach has been
developed with the purpose to reduce noise interference
during the recognition of porcine abnormal sounds.

Firstly, the porcine acoustic signal is decomposed into
different components in order of frequency. Because of the
frequency aliasing of EMD, the EEMD is used to decompose
the porcine acoustic signal into IMFs. As the noise mainly
concentrates in high frequency, PE is used to distinguish the

noise-dominant IMFs from the IMFs. Secondly, the conti-
nuity of the signal may be adversely affected if the noise-
dominant IMFs are denoised directly. +erefore, the ICs of
noise-dominant IMFs are extracted by Fast-ICA. +e noise
and real information are concentrated on the ICs. It has been
shown that the first IMF contains much high-frequency
noise. +erefore, the noise ICs are identified by correlation
coefficients of ICs and the first IMF and are then removed.
Finally, WTD is used for denoising the other ICs. +e
porcine acoustic signal is then reconstructed by processed
ICs. +e performance of this denoising method is shown to
be superior to other methods.
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Figure 9: Denoising results for porcine cough with different SNRins: (a) RMSE, (b) SNRout, and (c) R.
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In the future work, this approach will be optimized to
reduce the run time on the premise of guaranteeing the
performance of the denoising.
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