
An Eflcient Probabilistic Public-Key Encryption Scheme 
Which Hides All Partial Information 

Manuel BIum 

Computer Science Depament 

University of California at Berkeley 

Shafi G o l d m e r  * 

Laboratory for Computer Science 
Massachusetts Institute of Technology 

Abstract 

This paper introduces the first probabilistic public-key encryption scheme which combines 
the following two properties: 

(1) Periect secrecy with respect to polynomial time eavesdroppers: For all message spaces, no 
polynomial time bounded passive adversary who is tapping the lines, can compute any par- 
tial information about messages from their encodings, unless factoring composite integers k 
in probabilisic polynomial time. 

(2) Eficiecy: It compares favorably with the deterministic RSA public-key cryptosystem in 
both encoding and decoding time and bandwidth expansion. 

The security of the system we propose can also be based on the assumption that the RSA 
function is intractable, maintaining the same cost for encoding and decoding and the Same data 
expansion. This implementation may have advantages in practice. 

1. Introduction 

Much attention has been devoted recently to investigating the security of cryptographic 
protocols, cryptographic encryption techniques, and digital signatures methods. Still the most 
important problem in public-key cryptography remains how to encrypt both efficiently and 
securely. 
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It is customary to call an encryption system secure, when it is infeasible to recover the 
cleartext x from its encryption E ( x ) .  However, this does not necessarily mean that it is infeasi- 
ble to learn some partial information about x from E ( x ) ,  for x's of interest. In fact, it has 
been pointed out in (IL],[GM]) that for any deterministic encryption scheme E ,  such as the 
RSA or Rabin's schemes, partial information about x can always be computed from E(x). 
When E is used in cryptographic protocols, finding out this partial infromation can be detre- 
mental to the security of the application, as has been shown for the protocols of "Mental 
Poker" in [SRA] and "Flipping Coins in Many Pockets" in [BD). Moreover, whenever the 
messages to be sent are drawn from special message spaces (e.g. the messages can be expressed 
as known linear combinations of e x h  other) the secrecy of the messages is in question @I, 

This issue has been rigorously defined and studied by Goldwasser and Micali in [GM]. 
They introduced the notion of a Public-Key Encryption scheme that is pofynorniufly secure: a 
polynomial time adversary can not find one message m whose encodings he can distinguish 
from the encodings of a random message. An equivalent formulation of this security require- 
ment is that after the eavesdropper sees an encrypted message passing in the network, his a 
posteriori probability of computing correctly which message is being sent remains roughly the 
same as his u priori probability of guessing which message is being sent before seeing the 
encrypted message. This implies that seeing the cyphertext does not help the adversary to com- 
pute or guess any function of the cleartext, better than he could have before seeing the cypher- 
text. Public key encryption schemes have been proposed that achieve this security criteria if 
the Quadratic Residuosity problem is intractable in [GM], and more generally if there exists any 
trapdoor function by Yao in [y]. 

These schemes are probabilistic and are computed in a "bit-by-bit'' fashion. In other 
words, every message has many possible encodings and every bit of a message is encrypted 
independently. Due to this last propery, these schemes are highly inefficient. If k is the size of 
the security parameter (e.g. the size of the rnodulos in the RSA encryption function) then each 
bit is encoded individually by a k-bit long string in [GM] and even worse in PI, resulting in at 
least a k-bit data expansion factor. Moreover, decoding a single bit in [GM] takes O ( k 3 )  
operations. In comparison, the RSA [RSA] or Rabin [Ra] encryption schemes, being deter- 
ministic block-ciphers, where a message is encrypted as a block of bits, transfroms k bits of 
cleartext into k bits of cyphertext using U ( k 3 )  operations. 

This paper proposes a simple scheme which combines the polynomial security of the pro- 
babilitic schemes ([GM], [GI, p ] )  and the efficiency of the deterministic schemes ([RSA] and 
pa]). Thus, with no loss of efficiency, this new scheme can be used in applications such as 
Mental PokedGMZ], Coin Flipping in a Distributed Network[ABCGM] or whenever messages 
to be sent come from a special message set and are dependent on one another in a publically 
known way. 

[Ell. 
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Let k be the size of the security parameter. Then, the new scheme transfroms an /-bit long 

cleaiiext into an ( I  + k)-bit long ciphertext, with a computational cost of (I(-) for encryp- 

tion and of O(k3)  f O(-) for decryption. When the length of the message I < k our 

scheme is at least as fast as either the RSA or Rabin schemes and when 1 > k our scheme is 
actually slightly faster. Most importantly, it is more secure. We prove that the scheme is poiy- 
nomially secure, provided that factoring(or inverting RSA) is intractable. 

lkz 
log k 

1k2 
log k 

A High Level Description of Our System 
Our work has gained from and extends the works by Goldwasser-Midi [GM], Blum- 

Micali [BM], Yao M, Blum-Blum-Shub [BBS], Goldwasser-Midi-Tong [GMTJ and Chor- 
Goldreich [CG]. 

The notion of a cryptographically strong pseudo random bit (CSPRB) generator has been 
introduced by Blum and Micali in [BM] and extended by Yao in M. Such a generator is a pro- 
gram which takes as input a k-bit random seed and produces as output a k'-bit sequence, 
where f > 0 is fixed. The output sequences produced by a CSPRB generator are high quality 
pseudo-random sequences in the following sense: i j f h e  k bit sped is tofally unknown, they can- 
not be distinguished fiom truely random sequences of the same length by any statistical test 
which runs in polynomial in k time. 

The key idea in our method will be: to send an I-bit message m, send the exclusiveor of 
m with an 1-bit output of a CSPRB generator on a k-bit random input seed S along wilh a 
publickey encrypion of S. Other implementations of this idea using different CSPRB genera- 
tors and different types of encodings of S have been proposed by Blum, Blum and Shub in 
[BBS] and Goldwasser. MiCali and Tong in [GMT], but they were not as eficient as our 
implementation and relied on different number theoretic assumtions. 

We show a way to encrypt the seed S for which: 

(1) We prove that sending the encrypted seed S along with the exclusive-or of the mes- 
sage and the output of the CSPRB generator on input S ,  does not compromise the 
apparent "randomness" of the output of the CSPRB generator. (Yao [y] proved that 
sequences outputed by CSPRB generators are polynomial time indistinguishable from truly 
random sequences, only when the seed is totally unknown). 

(2) The encoding and decoding of the seed S take at most O ( k 3 )  steps and k bits of 
cyphertext, where k is the size of the seed. 

2. Number Theoretic Background 

Let lrn I denote log, m and Z,; denote the set of positive integers less than N which are 

relatively prime with N. Let (L) denote the Jacobi symbol of xEZ,; mod N .  Recall that for N 
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x EZ; where the prime factorization of N is N = l l p i  ‘‘ 
i 

and. 

(z) = 1 if x is a quadratic residue mod N and-1 otherwise 
Pi 

Let N=pq ,  where p = q ~ 7  mod 8. Set QRN = {a  I Ei x ,  x2  = u mod N ) .  
Then, any aE&RN has exactly two square roots with Jacobi symbol +1 of the form x and --x 

in Z; and exactly one square root with Jacobi symbol +1 which is less than - Let x be such 

a square root of EQR,. 

Define B ( u , N )  for a EQR,v as follows?) 

N 
2 ’  

B ( u . N )  = least significunt bir of x 

Recent results by Chor and Goldreich [CG] imply that 

Lemma I[CG]: If there. exists a probabilistic polynomial in IN I time algorithm that computes 

of xEQRN where N E H ,  then there exists a proba- B ( x , N )  for a fraction - + 
bilistic polynomial in IN I time algorithm for factoring N EH. 

, 
1 
2 POlY(k! N )  

They extend Lemma 1 as follows. Let 

B k ( u J )  = k‘’ least significant bit of x where x k a  mod N ,  x < -, and (-)= t L  N X 

2 N 

Lemma 2 [CG], WV]: Let 1 2 j 5 log log N .  If there exists a probabilistic polynomial in IN I 
time algorithm that on inputs N E H  and S E ( B ’ ( x , N )  I 1 5 i 5 log log N ,  i # j } ,  guesses 

of xEQR,, then there exists a proba- B j ( x f l )  for a fraction greater than - + 
bilistic polynomial in IN I time algorithm for factoring NEH.  

1 
2 polY([og N )  

3. The Encryption Scheme 

q. both congruent to 7 mod 8. A keeps p and q secret 

whose I - i f l s t  bit is Bg(rz”’ ,N)  where h =  [&I and g = i - h e  log k for 1 2 i 5 1. 

Let the public file of user A contain a composite number N product of two primes p and 

Let the security paramter k = log N .  Define G(l,r,N) to be the [-bit boolean vector 

f l )  This predicate was first inrmduced in [GMT] and further analyzed in [BCS] and Pv]. 
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Suppose any user B in the network wants to send an encoding of an I-bit message mfM 
to user A. 

How to Encode m : 
1. Choose r E Z i  at random. 
2. Compute G(1,r.N) using algorithm A below. 

&I 3. set f = r2‘*‘ mod N where h = 

4. Let the encryption of m be the pair ( G(l,r,N)@m, f). 
Algorithm A 
input: l,r,N where k = 1 0 0 .  
ourput: G(l,r,n) 

1) Let h = maxQ I j’log k 2 I). 
2) For j=O to h-1 do 

Let temp =?’*I mod N 
For i =  1 to log k, let the l-(j-log k + i )+ l  bit of G(/ , r ,n )  be B’(femp, N) 
(namely, the irh least significant bit of remp). 

Note that the size of the encoding of an I-bit message m is I + k .  Computing G(f,r,”) can be 
lk ’ 

log k done in 0(-) steps. 

How to Decode 
Let the pair ( D f )  be an publickey encoding of an I bit message Sent to user A. Then, user A 
who knows the factors of N does: 

1. Let h = - 2. compute r such that f*”+’ = r mod N by performing the algorithm 
log k 

B below. 
2. Compute G(f,r,N) using algorithm A above. 
3. Let m = G([ , r ,N)B)D,  

The cost of decoding is 0(k3) + O(-). This is faster than a previous O ( k 3  of all pre- 

vious probabilistic encoding schemes [GM, BBS, GMTJ. We achieve this by exploiting the ~ p e -  
cial properties of p and q. We show this in algorithm B below. The main idea is that instead of 
extracting square roo= o f f  mod N at every step of the amputation to retrieve G(/,r.N),  we 
first compute r in one exponentiation and then compute G(/,r,N) by algorithm A 

lk ’ 
log k 

Algorithm B: 

Input: p ,  q 3  h and r- 
Output: rEQRN 
Running lime: O ( k 3  operations 

+ + I  mod N where r E Q R N  and k = log N .  
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Let p =8r +7 and q =81+7 for some t and 1. 
1) Let ~ ~ 2 * + ~ ( t + l ) ~ + ~ m o d p - l  

2) Let v ~ 2 '  "( l+ 1)' +' mod q - 1 

3) Let U I (  ?+' )" mod p 

4) Let b E (  rP+l)*  mod q 

5) Compute c E Z i  such that c ~ . n  mod p and c z b  mod q using the Chinese Remainder 
theorem. 
6) Output r = c. 

(The above exponents u and v can be precomputed on inputs p .  q and h +1 alone) 

Steps 1 and 2 above can be precomputed when the cryptosystern is set up. The cost of 
steps 3 -4 are two modular exponentiations and one gcd computation of k bit numbers. The 
complexity of the naive algorithm for perfonning these operations is O( k3 ). 
Decoding Lemma: The decoding algorithm is correct 

Proof To compute square roots of uEQR,, note that (L) = u4'+)  = +1 implies (az'f32 = u 

mod p .  Thus to compute the square root of u mod p which is a square itself, simply compute 
.nZltz mod p. Finally, to compute the 2h +l-rh root of a'*+' mod N which is a square. compute 
a(r+l)*+'2hC' mod and Cl(/+1)kf'2kf' mod q ,  and take the Chinese reminder of the results mod 
pq. The exponents (f t l ) h z 1 2 h + 1  mod p -1 and ( l+l )h+12h+1 mod q -1 do not depend on r 
and can be precomputed, knowing p .  q and the length of the message. 

P 

4. Security Analysis 

4.1 The Model 
Let M be any message space. We think of the sender as a stochastic process which pro- 

duces mEM in accordance with a polynomial time computable system of probabilities. Thus 
every m E M  has an a priori probability of being sent. The adversary knows and can compute 
the probability distribution of the message space. When he intercepts the cyphertext he can cal- 
culate from it a set of a posteriori probabilities of the various messages which may have pro- 
duced this cyphertext Shannon defines a cypher to be p e f i c t  secure if: after the adversary 
intercepts the cyphertexf the a posteriori probability of the cyphertext representing some ma- 
sage must be the same as the a priori probability of the same message before interaction. 

We adopt Shannon's perfect secrecy criteria to polynomial time bounded adversaries. See 
also [GM] and Iy]. 

Let k be the security parameter of our system. We think of a public-key encryption 
scheme as a probabilistic, polynomial time algorithm Il that receives k as input from each user 
in the system, and outputs a pair of polynomial in k time computable encryption and decryp- 
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tion algorithms E : M + C  and D : C 4 M  where C is the set of cyphenexts. The encryption 
algorithm E may be probabifistic. We let E ( m )  denote the set of possible encodings of m EM. 
Note that when E = RSA,  E ( m )  is unique for any m E M .  

The measure of security we would like to enforce is the following. 
Informally, no polynomial time passive adversary which can compute x EE(m) for a n y  m E M ,  
should be able to come up with even one message m whose encodings he can even distinguish 
from the encodings of a random message ?EM.  This implies that seeing an encryption of a 
message does not help the adversary to compute or guess with any significant advantage any 
partial information about the message itself. 

Formally, Let A be a polynomial time, probabilistic algorithm that takes as input a 
description of E and outputs a message m,.,EM. Let B be a polynomial time, probabilistic 
algorithm that takes as input x E E ( m )  and outputs 1 or 0 (this is B's guess as to whether 
m =mE,A or not). Note that B may even know mE,A. Let pm denote the probability that B 
guesses 1 on xEE(m) (the probability here is taken over the encodings x E E ( m )  and Bs coin 
tosses). 
Definition: We say that Tl is polynomially secure if for all M ,  for all A ,  B ,  for all polynomials 

Q ,  for all sufficiently large k, I pmAp - p,  I < - for a random rEM and random E 

generated by H. 
This notion of security was introduced by Goldwasser and hlicali in [GM]. Another notion 

of security was later proposed by Yaoly] using he-bounded information theory. Rackoff [R] 
showed the two notions equivalent providing some evidence that polynomid security is the 
correct notion for security for a publickey cryptosystem. 

Q(k) 

4.2 Proof of Security 
Facforing Assumption (FA): Let F t  denote be the fraction of k-bit integers factored by proba- 
bilistic, polynomial in k time algorithm A .  Then, for all polynomids Q, for sufficientIy large k, 

Theorem. The FA implies that the scheme described in section 3 is polynomially secure 

Idea of the prooj Let II be publickey encryption scheme that produces encryption algorithms 
of the form we proposed in section 3. Namely, a user in the system gives input k to ll and 
receives in return two k-bit prime numbers p and q such that p ~ q z . 7  mod 8. The user publi- 
cizes N = pq and keeps p and q secret. To send the user messages one encodes as we wg- 
gested in section 3. For the duration of the proof, lets denote this encryption algorithm by EN,  
and the set of possible encryptions of message m by EN(m). 
Now, suppose for contradiction, that for some pair A,B of polynomial-time probabilistic dgo- 
rithms and for some polynomial Q, for infinitely many k, on a random EN output by II on k 
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and a random rEM.  algorithm A on input EN outputs an mALEM such that 

Pick a k for which (a) holds. Assume without loss of generality that for all m E M .  Im I = 1 
and I < P ( k )  for polynomial P. Pick a random N (product of two k-bit primes p and q such 
that p q ~ 7  mod 8) whose factors you don't know. Input N to algorithm A to receive 
mE*,EM. Now, let's define two types of experiments. 

Type (1): Pick x E Q R ,  at random and an f-bit random R .  Let h=maxU I j-log k 2 1). 
Feed algorithm B ,  x P t 1  mod N and R Q G ( f , x , N )  (i.e a random member of E,(R)) .  The 
probability that B answers 1 here is pR . 
Type (2): Pick xEQRN at random. Feed algorithm B ,  x*"' mod N and mAE 63 G(l ,x ,N)  (i.e 
a random member of En(mAE)). The probability that B answers 1 here is pmAJ. 

BY assumption, I P,,, - PR I > - Without loss of generality, let 
Q t k ) '  

. By the weak law of large numbers, in polynomial in Q ( k )  number of 
P m A S  - p R  > e(k) 

type (1) and type (2) experiments we can estimate p,,, and pR . 
We now use a combination of the proof techniques of Goldwasser and M i d i  in [GM} and 

Yao in [y]. Let the i-type experiment be defined as follows. Feed algorithm B ,  r2h'' mod N 
and G(I , r ,N)  + mi where m, consists of the concatenation of the first i bits of mAF and I - I  
random bits (ie. feed B a random member of EN(m,)). Let pi be the probability that during 
the i-type experiment B outputs 1. (this probability is taken over B's coin tosses, choices of r 
and the I - i  random bits). There must exist an 1 5 i 5 I such that - pi  > V / Q ( k )  and 
it can be found by running a polynomial in l . Q ( k )  number of i-type experiments and i + l -  
type experiments for all 1 5 i 5 1. Say we found such an i. There are two cases to look at: 
i 5 log k and i > log k. The first case yields a method for predicting B ' ( x , N )  with probabil- 

ity greater than - on inputs N and { B J ( x , N )  I 2 5 j 5 1) , which by lemma 2 h p k ~  

a probabilistic factoring algorithm for N E H .  This contradicts the factoring assumption. In the 
second case i > log k. The rest of the proof deals with this case. Pick an a in 2; such that 

(L)=-l. Let G consist of the concatenation of G(i,n2,N) with I-i random bits. Let 

h'=max(j I jlog k 2 I). Feed algorithm B as inpuf a"" mod N and G 4 m0 where m0 
consists of the concatenation of the first i bits of mAB ,0, and I-i -1 random bits. Denote B's 
output by b p  (Note that this is an i-type experiment). Now feed B with a'"' mod N and 
G + m1 where m1 consists of the concatenation of first i bits of mA.E ,1, and I - i  -1 random 
bits. Denote B's output by bl. (Note that this is an i+l-type experiment). Let j = log k and 
let bi+l denote the i+l'st bit of m A E .  If bo=b, then choose at random cE(O.1) and predict 

IQV) 

N 
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that B’(a,N) = c ,  otherwise let c=Ob,+ l .b ,  and predict BJ(aJV)  = bi,l@c. The probabil- 

.This 1 ity of predicting B’(a,N) correctly according to this rule is greater than - f - 
2 Q(kY 

yields by Lemma 2 a probabilistic time algorithm for factoring N E H ,  which again contradicts 
the factoring assumption. 

5. Eficiency Analysis and Comparison 

Let k be the security parameter (i.e. the size of the composite number in the public file). 
To send an k bit message m where k = log N using RSA requires U ( k 3 )  operations to encode 

and decode and k-bit long encryption. In our scheme enwding requires 0(-) operations, 

decoding requires O(k3)  f 0(- ’’ ) operations and the encryption of a k-bit message is 

2k -bit long. 

Note that the time bounds for RSA encoding and decoding have been calculated for 
RSA(x) = xs mod N where I<s<cp(N) is picked at random as proposed in the original RSA 
paper. It has been suggested to let 5 =3, then encoding is of k: complexity, while decoding still 
remains of k 3  complexity. However, Blum in [B] and Hastad in w] point out a problem arising 
with s=3(or any s < log k) : if the same message is sent encrypted to 3(s respectively) 
separate people in the network each owning his own N , ,  then an adversary tapping the lines 
can decode the message. 

k3 
log k 

log k 

6. Other models of adversaries 
The security analysis performed in section 4 was done with respect to passive adversaries. 

However, the scheme descibed above is not secure against more powerfiil than passive adver- 
saries such as adversaries which can perform chosen cypher text attacks(CCA). In this amck, 
the adversary may have temporary access to the decoding equipment, afterwhich he tries to 
decode. No public key encryption scheme has been proved secure against such an attack even 
under the assumption that certain number theoretic problems are intractable. 

On the other hand, no effective way of inverting the USA function using a CCA on the 
RSA public-key-cryptosysem is known. We can modify our scheme to achieve the same secu- 
rity against CCA, as the deterministic RSA cryptosystem. We do this by modifying our system 
to be based on the assumption that the RSA function is intractable. This implementation main- 
tains the same cost of encoding and decoding, same data expansion, and the same security 
against partial information attacks as our factoring based scheme. In addition it is as secure 
against CCA as the deterministic RSA system. We briefly describe this implementation h sec- 
tion 7. 

Note that what we are interested in is an encryption scheme which is 1-puss. That is, to 
send a message to user A we need only look up his public tile, compute the encryption of our 
message and send it, and there is no need of further interaction with A. Solving the problem of 
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public-key encryption which is secure against chosen-cyphertext attacks using a 2-pass system 
(where to send a secret message to A two levels of interaction are allowed) is much easier and 
can be achieved. 

7. Implementation of the Scheme based on RSA intractability assumption 
Let N denote the moduIos in the RSA scheme. That is N = p q  where p and q are primes 

of the same size. Let the public file of user A contain such a composite number N whose fac 
tors p and q only A knows. Let si denote the inverse of 3‘ mod q ( N )  for l<i<cp(N). Let 
k = log N. 

Define G(/ . r ,N)  of section 4 to be an I-bit vector whose I -i+lth bit is the 

Note that computing i - log kL-1 least significant bit of r’ mod N where j =  

G(l,r,.iV) can be done without knowing the factors of N in O(-) time. 

i 

Ik ‘- 
log k 

To encode m where 1 m 1 = I :  pick rEZi at random, compute G(/,r,N), let h - *I 
and f = r3’+l mod N ,  let the encoding of m be the pair ( G(f , r ,N)@m,  f). 

mod N ,  compute G(l,r,N), and let m = G(l,r,i?)BD. 
To decode (Df) where ID I = I ,  recall that ~ ~ ~ ~ 3 ” ‘ ~  mod q~(N)rl. Compute r = fs,+’ 

8. Remarks and Open problems 

This paper presented a probabilistic encryption scheme which is secure against all partial 
information attacks in presence of passive adversaries, provided factoring is hard, whose cost of 
encoding and decoding is fast, and has constant factor data expansion. An interesting open 
question remains: 

Given x2 mod N ,  are $4 of the bits of x such that x < - and (2) = +1 as hard to 

compute as x? If so, then one may build an extremeley efficient encryption scheme which 
requires only 2 multiplications to encode, and is secure against all partial information 
attacks. 

N 
2 N 
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