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Abstract

We consider the monotone variational inequality problem in a Hilbert space
and describe a projection-type method with inertial terms under the follow-
ing properties: (a) The method generates a strongly convergent iteration se-
quence; (b) The method requires, at each iteration, only one projection onto
the feasible set and two evaluations of the operator; (c) The method is de-
signed for variational inequality for which the underline operator is monotone
and uniformly continuous; (d) The method includes an inertial term. The
latter is also shown to speed up the convergence in our numerical results. A
comparison with some related methods is given and indicates that the new
method is promising.

1 Introduction

Let H be a real Hilbert space with scalar product 〈., .〉 and the norm ‖.‖. Suppose
C is a nonempty, closed and convex subset of H and A : C → H be a continuous
mapping. In this paper, we consider the following variational inequality (for short,
VI(A,C)): find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1)

Let SOL denote the solution set of VI(A,C) (1). It is well known that x solves the
VI(A,C) (1) if and only if x solves the fixed point equation (see [20] for the details)

x = PC(x− γAx), γ > 0 and rγ(x) := x− PC(x− γAx) = 0.

Therefore, the knowledge of fixed-point algorithms (see, for example, [19, 45]) can
be used to solve VI(A,C) (1).
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Variational inequality theory is an important tool in studying a wide class of obsta-
cle, unilateral, and equilibrium problems arising in several branches of pure and ap-
plied sciences in a unified and general framework (see, for example, [6, 7, 20, 29, 31])
and several numerical methods have been developed for solving it (see, e.g., [8, 19, 31]
and the references therein).
The extragradient method, introduced in 1976 by Korpelevich [30], which is given
by







x1 ∈ C,
yn = PC(xn − γAxn)
xn+1 = PC(xn − γAyn), n ≥ 1,

(2)

where γ ∈ (0, 1
L
) for a finite-dimensional space, provides an iterative process con-

verging to a solution of VI(A,C) (1) by assuming that A : C → R
n is monotone and

L-Lipschitz continuous. The extragradient method was further extended to infinite
dimensional spaces by many authors; see for instance, [2, 15, 16, 23, 25, 26, 44, 51,
49, 50, 53]. In the setting of Hilbert spaces, this method obtains only weak conver-
gence. Furthermore, it is easy to see that the extragradient method of Korpelevich
needs two projections onto the set C and two values of A per iteration. A crucial
feature regarding the design of numerical methods related to extragradient method
is to minimize the number of evaluation of PC per iteration. So the extragradient
method needs to be improved in situations, where a projection onto C is hard to
evaluate or computationally expensive. Several alternatives to the extragradient
method or its modifications have also been proposed in the literature by several
authors (see, for example, [17, 33, 42, 48, 53]).

Recently, Malitsky and Semenov [41] obtained strong convergence result when there
is only one projection onto the feasible set C per iteration using the method of
Haugazeau when A is monotone and L-Lipschitz continuous with constant step size.
Similarly, Kraikaew and Saejung [35] obtained strong convergence result using a
combination of Halpern iterative scheme and subgradient extragradient method in
real infinite dimensional Hilbert spaces. More recently, Mainge and Gobinddass [36]
(see also Mainge [37]) obtained weak convergence result for solving the VI(A,C) (1)
in real Hilbert spaces with monotone and L-Lipschitz continuous mapping A, by
means of a projected reflected gradient-type method [40] and inertial terms.

It is well known that one the main features of the extragradient method (2) and
other related methods mentioned above is that they are explicit methods, hence
easily implementable. As such, it is quite important to pay attention to compu-
tational issues, e.g., stepsizes. The extragradient method is an extension of the
projected gradient method, with an additional step which makes it convergent un-
der plain monotonicity of the operator, rather than strong monotonicity. Now, even
for the finite dimensional unconstrained optimization case (C = R

n, A = ∇f for a
convex f : Rn → R) it is well known that the use of exogenous stepsizes tending
to zero and with sizes bounded by the inverse of the Lipschitz constant gives rise
to a sublinear convergence rate and is quite inefficient, among other things because
in most cases a global Lipschitz constant (if it indeed exists) cannot be accurately
estimated, and estimates usually overestimate it, resulting in too small stepsizes. In
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the case of the gradient method, this obstacle was removed through the introduction
of a linesearch allowing for larger stepsizes, e.g. in [34] and [26]. These linesearches
were later incorporated to more general variants of the method, like the algorithm in
[25]. The method proposed in [35] improves over [25] in the addition of the Halpern’s
regularization step which allows for strong convergence, but on the other hand it
sticks to the inefficient stepsizes bounded in terms of the Lipschitz constant.

Recently, there have been increasing interests in studying inertial type algorithms.
For example, inertial forward-backward splitting methods [5, 32, 46], inertial Douglas-
Rachford splitting method [11], inertial ADMM [12, 18], and inertial forward-backward-
forward method [13]. The inertial term is based upon a discrete version of a second
order dissipative dynamical system [3, 4] and can be regarded as a procedure of
speeding up the convergence properties. The results in [1, 10, 12, 32, 38, 39, 46, 47]
and other related ones analyzed the convergence properties of inertial type algo-
rithms and demonstrated their performance numerically on some imaging and data
analysis problems.

The aim of this paper is to present an projection-type method for the solution
of a monotone and uniformly continuous variational inequality with the following
properties:

(a) The iterates converge strongly to a solution of the VI(A,C) (1);

(b) The method requires, at each iteration, only one projection onto C and two
evaluations of A.

(c) The method includes an inertial term.

To the best of our knowledge, it is the first method which has these three properties
in an infinite-dimensional Hilbert space setting. In order to get properties (a) and
(b), most existing methods require two or more projections onto C (see, for example,
[25, 28, 43]). As we have observed earlier, the inertial term is generally believed to
speed up the convergence of an iterative scheme, though a formal proof seems to
be known only for optimization problems, but numerical evidence indicates that a
suitable choice of this inertial term indeed improves the computational behaviour of
the underlying method. Hence we believe that property (c) is important. It com-
plicates some of the proofs, and most papers dealing with inertial terms prove weak
convergence only. The only exception seems to be the recent paper [38] for certain
fixed point problems, whose specification to variational inequalities, however, needs
either stronger assumptions regarding A or two projections onto C.

The paper is therefore organized as follows: We first recall some basic definitions and
results in Section 2. Some discussions about our projection-type method used in this
paper are given in Section 3. The strong convergence of our Algorithm 3.3 is then
investigated in Section 4. Some numerical experiments can be found in Section 5.
We conclude with some final remarks in Section 6.
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2 Preliminaries

This section contains some definitions and basic results that will be used in our sub-
sequent analysis. Some elementary properties of real Hilbert spaces are summarized
in the following result.

Lemma 2.1. The following statements hold in any real Hilbert space H:

(a) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 for all x, y ∈ H.

(b) 2〈x− y, x− z〉 = ‖x− y‖2 + ‖x− z‖2 − ‖y − z‖2 for all x, y, z ∈ H.

Definition 2.2. A mapping A : C → H is called

(a) monotone on X if 〈Ax− Ay, x− y〉 ≥ 0 for all x, y ∈ C;

(b) η-strongly monotone on C if there exists a constant η > 0 such that

〈Ax− Ay, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ C;

(c) Lipschitz continuous on C if there exists a constant L > 0 such that

‖Ax− Ay‖ ≤ L‖x− y‖, ∀x, y ∈ C.

A variational inequality defined by a monotone and continuous operator has the nice
property that its solution set is closed and convex (see, for example, Theorem 1 of
[52]).

Lemma 2.3. Let C ⊆ H be a nonempty, closed, and convex subset of a real Hilbert
space H, and let A : H → H be continuous and monotone on C. Then the solution
set of the variational inequality VI(A,C) is closed and convex (possibly empty).

We next recall some properties of the projection. For any point u ∈ H, there exists
a unique point PCu ∈ C such that

‖u− PCu‖ ≤ ‖u− y‖, ∀y ∈ C.

PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping of H onto C. It is also known that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 ∀x, y,∈ H. (3)

In particular, we get from (3) that

〈x− y, x− PCy〉 ≥ ‖x− PCy‖2, ∀x ∈ C, y ∈ H. (4)

Furthermore, PCx is characterized by the properties

PCx ∈ C and 〈x− PCx, PCx− y〉 ≥ 0, ∀y ∈ C. (5)

This characterization implies that

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 ∀x ∈ H, ∀y ∈ C. (6)

Recall that the solution set SOL of a variational inequality is closed and convex
under the assumptions of Lemma 2.3. Therefore, if we assume, in addition, that
SOL is nonempty, the projection onto SOL is well-defined. Hence, we can formulate
the following result that will be used to prove our strong convergence theorem.
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Lemma 2.4. Let S ⊆ H be a nonempty, closed, and convex subset of a real Hilbert
space H. Let u ∈ H be arbitrarily given, z := PSu, and Ω := {x ∈ H : 〈x−u, x−z〉 ≤
0}. Then Ω ∩ S = {z}.

Proof. By definition, it follows immediately that z ∈ Ω ∩ S. Conversely, take an
arbitrary y ∈ Ω ∩ S. Then, in particular, we have y ∈ Ω, and it therefore follows
that

‖y − z‖2 = 〈y − z, y − z〉
= 〈y − z, y − u〉+ 〈y − z, u− z〉 (7)

≤ 〈y − z, u− z〉.

Using z = PSu together with the characterization (5), we also have

〈u− z, z − x〉 ≥ 0 ∀x ∈ S.

In particular, since y ∈ S, we therefore have 〈u − z, z − y〉 ≥ 0. Hence (7) implies
‖y − z‖2 ≤ 0, so that y = z. This completes the proof.

The following lemma was stated in [25, Prop. 2.11], see also [27, Prop. 4].

Lemma 2.5. Let H1 and H2 be two real Hilbert spaces. Suppose A : H1 → H2 is
uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1.
Then A(M) is bounded.

Lemma 2.6. ([22]) Let C be a nonempty closed and convex subset of H. Let h be
a real-valued function on H and define K := {x ∈ H : h(x) ≤ 0}. If K is nonempty
and h is Lipschitz continuous on C with modulus θ > 0, then

dist(x,K) ≥ θ−1 max{h(x), 0}, ∀x ∈ C,

where dist(x,K) denotes the distance function from x to K.

Lemma 2.7. Let C be a nonempty closed and convex subset of H, y := PC(x) and
x∗ ∈ C. Then

‖y − x∗‖2 ≤ ‖x− x∗‖2 − ‖x− y‖2. (8)

We finally restate a result which essentially states the equivalence between a primal
and a weak form of variational inequality for continuous, monotone operators as
given in [54, Lem. 7.1.7].

Lemma 2.8. Let C be a nonempty, closed, and convex subset of H. Let A : C → H
be a continuous, monotone mapping and z ∈ C. Then

z ∈ SOL⇐⇒ 〈Ax, x− z〉 ≥ 0 for all x ∈ C.
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3 Projection-type Method with Inertial

In this section, we give a precise statement of our projection-type method with
inertial terms and discuss some of its elementary properties. Its convergence analysis
is postponed to the next section. We first state the assumptions that we will assume
to hold through the rest of this paper.

Assumption 3.1. Suppose that the following hold:

(a) The feasible set C is a nonempty, closed, and affine subset of the real Hilbert
space H.

(b) A : C → H is monotone and uniformly continuous on bounded subsets of H.

(c) The solution set SOL of VI(A,C) (1) is nonempty.

We next give the conditions which must be satisfied by our sequence of parameters
in our proposed method.

Assumption 3.2. The sequences {αn} and {θn} satisfy the following conditions:

(a) {αn} ⊂ (0, 1] is non-increasing with limn→∞ αn = 0 and
∑∞

n=1 αn =∞.

(b) {θn} is non-decreasing with θn ∈ [0, θ] for all n ∈ N for some θ ∈ [0, 1/3).

Throughout this paper, we use the abbreviation

r(x) := x− PC(x− Ax), x ∈ H

for the residual. Observe that if we take y = x− Ax in (4), then we have

〈Ax, r(x)〉 ≥ ‖r(x)‖2, ∀x ∈ C. (9)

We next give a precise statement of our projection-type method.
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Algorithm 3.3. (Projection-type Method with Inertial)

(S.0) Choose sequences {αn} and {θn} such that the conditions from Assumption 3.2
hold, σ ∈ (0, 1), γ ∈ (0, 1). Let x0, x1 ∈ H be given starting points, and set
n := 1.

(S.1) Compute

wn := αnx0 + (1− αn)xn + θn(xn − xn−1),

zn := PC(wn − Awn).

(S.2) If r(wn) = wn − zn = 0: STOP. Otherwise

(S.3) Compute yn = wn − γknr(wn), where kn is the smallest nonnegative integer
satisfying

〈Ayn, r(wn)〉 ≥
σ

2
‖r(wn)‖2. (10)

Set ηn := γkn.

(S.4) Compute
xn+1 = PCn

(wn), (11)

where Cn = {x ∈ H : hn(x) ≤ 0} and

hn(x) := 〈Ayn, x− yn〉. (12)

(S.5) Set n← n+ 1, and go to (S.1).

Before we investigate the convergence properties of Algorithm 3.3, we first summa-
rize a number of simple observations.

Remark 3.4. (a) Throughout our convergence analysis, we always assume implicitly
that wn 6= zn so that Algorithm 3.3 does not terminate after finitely many iterations.

(b) The termination test in (S.2) is justified by the following observation: If wn = zn,
we have wn = PC(wn−λnAwn), hence the fixed-point characterization of a solution
of VI(A,C) (1) implies that wn is already a solution of the variational inequality.
Furthermore, our subsequent convergence analysis will show that ‖wn− zn‖ → 0 for
n → ∞, which justifies our stopping criterion. On the other hand, it is easy to see
that the test from (S.2) can be replaced by a number of other suitable criteria.

(c) In general, Algorithm 3.3 requires two starting points x0, x1 ∈ H. This comes
from the particular recursion for the vector wn for n = 1. On the other hand, if we
take θ1 = 0 (this choice is explicitly allowed), then only one starting point x1 ∈ H
is needed.

(d) Geometrically, the set Cn is describes a half-space and there is a simple analytic
expression for the projection onto Cn, meaning that xn+1 can easily be computed
by

xn+1 :=

{

wn − 〈Ayn,wn−yn〉
‖Ayn‖2

Ayn, if 〈Ayn, wn − yn〉 > 0,

wn, if 〈Ayn, wn − yn〉 ≤ 0,
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see, e.g., [14]. Hence the main effort at each iteration of Algorithm 3.3 is one projec-
tion onto C and two evaluations of the operator A to get Awn and Ayn. Therefore,
the effort per iteration is even less than for the original (and only weakly convergent)
extragradient method which requires two projections onto C and two evaluations of
A.

(e) Our Algorithm 3.3 is much more applicable than the proposed methods in [15,
16, 24, 36, 40, 41, 44, 53] because the Lipschitz constant of A or an estimate of
it is needed in order to implement the proposed methods in these papers. Neither
the Lipschitz constant of A nor its estimate is needed during implementation of our
Algorithm 3.3 and A is not even required to be Lipschitz continuous. Hence, our
Algorithm 3.3 is applicable for a much more general class of monotone and uniformly
continuous mapping A. ♦

Remark 3.5. Using the fact that A is continuous and (9), we can see that Step
(S.3) in Algorithm 3.3 is well-defined. Furthermore, if SOL 6= ∅, the Step (S.4) is
well-defined since SOL ⊂ Cn by the lemma below and hence Cn 6= ∅ for all n ∈ N.
♦

Lemma 3.6. Let x∗ ∈ SOL and the function hn be defined by (12). Then

hn(wn) ≥
σηn
2
‖wn − zn‖2

and hn(x
∗) ≤ 0. In particular, if wn 6= zn, then hn(wn) > 0.

Proof. Since yn = wn − ηn(wn − zn), using (10) we have

hn(wn) = 〈Ayn, wn − yn〉
= ηn〈Ayn, wn − zn〉 ≥ ηn

σ

2
‖wn − zn‖2 ≥ 0.

If wn 6= zn, then hn(wn) > 0. Since x∗ ∈ SOL, we have

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C,

and thus implies by Lemma 2.8 that hn(x
∗) = 〈Ayn, x∗ − yn〉 ≤ 0.

4 Convergence Analysis

Here using the idea of proof in [38], we show that Algorithm 3.3 generates a sequence
{xn} which converges strongly to a solution of the underlying variational inequality
VI(A,C) (1) under the Assumptions 3.1 and 3.2. To this end we begin with a
technical lemma that will be used in our subsequent analysis. For the rest of this
paper, let z := PSOLx0.

Lemma 4.1. Let Assumptions 3.1 and 3.2 hold. Then for all n ∈ N the inequality

−2αn〈xn − z, xn − x0〉
≥ ‖xn+1 − z‖2 − ‖xn − z‖2 + 2θn+1‖xn+1 − xn‖2 − 2θn‖xn − xn−1‖2

+αn+1‖x0 − xn+1‖2 − αn‖xn − x0‖2 − θn‖xn − z‖2 + θn−1‖xn−1 − z‖2
+(1− 3θn+1 − αn)‖xn − xn+1‖2 (13)

holds for the sequences generated by Algorithm 3.3.
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Proof. By Lemma 2.7 we get (since z ∈ Cn) that

‖xn+1 − z‖2 = ‖PCn
(wn)− z‖2 ≤ ‖wn − z‖2 − ‖xn+1 − wn‖2 (14)

= ‖wn − z‖2 − dist2(wn, Cn).

Moreover, from the definition of wn, we obtain using Lemma 2.1 (a) that

‖wn − z‖2 = ‖(xn − z) + θn(xn − xn−1)− αn(xn − x0)‖2
= ‖xn − z‖2 + ‖θn(xn − xn−1)− αn(xn − x0)‖2

+2
〈

xn − z, θn(xn − xn−1)− αn(xn − x0)
〉

= ‖xn − z‖2 + 2θn〈xn − z, xn − xn−1〉 − 2αn〈xn − z, xn − x0〉
+‖θn(xn − xn−1)− αn(xn − x0)‖2, (15)

and, similarly, with z replaced by xn+1 in the previous formula,

‖wn − xn+1‖2
= ‖xn − xn+1‖2 + 2θn〈xn − xn+1, xn − xn−1〉
−2αn〈xn − xn+1, xn − x0〉+ ‖θn(xn − xn−1)− αn(xn − x0)‖2. (16)

Substituting (15) and (16) into (14) and eliminating identical terms, we get

‖xn+1 − z‖2
≤ ‖xn − z‖2 + 2θn〈xn − z, xn − xn−1〉
−2αn〈xn − z, xn − x0〉 − ‖xn − xn+1‖2
−2θn〈xn − xn+1, xn − xn−1〉+ 2αn〈xn − xn+1, xn − x0〉

= ‖xn − z‖2 + 2θn〈xn − z, xn − xn−1〉
−2αn〈xn − z, xn − x0〉 − ‖xn − xn+1‖2 + θn‖xn − xn+1‖2 + θn‖xn − xn−1‖2
−θn‖xn − xn+1 + (xn − xn−1)‖2 + 2αn〈xn − xn+1, xn − x0〉. (17)

Therefore, we obtain

‖xn+1 − z‖2 − ‖xn − z‖2 − θn‖xn − xn−1‖2 + (1− θn)‖xn − xn+1‖2
≤ −2αn〈xn − z, xn − x0〉+ 2θn〈xn − z, xn − xn−1〉+ 2αn〈xn − xn+1, xn − x0〉
= −2αn〈xn − z, xn − x0〉 − θn‖xn−1 − z‖2 + θn‖xn − z‖2 + θn‖xn − xn−1‖2
−αn‖x0 − xn+1‖2 + αn‖xn+1 − xn‖2 + αn‖xn − x0‖2, (18)

where the last identity exploits Lemma 2.1 (a) twice. We therefore have

−2αn〈xn − z, xn − x0〉 (19)

≥ ‖xn+1 − z‖2 − ‖xn − z‖2 + 2θn+1‖xn+1 − xn‖2 − 2θn‖xn − xn−1‖2
+θn

(

‖xn−1 − z‖2 − ‖xn − z‖2
)

+ αn

(

‖x0 − xn+1‖2 − ‖xn − x0‖2
)

+(1− θn − 2θn+1 − αn)‖xn+1 − xn‖2. (20)

Using the fact that {θn} is non-decreasing and {αn} is non-increasing, we then
obtain

−2αn〈xn − z, xn − x0〉
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≥ ‖xn+1 − z‖2 − ‖xn − z‖2 + 2θn+1‖xn+1 − xn‖2 − 2θn‖xn − xn−1‖2
+αn+1‖x0 − xn+1‖2 − αn‖xn − x0‖2 − θn‖xn − z‖2 + θn−1‖xn−1 − z‖2
+(1− 3θn+1 − αn)‖xn − xn+1‖2,

which is the desired inequality.

Our first central result below shows that the sequence {xn} generated by Algo-
rithm 3.3 is bounded under the given assumptions.

Theorem 4.2. Let Assumptions 3.1 and 3.2 hold. Then the sequence {xn} generated
by Algorithm 3.3 is bounded.

Proof. A simple re-ordering of (13) implies that

‖xn+1 − z‖2 − ‖xn − z‖2
≤ θn‖xn − z‖2 − θn−1‖xn−1 − z‖2 − (1− 3θn+1 − αn)‖xn − xn+1‖2
−2θn+1‖xn+1 − xn‖2 + 2θn‖xn − xn−1‖2 − αn+1‖x0 − xn+1‖2
+αn‖xn − x0‖2 − 2αn〈xn − x0, xn − z〉

= θn‖xn − z‖2 − θn−1‖xn−1 − z‖2 − (1− 3θn+1 − αn)‖xn − xn+1‖2
−2θn+1‖xn+1 − xn‖2 + 2θn‖xn − xn−1‖2 − αn+1‖x0 − xn+1‖2
+αn‖xn − x0‖2 + αn‖x0 − z‖2 − αn‖xn − x0‖2 − αn‖xn − z‖2, (21)

where the equality uses once again Lemma 2.1 (a). Hence, by cancellation, re-
ordering, and neglecting a non-positive term on the right-hand side, we obtain

‖xn+1 − z‖2 − ‖xn − z‖2 + αn‖xn − z‖2
≤ θn‖xn − z‖2 − θn−1‖xn−1 − z‖2 − (1− 3θn+1 − αn)‖xn − xn+1‖2
−2θn+1‖xn+1 − xn‖2 + 2θn‖xn − xn−1‖2 + αn‖x0 − z‖2. (22)

Let µj := e
∑j

i=1
αi , j ≥ 1. Since ex ≥ x+ 1 for all x ∈ R, we also have

1

µn+1

(

µn+1‖xn+1 − z‖2 − µn‖xn − z‖2
)

= ‖xn+1 − z‖2 − ‖xn − z‖2 + 1

µn+1

(µn+1 − µn)‖xn − z‖2

≤ ‖xn+1 − z‖2 − ‖xn − z‖2 + αn+1‖xn − z‖2.

Since {αn} is non-increasing in (0,1], this implies

1

µn+1

(

µn+1‖xn+1 − z‖2 − µn‖xn − z‖2
)

≤ ‖xn+1 − z‖2 − ‖xn − z‖2 + αn‖xn − z‖2. (23)

It then follows from (22) and (23) that

1

µn+1

(

µn+1‖xn+1 − z‖2 − µn‖xn − z‖2
)

≤ θn‖xn − z‖2 − θn−1‖xn−1 − z‖2
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−(1− 3θn+1 − αn)‖xn − xn+1‖2 − 2θn+1‖xn+1 − xn‖2
+2θn‖xn − xn−1‖2 + αn‖x0 − z‖2.

Since µn ≤ µn+1, µn+1 = µne
αn+1 and {αn} is non-increasing in (0,1], we therefore

get

µn+1‖xn+1 − z‖2 − µn‖xn − z‖2
≤ µn+1θn‖xn − z‖2 − µnθn−1‖xn−1 − z‖2 − µn+1(1− 3θn+1 − αn)‖xn+1 − xn‖2
−2µn+1θn+1‖xn+1 − xn‖2 + 2µnθne

αn+1‖xn − xn−1‖2 + µn+1αn‖x0 − z‖2,
which can be rewritten as (since {αn} is non-increasing in (0,1])

µn+1‖xn+1 − z‖2 − µn‖xn − z‖2
≤ µn+1θn‖xn − z‖2 − µnθn−1‖xn−1 − z‖2
−µn+1

[

1− θn+1

(

3 + 2(eαn+1 − 1)
)

− αn

]

‖xn+1 − xn‖2
−2µn+1θn+1e

αn+1‖xn+1 − xn‖2 + 2µnθne
αn‖xn − xn−1‖2 + µn+1αn‖x0 − z‖2.

Since the sequence {θn} belongs to the interval [0, θ] by Assumption 3.2, we have

1− θn+1

(

3 + 2(eαn+1 − 1)
)

− αn ≥ 1− θ
(

3 + 2(eαn+1 − 1)
)

− αn, ∀n ∈ N.

Using limn→∞ αn = 0 and θ ∈ [0, 1/3) from Assumption 3.2, it follows that the
right-hand side is eventually bounded from below by a positive number, i.e., there
is a constant γ > 0 such that 1 − θn+1

(

3 + 2(eαn+1 − 1)
)

− αn ≥ γ for all n ∈ N

sufficiently large, say, for all n ≥ n0. Hence, we have

µn+1‖xn+1 − z‖2 − µn‖xn − z‖2
≤ µn+1θn‖xn − z‖2 − µnθn−1‖xn−1 − z‖2 − 2µn+1θn+1e

αn+1‖xn+1 − xn‖2
−γµn+1‖xn+1 − xn‖2 + 2µnθne

αn‖xn − xn−1‖2 + µn+1αn‖x0 − z‖2.
This implies that for n ≥ n0,

‖x0 − z‖2
n

∑

k=n0+1

µk+1αk

≥ µn+1‖xn+1 − z‖2 + 2µn+1θn+1e
αn+1‖xn+1 − xn‖2 − µn+1θn‖xn − z‖2

−µn0+1‖xn0+1 − z‖2 − 2µn0+1θn0+1e
αn0+1‖xn0+1 − xn0

‖2
+µn0+1θn0

‖xn0
− z‖2. (24)

Thus, dividing by µn+1 and omitting a non-positive term, we get

‖xn+1 − z‖2 − θn‖xn − z‖2
≤ e−tn+1

[

µn0+1‖xn0+1 − z‖2 + 2µn0+1θn0+1e
αn0+1‖xn0+1 − xn0

‖2

−µn0+1θn0
‖xn0

− z‖2
]

+ ‖x0 − z‖2e−tn+1

n
∑

k=n0+1

αke
tk+1, (25)

where tn :=
∑n

i=1 αi. Since αk ∈ (0, 1] for all k ∈ N, it is easy to see that αke
tk+1 ≤

e2(etk − etk−1) for all k ≥ 2, so that

n
∑

k=n0+1

µk+1αk =
n

∑

k=n0+1

αke
tk+1 ≤ e2

(

etn − etn0

)

≤ e2etn ,
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which, by (25), e−tn+1 ≤ 1, and the fact that {θn} belongs to the interval [0, θ] ⊂
[0, 1

3
), yields

‖xn+1 − z‖2
≤ θ‖xn − z‖2 + µn0+1‖xn0+1

− z‖2 + 2µn0+1θn0+1e
αn0+1‖xn0+1 − xn0

‖2
+e2‖x0 − z‖2. (26)

Using (26), θ ∈ [0, 1), and the convergence of the geometric series, a simple calcula-
tion gives

‖xn+1 − z‖2 ≤ θn−n0‖xn0+1 − z‖2 + 1

1− θ

[

µn0+1‖xn0+1 − z‖2

+2µn0+1θn0+1e
αn0+1‖xn0+1 − xn0

‖2 + e2‖x0 − z‖2
]

.

Using once again that θ < 1, this shows that {xn} is bounded.

In the next lemma, we show that certain sequences obtained in Algorithm 3.3 are
null subsequences. These two lemmas are necessary in order to show that the weak
limit of {xn} is an element of SOL.

Lemma 4.3. Let {xn} generated by Algorithm 3.3 above and Assumptions 3.1 and
3.2 hold. If limn→∞ ‖xn+1 − wn‖ = 0, then

(a) lim
n→∞

ηn‖wn − zn‖2 = 0;

(b) lim
n→∞

‖wn − zn‖ = 0.

Proof. SinceA is uniformly continuous on bounded subsets ofH, then {Axn}, {zn}, {wn}
and {Ayn} are bounded. In particular, there exists M > 0 such that ‖Ayn‖ ≤ M
for all n ∈ N. Combining Lemma 2.6 and Lemma 3.6, we get

‖xn+1 − z‖2 = ‖PCn
(wn)− z‖2 ≤ ‖wn − z‖2 − ‖xn+1 − wn‖2

= ‖wn − z‖2 − dist2(wn, Cn)

≤ ‖wn − z‖2 −
( 1

M
hn(wn)

)2

≤ ‖wn − z‖2 −
( 1

2M
σηn‖r(wn)‖2

)2

= ‖wn − z‖2 −
( 1

2M
σηn‖wn − zn‖2

)2

. (27)

Since {xn} and {wn} are bounded, we obtain from (27) that

( 1

2M
σηn‖wn − zn‖2

)2

≤ ‖wn − z‖2 − ‖xn+1 − z‖2

=
(

‖wn − z‖ − ‖xn+1 − z‖
)(

‖wn − z‖+ ‖xn+1 − z‖
)

≤
(

‖wn − z‖ − ‖xn+1 − z‖
)

M1

≤ ‖wn − xn+1‖M1, (28)

12



where M1 := supn≥1{‖wn − z‖+ ‖xn+1 − z‖}. This establishes (a).

To establish (b), We distinguish two cases depending on the behaviour of (the
bounded) sequence of stepsizes {ηn}.
Case 1: Suppose that lim infn→∞ ηn > 0. Then

0 ≤ ‖r(wn)‖2 =
ηn‖r(wn)‖2

ηn

and this implies that (using (a) above)

lim sup
n→∞

‖r(wn)‖2 ≤ lim sup
n→∞

(

ηn‖r(wn)‖2
)(

lim sup
n→∞

1

ηn

)

=

(

lim sup
n→∞

ηn‖r(wn)‖2
)

1

lim infn→∞ ηn

= 0.

Hence, lim supn→∞ ‖r(wn)‖ = 0. Therefore,

lim
n→∞

‖wn − zn‖ = lim
n→∞

‖r(wn)‖ = 0.

Case 2: Suppose that lim infn→∞ ηn = 0. It suffices to show that lim supn→∞ ‖wn−
zn‖ = 0. Subsequencing if necessary, we may assume without loss of generality that
limn→∞ ηn = 0.

Define ȳn := 1
γ
ηnzn +

(

1− 1
γ
ηn

)

wn or, equivalently, ȳn − wn = 1
γ
ηn(zn − wn). Since

{zn − wn} is bounded and since limn→∞ ηn = 0 holds, it follows that

lim
n→∞

‖ȳn − wn‖ = 0. (29)

From the stepsize rule and the definition of ȳn, we have

〈Aȳn, wn − zn〉 <
σ

2
‖wn − zn‖2, ∀n ∈ N,

or equivalently

2〈Awn, wn − zn〉+ 2〈Aȳn − Awn, wn − zn〉 < σ‖wn − zn‖2, ∀n ∈ N.

Setting tn := wn − Awn, we obtain form the last inequality that

2〈wn − tn, wn − zn〉+ 2〈Aȳn − Awn, wn − zn〉 < σ‖wn − zn‖2, ∀k ∈ N.

Using Lemma 2.1 (iii) we get

2〈wn − tn, wn − zn〉 = ‖wn − zn‖2 + ‖wn − tn‖2 − ‖zn − tn‖2.

Therefore,

‖wn − tn‖2 − ‖zn − tn‖2 < (σ − 1)‖wn − zn‖2 − 2〈Aȳn − Awn, wn − zn〉 ∀n ∈ N.
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Since A is uniformly continuous on bounded subsets of H and (29), if a > 0 then
the right hand side of the last inequality converges to (σ−1)a < 0 as n→∞. From
the last inequality we have

lim sup
n→∞

(

‖wn − tn‖2 − ‖zn − tn‖2
)

≤ (σ − 1)a < 0.

For ǫ = −(σ − 1)a/2 > 0, there exists N ∈ N such that

‖wn − tn‖2 − ‖zn − tn‖2 ≤ (σ − 1)a+ ǫ = (σ − 1)a/2 < 0 ∀n ∈ N, n ≥ N,

leading to
‖wn − tn‖ < ‖zn − tn‖ ∀n ∈ N, n ≥ N,

which is a contradiction to the definition of zn = PC(wn−Awn). Hence a = 0, which
completes the proof.

Next, we formulate a simple lemma that turns out to be useful for proving the strong
convergence result.

Lemma 4.4. Let Assumptions 3.1 and 3.2 hold, and let {xn} be the sequence gen-
erated by Algorithm 3.3. Furthermore, let {un} be a sequence generated by

un := ‖xn − z‖2 − θn−1‖xn−1 − z‖2 + 2θn‖xn − xn−1‖2 + αn‖xn − x0‖2

for all n ∈ N. Then un ≥ 0 for all n ∈ N.

Proof. Since {θn} is non-decreasing with 0 ≤ θn < 1
3
, and 2〈x, y〉 = ‖x‖2 + ‖y‖2 −

‖x− y‖2 for all x, y ∈ H, we have

un = ‖xn − z‖2 − θn−1‖xn−1 − xn + xn − z‖2 + 2θn‖xn − xn−1‖2 + αn‖xn − x0‖2
= ‖xn − z‖2 − θn−1

[

‖xn−1 − xn‖2 + ‖xn − z‖2 + 2〈xn−1 − xn, xn − z〉
]

+2θn‖xn − xn−1‖2 + αn‖xn − x0‖2
= ‖xn − z‖2 − θn−1

[

2‖xn−1 − xn‖2 + 2‖xn − z‖2 − ‖xn−1 − 2xn − z‖2
]

+2θn‖xn − xn−1‖2 + αn‖xn − x0‖2
= ‖xn − z‖2 − 2θn−1‖xn−1 − xn‖2 − 2θn−1‖xn − z‖2 + θn−1‖xn−1 − 2xn − z‖2

+2θn‖xn − xn−1‖2 + αn‖xn − x0‖2

≥ ‖xn − z‖2 − 2θn‖xn−1 − xn‖2 −
2

3
‖xn − z‖2 + θn−1‖xn−1 − 2xn − z‖2

+2θn‖xn − xn−1‖2 + αn‖xn − x0‖2

≥ 1

3
‖xn − z‖2 + αn‖xn − x0‖2

≥ 0,

and this completes the proof.

Before we prove our main strong convergence result for Algorithm 3.3, we state
another preliminary result which provides sufficient conditions for the strong con-
vergence of the sequence {xn} generated by our method to a particular solution of
the variational inequality. In our strong convergence result, we will then show that
these sufficient conditions automatically hold.
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Lemma 4.5. Let Assumptions 3.1 and 3.2 hold, and let {xn} be the sequence gen-
erated by Algorithm 3.3. Assume that

lim
n→∞

‖xn+1 − xn‖ = 0

and
lim
n→∞

(‖xn+1 − z‖2 − θn‖xn − z‖2) = 0.

Then the entire sequence {xn} converges strongly to the solution z.

Proof. By assumption, we have

0 = lim
n→∞

(‖xn+1 − z‖2 − θn‖xn − z‖2)

= lim
n→∞

[

(‖xn+1 − z‖+
√

θn‖xn − z‖)(‖xn+1 − z‖ −
√

θn‖xn − z‖)
]

. (30)

We claim that this already implies

lim
n→∞

(‖xn+1 − z‖+
√

θn‖xn − z‖) = 0,

from which the strong convergence of the entire sequence {xn} to z follows imme-
diately. Assume this limit does not hold. Then there is a subset K ⊆ N and a
constant ρ > 0 such that

‖xn+1 − z‖+
√

θn‖xn − z‖ ≥ ρ, ∀n ∈ K. (31)

Using (30) and θn ≤ θ < 1 by Assumption 3.2, it then follows that

0 = lim
n∈K

(‖xn+1 − z‖ −
√

θn‖xn − z‖)

= lim sup
n∈K

(‖xn+1 − xn + xn − z‖ −
√

θn‖xn − z‖)

≥ lim sup
n∈K

(‖xn − z‖ − ‖xn+1 − xn‖ −
√

θn‖xn − z‖)

≥ lim sup
n∈K

((1−
√
θ)‖xn − z‖ − ‖xn+1 − xn‖)

= (1−
√
θ) lim sup

n∈K
‖xn − z‖ − lim

n∈K
‖xn+1 − xn‖

= (1−
√
θ) lim sup

n∈K
‖xn − z‖.

Consequently, we have lim supn∈K ‖xn − z‖ ≤ 0. Since lim infn∈K ‖xn − z‖ ≥ 0
obviously holds, it follows that limn∈K ‖xn − z‖ = 0. This implies (by (31))

‖xn+1 − xn‖ ≥ ‖xn+1 − z‖ − ‖xn − z‖
= ‖xn+1 − z‖+

√

θn‖xn − z‖ − (1 +
√

θn)‖xn − z‖
≥ ρ

2

for all n ∈ K sufficiently large, a contradiction to the assumption that limn→∞ ‖xn+1−
xn‖ = 0. This completes the proof.
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We now verify the strong convergence of any sequence {xn} generated by Algo-
rithm 3.3 to the projection of the given vector x0 onto SOL. Hence the choice of
x0 has a direct influence on the convergence of the sequence {xn}. Taking another
vector x0 ∈ H, we still have convergence of the entire sequence, but possibly to
another solution. In particular, this means that the method is able to find different
solutions. Hence, if there is an application which prefers to have a solution to belong
to a certain area, this a priori information can be incorporated into the method by
a suitable choice of x0.

Theorem 4.6. Let Assumptions 3.1 and 3.2 hold. Then the sequence {xn} generated
by Algorithm 3.3 strongly converges to the solution z.

Proof. Let un denote the nonnegative number defined in Lemma 4.4, and let us
apply Lemma 4.1. We obtain from (13) that

un+1 − un + (1− 3θn+1 − αn)‖xn − xn+1‖2
≤ −2αn〈xn − z, xn − x0〉. (32)

We now distinguish two cases.

Case 1. Suppose {un} is eventually a monotonically decreasing sequence, i.e. for
some n0 ∈ N large enough, we have un+1 ≤ un for all n ≥ n0. Then, since un is
nonnegative for all n ∈ N by Lemma 4.4, we obviously get that {un} is a convergent
sequence. Consequently, it follows that limn→∞ un = limn→∞ un+1. Since {xn} is
bounded by Theorem 4.2, there exists M > 0 such that 2|〈xn − z, xn − x0〉| ≤ M.
Moreover, from Assumption 3.2, it follows that there exists N ∈ N and γ1 > 0 such
that 1− 3θn+1 − αn ≥ γ1 for all n ≥ N . Therefore, for n ≥ N , we obtain from (32)
that

γ1‖xn+1 − xn‖2 ≤ αnM + un − un+1

≤ αnM + un − un+1

→ 0 for n→∞.

Hence
lim
n→∞

‖xn+1 − xn‖ → 0.

Together with αn → 0, the boundedness of {xn}, and the convergence of {un}, we
therefore obtain from the definition of un that the limit

λ := lim
n→∞

(

‖xn+1 − z‖2 − θn‖xn − z‖2
)

(33)

exists and is equal to limn→∞ un+1. In particular, Lemma 4.4 therefore implies that
λ ≥ 0. We will show that λ = 0 holds; then (33) together with the fact that
θn ≤ θ < 1 for all n ∈ N yields the strong convergence of the sequence {xn} to the
solution z.

By contradiction, assume that λ > 0. Since {xn} is bounded by Theorem 4.2, it
is easy to see that we can choose a subsequence {xnj

} which converges weakly to an
element p ∈ H and such that

lim inf
n→∞

〈xn − z, z − x0〉 = lim
j→∞
〈xnj
− z, z − x0〉 = 〈p− z, z − x0〉.
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We show that p ∈ SOL. Observe that the updating rule for wn implies

‖wn − xn‖ = ‖αn(x0 − xn) + θn(xn − xn−1)‖
≤ αn‖x0 − xn‖+ θn‖xn − xn−1‖ → 0, n→∞.

This yields

‖xn+1 − wn‖ ≤ ‖xn − wn‖+ ‖xn+1 − xn‖ → 0, n→∞.

Then by Lemma 4.3 (b), we have that xn − zn → 0. This implies that znj
⇀ p and

since zn ∈ C, we then have that p ∈ C. Similarly, wnj
⇀ p since wn − xn → 0. For

all x ∈ C and using (5), we have that (since A is monotone)

0 ≤ 〈znj
− wnj

+ Awnj
, x− znj

〉
= 〈znj

− wnj
, x− znj

〉+ 〈Awnj
, wnj

− znj
〉

+〈Awnj
, x− wnj

〉
≤ 〈znj

− wnj
, x− wnj

〉+ 〈Awnj
, wnj

− znj
〉

+〈Ax, x− wnj
〉.

Passing to the limit, we get

〈Ax, x− p〉 ≥ 0, ∀x ∈ C.

By Lemma 2.8, we have that p ∈ SOL. This implies that

lim inf
n→∞

〈xn − z, z − x0〉 = 〈p− z, z − x0〉 ≥ 0, (34)

where the inequality follows from the characterization (5) of a projection applied to
z = PSOLx0 and p ∈ SOL. Since (33) yields

lim inf
n→∞

‖xn+1 − z‖2 ≥ lim
n→∞

(

‖xn+1 − z‖2 − θn‖xn − z‖2
)

= λ,

and since λ > 0 by assumption, we have

‖xn+1 − z‖2 ≥ 1

2
λ ∀n ≥ n1

for some sufficiently large n1 ∈ N. Using the identity

〈xn − z, xn − x0〉 = ‖xn − z‖2 + 〈xn − z, z − x0〉,

we therefore get

lim inf
n→∞

〈xn − z, xn − x0〉 = lim inf
n→∞

(

‖xn − z‖2 + 〈xn − z, z − x0〉
)

≥ lim inf
n→∞

(1

2
λ+ 〈xn − z, z − x0〉

)

=
1

2
λ+ lim inf

n→∞
〈xn − z, z − x0〉

≥ 1

2
λ
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from (34). Using once again the assumption that λ > 0, this implies

〈xn − z, xn − x0〉 ≥
1

4
λ ∀n ≥ n2

for some sufficiently large n2 ∈ N, n2 ≥ n1. From (32), we therefore obtain

un+1 − un ≤ −
1

2
αnλ ∀n ≥ n2.

This implies
1

2
λ

n
∑

k=n2

αk ≤ un2
− un ≤ un2

∀n ≥ n2,

where the second inequality follows from Lemma 4.4. Since λ > 0, this gives the
summability of the sequence {αn}, a contradiction to our Assumption 3.2. Hence
we must have λ = 0, and this yields the strong convergence of the sequence {xn} to
z, cf. the above discussion.

Case 2. Assume {un} is not eventually monotonically decreasing. Then let τ : N→
N be the map defined for all n ≥ n0 (for some n0 ∈ N large enough) by

τ(n) := max{k ∈ N : k ≤ n, uk ≤ uk+1}. (35)

Clearly, τ(n) is a non-decreasing sequence such that τ(n) → ∞ for n → ∞ and
uτ(n) ≤ uτ(n)+1 for all n ≥ n0. Hence, similar to the proof of Case 1, we therefore
obtain from (32) that

γ1‖xτ(n)+1 − xτ(n)‖2 ≤ ατ(n)M → 0 (36)

for some constant M > 0. Thus,

‖xτ(n)+1 − xτ(n)‖ → 0, n→∞. (37)

Using the same technique of proof as in Case 1, one can also derive the limits

‖xτ(n)+1 − wτ(n)‖ → 0, n→∞,

‖wτ(n) − xτ(n)‖ → 0, n→∞, (38)

‖xτ(n) − zτ(n)‖ → 0, n→∞. (39)

Again observe that for j ≥ 0 by (32), we have uj+1 < uj when xj 6∈ Ω := {x ∈ H :
〈x − x0, x − z〉 ≤ 0} (note that this Ω is the same set as in Lemma 2.4). Hence
xτ(n) ∈ Ω for all n ≥ n0 since uτ(n) ≤ uτ(n)+1. Since {xτ(n)} is bounded, we may
choose a subsequence (which we again call {xτ(n)}) which converges weakly to some
x∗ ∈ H. As Ω is a closed and convex set, it is then weakly closed and so x∗ ∈ Ω.
Using (39), one can see as in Case 1 that zτ(n) ⇀ x∗ and x∗ ∈ SOL. Consequently,
we have x∗ ∈ Ω ∩ SOL. In view of Lemma 2.4, however, the intersection Ω ∩ SOL
contains z as its only element. We therefore get x∗ = z. Furthermore, we have

‖xτ(n) − z‖2 = 〈xτ(n) − x0, xτ(n) − z〉 − 〈z − x0, xτ(n) − z〉
≤ −〈z − x0, xτ(n) − z〉
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since xτ(n) ∈ Ω. Taking lim sup in this last inequality gives

lim sup
n→∞

‖xτ(n) − z‖ ≤ 0.

Hence
‖xτ(n) − z‖ → 0, n→∞. (40)

We claim that this implies limn→∞ uτ(n)+1 = 0. By definition, uτ(n)+1 is equal to

‖xτ(n)+1−z‖2−θτ(n)‖xτ(n)−z‖2+2θτ(n)+1‖xτ(n)+1−xτ(n)‖2+ατ(n)+1‖xτ(n)+1−x0‖2.
Adding and subtracting xτ(n) inside the norm of the first term, and using (37), (40),
we see that the first term goes to zero. The second term converges to zero also in
view of (40), taking into account the boundedness of {θn}. The third term vanishes
in the limit because of (37) and noting once again that {θn} is a bounded sequence.
Finally, the last term goes to zero since {αn} converges to zero and the sequence
{xn} is bounded by Theorem 4.2.

We next show that we actually have limn→∞ un = 0. To this end, first observe
that, for n ≥ n0, one has un ≤ uτ(n)+1 if n 6= τ(n) (that is, if τ(n) < n) because
we necessarily have uj > uj+1 for τ(n) + 1 ≤ j ≤ n − 1. It follows that for all
n ≥ n0, we have un ≤ max{uτ(n), uτ(n)+1} = uτ(n)+1 → 0, hence lim supn→∞ un ≤ 0.
On the other hand, Lemma 4.4 implies that lim infn→∞ un ≥ 0. Together we obtain
limn→∞ un = 0.

Consequently, the boundedness of {xn}, Assumption 3.2, and (32) show that

‖xn − xn+1‖ → 0, n→∞.

Hence the definition of un yields

lim
n→∞

(

‖xn+1 − z‖2 − θn‖xn − z‖2
)

= 0.

Using Assumption 3.2, it is not difficult to see that this implies the strong con-
vergence of the entire sequence {xn} to the particular solution z. The statement
therefore follows from Lemma 4.5.

5 Numerical Experiments

In this section, we discuss the numerical behaviour of Algorithm 3.3 (Alg 3.3 for
short) using some example in order to illustrate the effectiveness and implementation
of our method. The considered example is given in R

m and for this reason, there
is no need to use any of algorithms that produce strong convergence to a solution
of variational inequality. However, there are many problems that arise in infinite
dimensional spaces and for such problems strong convergence is often much more
desirable than weak convergence (see [9] and references therein). For this reason,
algorithms that produce strong convergence can be better suited than Extragradient
Algorithm (2) and its modifications that give weak convergence. Another reason to
study algorithms that produce strong convergence is for an academic interest. In
addition, our interest in this preliminary numerical investigation is to compare our
proposed algorithm (which produces strong convergence) with some other already
studied algorithms (see, e.g., [35, 41, 44]) in the literature where strong convergence
is also obtained.
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Example 5.1. This example is taken from [21] and has been considered by many
authors for numerical experiments (see, for example, [24, 41, 51]). The operator A
is defined by Ax := Mx + q, where M = BBT + S + D, where B, S,D ∈ R

m×m

are randomly generated matrices such that S is skew-symmetric (hence the operator
does not arise from an optimization problem),D is a positive definite diagonal matrix
(hence the variational inequality has a unique solution) and q = 0. The feasible set
C is described by linear inequality constraints Kx ≤ b for some random matrix K ∈
R

k×m and a random vector b ∈ R
k with nonnegative entries. Hence the zero vector is

feasible and therefore the unique solution of the corresponding variational inequality.
The projections are computed by solving a quadratic optimization problem using
the MATLAB solver quadprog. Hence, for this problem, the evaluation of A is
relatively inexpensive, whereas projections are costly. We present the corresponding
numerical results (number of iterations and CPU times in seconds) using different
dimensions m and different numbers of inequality constraints k. ♦

We compare Alg 3.3 with the algorithms proposed in [35, 41, 44] by solving Example
5.1. For convenience of comparison, we denote the algorithm (4) in [35] by Alg 1,
the algorithm (2) in [41] by Alg 2, and the algorithm defined in Theorem 3.1 in [44]
by Alg 3.

Table 1: Comparison of Alg 3.3, Alg 1, Alg 2 and Alg 3 for k = 20.

Iter. CPU in second
m Alg 3.3 Alg 1 Alg 2 Alg 3 Alg 3.3 Alg 1 Alg 2 Alg 3

10 157 401 342 771 2.5938 14.8125 12.7813 42.2813
20 851 1338 949 3959 16.6875 47.7188 36.1563 223.5469
30 1148 4764 1584 13432 24.4688 172.5000 63.6406 767.3906

Table 2: Comparison of Alg 3.3, Alg 1, Alg 2 and Alg 3 for k = 30.

Iter. CPU in second
m Alg 3.3 Alg 1 Alg 2 Alg 3 Alg 3.3 Alg 1 Alg 2 Alg 3

20 913 926 974 5433 21.1094 34.5938 41.1406 331.3906
30 1092 2974 1686 8376 49.2969 119.1094 72.2813 525
40 1659 7871 1780 9604 55.1406 751.0469 127.5626 1078

We take the initial point x0 to be the unit vector in Alg 3.3, Alg 1, Alg 2 and Alg
3 and choose the stopping criterion as ‖xn‖ ≤ ǫ = 0.05 in Tables 1 and 2. The
matrices B, S,D,K and the vector b are generated randomly.
Let the Lipschitz constant L be L = ‖A‖ in Alg 1, Alg 2 and Alg 3. In Alg 3.3,
we choose γ = 0.9, σ = 0.9, θn = 0.3 and αn = 1

n+2
. In Alg 1, choose αn = 1

n+2
,

τ = 1
L+8

. In Alg 2, λ = 1
2L+1

, k = 1
1−2λL

+ 1. In Alg 3, λ = 1
L+2

.
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Figure 1: Comparison of Alg 3.3 with Alg 1, Alg 2, and Alg 3 for k = 20,m = 20.

The numerical experiment in this section validates and demonstrates the advantages
of Alg 3.3 over other existing Alg 1, Alg 2 and Alg 3. The numerical results are
listed in Tables 1 and 2, and Figure 1, which illustrate that Alg 3.3 converges faster
than Alg 1, Alg 2 and Alg 3 in terms of the number of iterations and CPU time. In
particular, CPU time of Alg 3.3 is very small compare to other algorithms and the
reason may be that Alg 3.3 involves one projection onto C per each iteration and
addition of inertial terms. Therefore, Alg 3.3 has numerical advantage in large-scale
computations, based on our numerical example, over Alg 1, Alg 2 and Alg 3. We
caution, however, that this study is a very preliminary one.

6 Final Remarks

This paper presents strong convergence result for projection-type method involving
inertial extrapolation term for a monotone and uniformly continuous mapping in real
Hilbert spaces. Some numerical experiments are given to show efficiency and imple-
mentation of our scheme. Our scheme gives faster convergence with an appropriate
choice of θn when compared with other related existing strong convergence methods
in the literature. Part of our future research is to consider at least one example of
the real applied problem in an infinite-dimensional Hilbert space, which satisfies the
basic assumptions and then give the results of the computational solution of this
problem as well as the comparison with similar methods.

Acknowledgements Discussion with Christian Kanzow is gratefully acknowledged.
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