
DOI: 10.1007/s00145-014-9177-x
J Cryptol (2015) 28:312–350

An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries∗

Yehuda Lindell† and Benny Pinkas‡

Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
lindell@cs.biu.ac.il; benny@pinkas.net

Communicated by Rafail Ostrovsky

Received 1 July 2007
Online publication 10 April 2014

Abstract. We show an efficient secure two-party protocol, based on Yao’s construc-
tion, which provides security against malicious adversaries. Yao’s original protocol is
only secure in the presence of semi-honest adversaries, and can be transformed into a
protocol that achieves security against malicious adversaries by applying the compiler
of Goldreich, Micali, and Wigderson (the “GMW compiler”). However, this approach
does not seem to be very practical as it requires using generic zero-knowledge proofs.
Our construction is based on applying cut-and-choose techniques to the original circuit
and inputs. Security is proved according to the ideal/real simulation paradigm, and
the proof is in the standard model (with no random oracle model or common reference
string assumptions). The resulting protocol is computationally efficient: the only usage
of asymmetric cryptography is for running O(1) oblivious transfers for each input bit
(or for each bit of a statistical security parameter, whichever is larger). Our protocol
combines techniques from folklore (like cut-and-choose) along with new techniques for
efficiently proving consistency of inputs. We remark that a naive implementation of the
cut-and-choose technique with Yao’s protocol does not yield a secure protocol. This is
the first paper to show how to properly implement these techniques, and to provide a full
proof of security. Our protocol can also be interpreted as a constant-round black-box
reduction of secure two-party computation to oblivious transfer and perfectly hiding
commitments, or a black-box reduction of secure two-party computation to oblivious
transfer alone, with a number of rounds which is linear in a statistical security parameter.
These two reductions are comparable to Kilian’s (20th STOC, 1988) reduction, which
uses OT alone but incurs a number of rounds which is linear in the depth of the circuit.

Keywords. Secure two-party computation, Yao’s protocol, Real/ideal simulation
paradigm, Security against malicious adversaries.

∗ An extended abstract of this work was published in the proceedings of EUROCRYPT 2007.
† Research supported in part by an Infrastructures grant from the Ministry of Science, Israel.
‡ (Work carried out while at Haifa University). Research supported in part by the Israel Science Foundation

(Grant number 860/06).

© International Association for Cryptologic Research 2014

An Efficient Protocol for Secure Two-Party Computation 313

1. Introduction

Secure two-party computation. In the setting of two-party computation, two parties
with respective private inputs x and y wish to jointly compute a functionality f (x, y) =
(f1(x, y), f2(x, y)), such that the first party receives f1(x, y), and the second party
receives f2(x, y). Loosely speaking, the security requirements are that nothing is learned
from the protocol other than the output (privacy), and that the output is distributed
according to the prescribed functionality (correctness). The actual definition follows the
simulation paradigm and blends the above two requirements. Of course, security must
be guaranteed even when one of the parties is adversarial. Such an adversary may be
semi-honest (or passive), in which case it correctly follows the protocol specification, yet
attempts to learn additional information by analyzing the transcript of messages received
during the execution. In contrast, the adversary may be malicious (or active), in which
case it can arbitrarily deviate from the protocol specification.

The first general solutions for the problem of secure computation were presented by
Yao [31] for the two-party case (with security against semi-honest adversaries) and Gol-
dreich, Micali, and Wigderson [12] for the multi-party case (with security even against
malicious adversaries). Thus, the results of [31] and [12] constitute important and pow-
erful feasibility results for secure two-party and multi-party computation.

Yao’s protocol. In [31], Yao presented a constant-round protocol for securely computing
any functionality in the presence of semi-honest adversaries. Denote party P1 and P2’s
respective inputs by x and y and let f be the functionality that they wish to compute (for
simplicity, assume that both parties wish to receive f (x, y)). Loosely speaking, Yao’s
protocol works by having one of the parties (say party P1) first generate a “garbled” (or
encrypted) circuit computing f (x, ·) and then send it to P2. The circuit is such that it
reveals nothing in its encrypted form, and therefore, P2 learns nothing from this stage.
However, P2 can obtain the output f (x, y) by “decrypting” the circuit. In order to ensure
that P2 learns nothing more than the output itself, this decryption must be “partial” and
must reveal f (x, y) only. Without going into unnecessary details, this is accomplished
by P2 obtaining a series of keys corresponding to its input y, such that given these
keys and the circuit, the output value f (x, y), and only this value, may be obtained.
Of course, P2 must somehow receive these keys without revealing anything about y to
P1. This can be accomplished by running |y| instances of a secure 1-out-of-2 Oblivious
Transfer protocol [8,29]. Yao’s generic protocol is highly efficient, and even practical,
for functionalities that have relatively small circuits. An actual implementation of the
protocol was presented in [23], with very reasonable performance.

Security against malicious behavior. Yao’s protocol is only secure in the presence of
relatively weak semi-honest adversaries. Thus, an important question is how to “con-
vert” the protocol into one that is secure in the presence of malicious adversaries,
while preserving the efficiency of the original protocol to the greatest extent possi-
ble. Of course, one possibility is to use the compiler of Goldreich et al. [12]. This
compiler converts any protocol that is secure for semi-honest adversaries into one that
is secure for malicious adversaries, and as such is a powerful tool for demonstrating
feasibility. However, it is based on reducing the statement that needs to be proved (in

314 Y. Lindell and B. Pinkas

our case, the honesty of the parties’ behavior) to an NP-complete problem, and using
generic zero-knowledge proofs to prove this statement. The resulting secure protocol
therefore runs in polynomial time but is rather inefficient. (For more details on exist-
ing methods for proving security against malicious behavior see the section on related
work below.)

Malicious behavior and cut-and-choose. Consider for a moment what happens if party
P1 is malicious. In such a case, it can construct a garbled circuit that computes a func-
tion that is different to the one that P1 and P2 agreed to compute. A folklore solution
to this problem uses the “cut-and-choose” technique. According to this technique, P1
first constructs many garbled circuits and sends them to P2. Then, P2 asks P1 to “open”
half of them (namely, reveal the decryption keys corresponding to these circuits). P1
opens the requested half, and P2 checks that they were constructed correctly. If they
were, then P2 evaluates the rest of the circuits and derives the output from them. The
idea behind this methodology is that if a malicious P1 constructs the circuits incorrectly,
then P2 will detect this with high probability. Clearly, this solution solves the problem
of P1 constructing the circuit incorrectly. However, it does not suffice. First, it creates
new problems within itself. Most outstandingly, once the parties now evaluate a number
of circuits, some mechanism must be employed to make sure that they use the same
input when evaluating each circuit (otherwise, as we show below, an adversarial party
could learn more information than allowed). Second, in order to present a proof of secu-
rity based on simulation, there are additional requirements that are not dealt with by
just employing cut-and-choose (e.g., input extraction). Third, the folklore description of
cut-and-choose is very vague, and there are a number of details that are crucial when
implementing it. For example, if P2 evaluates many circuits, then the protocol must
specify what P2 should do if it does not receive the same output in every circuit. If the
protocol requires P2 to abort in this case (because it detected cheating from P1), then
this behavior actually yields a concrete attack in which P1 can always learn a specified
bit of P2’s input. It can be shown that P2 must take the majority output and proceed,
even if it knows that P1 has attempted to cheat. This is just one example of a subtlety that
must be dealt with. Another example relates to the fact that P1 may be able to construct
a circuit that can be opened with two different sets of keys: the first set opens the circuit
correctly and the second incorrectly. In such a case, an adversarial P1 can pass the basic
cut-and-choose test by opening the circuits to be checked correctly. However, it can also
supply incorrect keys to the circuits to be computed and thus cause the output of the
honest party to be incorrect.

Our contributions. This paper provides several contributions:

• Efficient protocol for malicious parties: We present an implementation of Yao’s
protocol with the cut-and-choose methodology, which is secure in the presence of
malicious adversaries and is computationally efficient: the protocol does not use
public-key operations, except for performing oblivious transfers for every input
bit of P2. For n-bit inputs and a statistical security parameter s, the protocol uses
O(max(s, n)) oblivious transfers. Thus, when the input size is of the same order as
the security parameter, only O(1) oblivious transfers are needed per input bit. Due

An Efficient Protocol for Secure Two-Party Computation 315

to the use of cut-and-choose, we incur a multiplicative increase by a factor of s in
the communication complexity of our protocol, which is O(s|C |) times the length
of symmetric ciphertexts, and in addition s2n commitments.
Beyond carefully implementing the cut-and-choose technique on the circuits in
order to ensure that the garbled circuits are constructed correctly, we present a new
method for enforcing the parties to use the same input in every circuit. This method
involves “consistency checks” that are based on cut-and-choose tests which are
applied to the sets of commitments to the garbled values associated with the input
wires of the circuit, rather than to the circuits themselves.
In actuality, we combine the cut-and-choose test over the circuits together with
the cut-and-choose test over the commitments in order to obtain a secure solution.
The test is rather complex conceptually, but is exceedingly simple to implement.
Specifically, P1 just needs to generate a number of commitments to the garbled
values associated with the input wires, and then open them based on cut-and-choose
queries from P2. (Actually, these cut-and-choose queries are chosen jointly by
the parties using a simple coin-tossing protocol; this is necessary for achieving
simulation.) We note that in this work we have emphasized providing a clear and
full proof of the protocol, rather than fully optimizing its overhead at the expense
of complicating the proof.
• Simulation based proof: We present a rigorous proof of the security of the protocol,

based on the real/ideal-model simulation paradigm [5,10]. The proof is in the stan-
dard model, with no random oracle model or common random string assumptions.
The protocol was designed to support such a proof, rather than make do with separate
proofs of privacy and correctness. (It is well-known that it is strictly harder to obtain
a simulation- based proof rather than security under such definitions.) One impor-
tant advantage of simulation-based proofs is that they enable the use of the protocol
as a building block in more complicated protocols, while proving the security of the
latter using general composition theorems like those of [5,10]. (For example, the
secure protocol of [1] for finding the kth ranked element is based on invoking several
secure computations of simpler functions, and provides simulation-based security
against malicious adversaries if the invoked computations have a simulation-based
proof. However, prior to our work, there was no known way, except for the GMW
compiler, of efficiently implementing these computations with this level of secu-
rity, and as a result there was no efficient way of implementing the protocols of [1]
with security against malicious adversaries.) See [5,10] for more discussion on the
importance of simulation-based definitions.
We stress that although a number of the techniques employed here have appeared
previously in the literature, to the best of our knowledge this is the first paper to
present a rigorous proof of security for the resulting protocol. A straightforward
implementation of the folklore techniques does not yield a secure protocol, and
great care needs to be taken in order to enable the proof to go through.
• A black-box reduction: Our protocol can be interpreted as a constant-round black-

box reduction of secure two-party computation to oblivious transfer and perfectly
hiding commitments. The perfectly hiding commitments are only used for conduct-
ing constant-round joint coin-tossing of a string of length s, where s is a statistical
security parameter. This coin-tossing can be carried out sequentially (bit by bit),

316 Y. Lindell and B. Pinkas

without using perfectly hiding commitments. We therefore also obtain an O(s)
round black-box reduction of secure two-party computation to oblivious transfer
alone. These two reductions are comparable to Kilian’s reduction, which uses OT
alone but incurs a number of rounds which is linear in the depth of the circuit [19].
In addition, our reduction is much more efficient than that of [19].

Related work. As we have mentioned, this paper presents a protocol which (1) has a
proof of security against malicious adversaries in the standard model, according to the
real/ideal model simulation definition, (2) has essentially the same computational over-
head as Yao’s original protocol (which is only secure against semi-honest adversaries),
and (3) has a somewhat larger communication overhead, which depends on a statistical
security parameter s.

We compare this result to other methods for securing Yao’s protocol against malicious
parties. There are several possible approaches to this task:

• The parties can reduce the statement about the honesty of their behavior to a state-
ment which has a well-known zero-knowledge proof, and then prove this statement.
This is the approach taken by the GMW compiler [12]. The resulting secure protocol
is not black-box, and is rather inefficient.
• Another approach is to apply a cut-and-choose modification to Yao’s protocol.

Mohassel and Franklin [25] show such a protocol which has about the same over-
head as ours, namely a communication overhead of O(|C |s + n2s) for a circuit C
with n inputs, and a statistical security parameter s. The protocol of [25] provides
output to the circuit evaluator alone. It enables, however, the circuit constructor to
carry out the following attack: it can corrupt its OT input which corresponds to a
0 value of the first input bit of the circuit evaluator, while not corrupting the OT
input for the 1 value. Other than that it follows the protocol. This behavior forces
the circuit evaluator to abort if its first input bit is 0, while if its first input bit is 1,
it does not learn anything at all about the attack. If the evaluator complains, then
the circuit constructor can conclude that its first input bit is 0, and therefore, the
evaluator cannot complain if it wants to preserve its privacy. (This attack is simi-
lar to the attack we describe in Sect. 3.2 where we discuss the encoding of P2 ’s
input.) The protocol therefore does not provide security according to a standard
definition. (We note however that this attack can be prevented using the meth-
ods we describe in Sect. 3.2 for encoding P2 ’s input.) Another protocol which is
based on cut-and-choose is described in [20]. This protocol uses committed OT
to address attacks similar to the one described above. We stress that both of these
papers [20,25] lack a full proof of security, and to our best judgment they need
considerable changes in order to support security according to a simulation-based
definition.
• The construction of [25] was improved by Woodruff [30], who described how

to reduce the communication to O(s|C | + sn) = O(s|C |), using expanders. It
seems that this approach can also be applied to our construction, but we have not
incorporated it into this work.
• Jarecki and Shmatikov [16] designed a protocol in which the parties efficiently

prove, gate by gate, that their behavior is correct. The protocol runs in a constant
number of rounds, and is based on the use of a special homomorphic encryption

An Efficient Protocol for Secure Two-Party Computation 317

system, which is used to encode the tables of each gate of the circuit (compared
to the use of symmetric encryption in Yao’s original protocol and in our paper).
The protocol is secure in a universally composable way under the decisional com-
posite residuosity and the strong RSA assumptions, assuming a common reference
string. Compared to our protocol, this protocol has a greater computational over-
head (O(|C |) rather than O(n) public key operations), but a smaller communication
overhead (O(|C |) rather than O(s|C |+s2n). In addition, our protocol can be based
on general assumptions.

In this paper, we construct an efficient protocol for general secure computation. Thus,
we do not (and cannot) compete with protocols that are constructed for specific tasks,
like voting, auctions, etcetera. We also do not discuss here the large body of work that
considers the efficiency of secure multi-party computation.

Organization. We present standard definitions of security for secure two-party compu-
tation in Sect. 2.1. Then, in Sect. 2.2 we show that a functionality that provides outputs
to both parties can be securely reduced to one which provides output for a single party,
and therefore we can focus on the latter case. In Sect. 3 we describe our protocol and
in Sect. 4 prove its security. In Sect. 5 we focus on the issue of efficiency and begin
by analyzing the complexity of our protocol. Then, in Sect. 5.1 we discuss efficient
implementations of the primitives that are used in our protocol. The basic protocol we
describe increases the number of inputs, and therefore the number of OT invocations.
In Sect. 5.2 we show how to reduce this number of OT invocations in order to improve
efficiency. We remark that in Appendix we provide a description of Yao’s basic protocol
for two-party that is based on [22].

2. Preliminaries

2.1. Definitions—Secure Computation

In this section we present the definition for secure two-party computation. The following
description and definition is based on [10, Chap. 7], which in turn follows [4,5,13,24].

Two-party computation. A two-party protocol problem is cast by specifying a random
process that maps pairs of inputs to pairs of outputs (one for each party). We refer to
such a process as a functionality and denote it f : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ ×{0, 1}∗,
where f = (f1, f2). That is, for every pair of inputs (x, y), the output-pair is a random
variable (f1(x, y), f2(x, y)) ranging over pairs of strings. The first party (with input x)
wishes to obtain f1(x, y), and the second party (with input y) wishes to obtain f2(x, y).1

Adversarial behavior. Loosely speaking, the aim of a secure two-party protocol is to
protect an honest party against dishonest behavior by the other party. In this paper, we

1 Another way of defining f is as a deterministic function f : {0, 1}∗×{0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗,
where the third input is uniformly chosen. That is, first a uniformly distributed string r is chosen, and then the
first and second parties receive f1(x, y, r) and f2(x, y, r), respectively.

318 Y. Lindell and B. Pinkas

consider malicious adversaries who may arbitrarily deviate from the specified proto-
col. When considering malicious adversaries, there are certain undesirable actions that
cannot be prevented. Specifically, a party may refuse to participate in the protocol, may
substitute its local input (and use instead a different input) and may abort the protocol
prematurely. One ramification of the adversary’s ability to abort is that it is impossible
to achieve “fairness”. That is, the adversary may obtain its output while the honest party
does not. As is standard for two-party computation, in this work we consider a static
corruption model, where one of the parties is adversarial and the other is honest, and
this is fixed before the execution begins.

Security of protocols (informal). The security of a protocol is analyzed by comparing
what an adversary can do in the protocol to what it can do in an ideal scenario that is
secure by definition. This is formalized by considering an ideal computation involving
an incorruptible trusted third party to whom the parties send their inputs. The trusted
party computes the functionality on the inputs and returns to each party its respective
output. Loosely speaking, a protocol is secure if any adversary interacting in the real
protocol (where no trusted third party exists) can do no more harm than if it was involved
in the above-described ideal computation.

Execution in the ideal model. As we have mentioned, some malicious behavior cannot
be prevented (for example, early aborting). This behavior is therefore incorporated into
the ideal model. An ideal execution proceeds as follows:

Inputs: Each party obtains an input, denoted w (w = x for P1, and w = y for P2).
Send inputs to trusted party: An honest party always sends w to the trusted party. A

malicious party may, depending on w, either abort or send some w′ ∈ {0, 1}|w| to
the trusted party.

Trusted party answers first party: In case it has obtained an input pair (x, y), the
trusted party first replies to the first party with f1(x, y). Otherwise (i.e., in case it
receives only one valid input), the trusted party replies to both parties with a special
symbol ⊥.

Trusted party answers second party: In case the first party is malicious it may, depend-
ing on its input and the trusted party’s answer, decide to stop the trusted party by
sending it ⊥ after receiving its output. In this case the trusted party sends ⊥ to the
second party. Otherwise (i.e., if not stopped), the trusted party sends f2(x, y) to the
second party.

Outputs: An honest party always outputs the message it has obtained from the trusted
party. A malicious party may output an arbitrary (probabilistic polynomial-time
computable) function of its initial input and the message obtained from the trusted
party.

Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality, where f = (f1, f2),
and let M = (M1, M2) be a pair of non-uniform probabilistic expected polynomial-time
machines (representing parties in the ideal model). Such a pair is admissible if for at
least one i ∈ {1, 2}, we have that Mi is honest (i.e., follows the honest party instructions
in the above-described ideal execution). Then, the joint execution of f under M in the

An Efficient Protocol for Secure Two-Party Computation 319

ideal model (on input pair (x, y)), denoted ideal f,M (x, y), is defined as the output pair
of M1 and M2 from the above ideal execution.

Execution in the real model. We next consider the real model in which a real (two-party)
protocol is executed (and there exists no trusted third party). In this case, a malicious
party may follow an arbitrary feasible strategy; that is, any strategy implementable by
non-uniform probabilistic polynomial-time machines. In particular, the malicious party
may abort the execution at any point in time (and when this happens prematurely, the
other party is left with no output).

Let f be as above and let � be a two-party protocol for computing f . Furthermore,
let M = (M1, M2) be a pair of non-uniform probabilistic polynomial-time machines
(representing parties in the real model). Such a pair is admissible if for at least one
i ∈ {1, 2} we have that Mi is honest (i.e., follows the strategy specified by �). Then,
the joint execution of � under M in the real model (on input pair (x, y)), denoted
real�,M (x, y), is defined as the output pair of M1 and M2 resulting from the protocol
interaction.

Security as emulation of a real execution in the ideal model. Having defined the
ideal and real models, we can now define security of protocols. Loosely speaking, the
definition asserts that a secure two-party protocol (in the real model) emulates the ideal
model (in which a trusted party exists). This is formulated by saying that admissible
pairs in the ideal model are able to simulate admissible pairs in an execution of a secure
real-model protocol.

Definition 1 (Secure two-party computation). Let f and � be as above. Protocol �

is said to securely compute f (in the malicious model) if for every pair of admissible
non-uniform probabilistic polynomial-time machines A = (A1, A2) for the real model,
there exists a pair of admissible non-uniform probabilistic expected polynomial-time
machines B = (B1, B2) for the ideal model, such that

{
ideal f,B(x, y)

}
x,y s.t. |x |=|y|

c≡
{

real�,A(x, y)
}

x,y s.t. |x |=|y|

Namely, the two distributions are computationally indistinguishable.

We note that the above definition assumes that the parties know the input lengths (this
can be seen from the requirement that |x | = |y|). Some restriction on the input lengths is
unavoidable, see [10, Sect. 7.1] for discussion. We also note that we allow the ideal adver-
sary/simulator to run in expected (rather than strict) polynomial-time. This is essential
for achieving constant-round protocols; see [3].

We denote the security parameter by n and, for the sake of simplicity, unify it with
the length of the inputs (thus we consider security for “all sufficiently long inputs”).
Everything in the paper remains the same if a separate security parameter n is used,
and we consider security for inputs of all lengths. We will also use a statistical security
parameter s; see the beginning of Sect. 3.1 for an explanation of the use of this separate
parameter.

320 Y. Lindell and B. Pinkas

The hybrid model. Our protocol uses a secure oblivious transfer protocol as a subpro-
tocol. It has been shown in [5] that it suffices to analyze the security of such a protocol
in a hybrid model in which the parties interact with each other and have access to a
trusted party that computes the oblivious transfer protocol for them. This model is a
hybrid of the real and ideal models: on the one hand, the parties send regular messages
to each other, like in the real model; on the other hand, the parties have access to a trusted
party, like in the ideal model. We remark that the composition theorem of [5] holds for
the case that the subprotocol executions are all run sequentially (and the messages of
the protocol calling the subprotocol do not overlap with any execution). We also remark
that if the oblivious transfer subprotocol is secure under parallel composition, then it is
straightforward to extend [5] so that the subprotocols may be run in parallel (again, as
long as the messages of the protocol calling the subprotocol do not overlap with any
execution).

2.2. Functionalities that Provide Output to a Single Party

In the definition above, we have considered the case that both parties receive output, and
these outputs may be different. However, the presentation of our protocol is far simpler
for the case that only party P2 receives output. We will show now that this suffices for the
general case. That is, any protocol that can securely compute any efficient functionality
f (x, y) where only P2 receives output, can be used to securely compute any efficient
functionality f = (f1, f2) where party P1 receives f1(x, y) and party P2 receives
f2(x, y).

Let f = (f1, f2) be a functionality. We wish to construct a secure protocol in which
P1 receives f1(x, y) and P2 receives f2(x, y); as a building block we use a protocol for
computing any efficient functionality with the limitation that only P2 receives output.
Let F be a field that contains the range of values { f1(x, y)}x,y∈{0,1}n , and let p, a, b be
randomly chosen elements in F . Then, in addition to x , party P1’s input includes the
elements p, a, b. Furthermore, define a functionality g (that has only a single output) as
follows:

g((p, a, b, x), y) = (α, β, f2(x, y)),

where α = p+ f1(x, y), β = a · α+ b, and the arithmetic operations are defined in F .
Note that α is a one-time pad encryption of P1’s output f1(x, y), and β is an information-
theoretic message authentication tag of α (specifically, aα+b is a pairwise-independent
hash of α). Now, the parties compute the functionality g, using a secure protocol in
which only P2 receives output. Following this, P2 sends the pair (α, β) to P1. Party P1
checks that β = a · α + b; if yes, it outputs α − p, and otherwise it outputs ⊥.

It is easy to see that P2 learns nothing about P1’s output f1(x, y), and that it cannot
alter the output that P1 will receive (beyond causing it to abort), except with probability
1/|F |. (We assume that 1/|F is the required probability for detecting attempts to alter
the output. If it is required instead that any change by P2 to P1’s output is detected
with probability 2−s , then the parameters a, b and the computation of β = a · α + b
can be defined in a field whose representation is s bits long.) We remark that it is also

An Efficient Protocol for Secure Two-Party Computation 321

straightforward to construct a simulator for the above protocol.2 We therefore conclude
with the following proposition:

Proposition 2. Assume that there exists a protocol for securely computing any func-
tionality in which only a single party receives output. Then, there exists a protocol for
securely computing any functionality in which both parties receive output.

We remark that the circuit for computing g is only mildly larger than that for computing f .
Thus, the construction above is also efficient and has only a mild effect on the complexity
of the secure protocol (assuming that the complexity of the original protocol, where only
P2 receives output, is proportional to the size of the circuit computing f).

3. The Protocol

Our protocol is based upon Yao’s garbled circuit construction, which is secure in the
presence of semi-honest adversaries [31]. That protocol has two parties: P1 (who is the
sender, or circuit constructor), and P2 (who is the receiver, or the circuit evaluator).
The protocol is described in Appendix, and a full description and proof of this protocol
is available in [22]. Our presentation from here on assumes full familiarity with Yao’s
basic protocol.

There are a number of issues that must be dealt with when attempting to make Yao’s
protocol secure against malicious adversaries rather than just semi-honest ones (beyond
the trivial observation that the oblivious transfer subprotocol must now be secure in the
presence of malicious adversaries).

First and foremost, a malicious P1 must be forced to construct the garbled circuit
correctly so that it indeed computes the desired function. The method that is typically
referred to for this task is called cut-and-choose. According to this methodology, P1
constructs many independent copies of the garbled circuit and sends them to P2. Party
P2 then asks P1 to open half of them (chosen randomly). After P1 does so, and party P2
checks that the opened circuits are correct, P2 is convinced that most of the remaining
(unopened) garbled circuits are also constructed correctly. (If there are many incorrectly
constructed circuits, then with high probability, one of those circuits will be in the set
that P2 asks to open.) The parties can then evaluate the remaining unopened garbled
circuits as in the original protocol for semi-honest adversaries, and take the majority
output-value.3

2 Note that in order to meet Definition 1, one must actually switch the roles of P1 and P2 above. This is
due to the fact that by our definition of the ideal model, a corrupted P1 is given the capability to cause P2 to
abort, even after P1 has received its own output. In contrast, a corrupted P2 is not given this capability. In the
protocol described, P2 receives output first and can cause P1 to abort, rather than the reverse. This is “fixed”
by just switching the roles.

3 The reason for taking the majority value as the output is that the aforementioned test only reveals a
single incorrectly constructed circuit with probability 1/2. Therefore, if P1 generates a single or constant
number of “bad” circuits, there is a reasonable chance that it will not be caught. In contrast, there is only an
exponentially small probability that the test reveals no corrupt circuit and at the same time a majority of the
circuits that are not checked are incorrect. Consequently, with overwhelming probability it holds that if the
test succeeds and P2 takes the majority result of the remaining circuits, then the result is correct. We remark

322 Y. Lindell and B. Pinkas

The cut-and-choose technique described above indeed solves the problem of a mali-
cious P1 constructing incorrect circuits. However, it also generates new problems! The
primary problem that arises is that since there are now many circuits being evaluated, we
must make sure that both P1 and P2 use the same inputs in each circuit; we call these con-
sistency checks. Consistency checks are important since if the parties were able to provide
different inputs to different copies of the circuit, then they can learn information that is
different from the desired output of the function. It is obvious that P2 can do so, since it
observes the outputs of all circuits, but in fact even P1, who only gets to see the majority
output, can learn additional information: information: Suppose, for example, that the
protocol computes n invocations of a circuit computing the inner-product between n bit
inputs. A malicious P2 could provide the inputs 〈10 · · · 0〉, 〈010 · · · 0〉, . . . , 〈0 · · · 01〉,
and learn all of P1’s input. If, on the other hand, P1 is malicious, then it could also
provide the inputs 〈10 · · · 0〉, 〈010 · · · 0〉, . . . , 〈0 · · · 01〉. In this case, P2 sends it the
value which is output by the majority of the circuits, and which is equal to the majority
value of P2’s input bits.

Another problem that arises when proving security is that the simulator must be able
to fool P2 and give it incorrect circuits (even though P2 runs a cut-and-choose test). This
is solved using rather standard techniques, like choosing the circuits to be opened via a
coin-tossing protocol (to our knowledge, this issue has gone unnoticed in all previous
applications of cut-and-choose to Yao’s protocol). Yet another problem is that P1 might
provide corrupt inputs to some of P2’s possible choices in the OT protocols. P1 might
then learn P2’s input based on whether or not P2 aborts the protocol.

We begin by presenting a high-level overview of the protocol. We then proceed to
describe the consistency checks, and finally the full protocol.

3.1. High-Level Overview

We work with two security parameters. The parameter n is the security parameter for the
commitment schemes, encryption, and the oblivious transfer protocol. The parameter s
is a statistical security parameter which specifies how many garbled circuits are used.
The difference between these parameters is due to the fact that the value of n depends on
computational assumptions, whereas the value of s reflects the possible error probability
that is incurred by the cut-and-choose technique and as such is a “statistical” security
parameter. Although it is possible to use a single parameter n, it may be possible to take
s to be much smaller than n. Recall that for simplicity, and in order to reduce the number
of parameters, we denote the length of the input by n as well.

Protocol 1 (High-level overview). Parties P1 and P2 have respective inputs x and y,
and wish to compute the output f (x, y) for P2.

Footnote 3 continued
that the alternative of aborting in case not all the outputs are the same (namely, where cheating is detected)
is not secure and actually yields a concrete attack. The attack works as follows. Assume that P1 is corrupted
and that it constructs all of the circuits correctly except for one. The “incorrect circuit” is constructed so that
it computes the exclusive-or of the desired function f with the first bit of P2’s input. Now, if P2 policy is to
abort as soon as two outputs are not the same then P1 knows that P2 aborts if, and only if, the first bit of its
input is 1.

An Efficient Protocol for Secure Two-Party Computation 323

Fig. 1. Transforming one of P2 ’s input wires (Step 0 of Protocol 1).

0. The parties decide on a circuit computing f . They then change the circuit by
replacing each input wire of P2 by a gate whose input consists of s new input wires
of P2 and whose output is the exclusive-or of these wires (such an s-bit exclusive-or
gate can be implemented using s−1 two-bit exclusive-or gates). Consequently, the
number of input wires of P2 increases by a factor of s. In Fig. 1. (In Sect. 5.2, we
show how to reduce the number of inputs.)

1. P1 commits to s different garbled circuits computing f , where s is a statistical
security parameter. (See Appendix for a description of the garbled-circuit con-
struction.) P1 also generates additional commitments to the garbled values corre-
sponding to the input wires of the circuits. These commitments are constructed in
a special way in order to enable consistency checks.

2. For every input bit of P2 , parties P1 and P2 run a 1-out-of-2 oblivious transfer
protocol in which P2 learns the garbled values of input wires corresponding to its
input.

3. P1 sends to P2 all the commitments of Step 1.
4. P1 and P2 run a coin-tossing protocol in order to choose a random string that

defines which commitments and which garbled circuits will be opened.
5. P1 opens the garbled circuits and committed input values that were chosen in the

previous step. P2 verifies the correctness of the opened circuits and runs consis-
tency checks based on the decommitted input values.

6. P1 sends P2 the garbled values corresponding to P1 ’s input wires in the unopened
circuits. P2 runs consistency checks on these values as well.

7. Assuming that all of the checks pass, P2 evaluates the unopened circuits and takes
the majority value as its output.

3.2. Checks for Correctness and Consistency

As can be seen from the above overview, P1 and P2 run a number of checks, with the
aim of forcing a potentially malicious P1 to construct the circuits correctly and use the
same inputs in (most of) the evaluated circuits. This section describes these checks.
Unfortunately, we are unable to present the protocol, nor prove its security, in a modular
fashion. Rather, the correctness and consistency checks are closely intertwined with the
other parts of the protocol. We will therefore describe the correctness and consistency
checks here, and describe the full protocol is Sect. 3.3. We hope that this improves the
readability of the actual protocol.

324 Y. Lindell and B. Pinkas

Encoding P2 ’s input: As mentioned above, a malicious P1 may provide corrupt input
to one of P2 ’s possible inputs in an OT protocol. If P2 chooses to learn this input then
it will not be able to decode the garbled tables which use this value, and it will therefore
have to abort. If P2 chooses to learn the other input associated with this wire then it
will not notice that the first input is corrupt. P1 can therefore learn P2 ’s input based
on whether or not P2 aborts. (Note that checking that the circuit is well-formed will
not help in thwarting this attack, since the attack is based on changing P1 ’s input to
the OT protocol.) The attack is prevented by the parties replacing each input bit of P2
with s new input bits whose exclusive-or is used instead of the original input (this step
was described as Step 0 of Protocol 1, and is analyzed in Lemma 5). P2 therefore has
2s−1 ways to encode a 0 input, and 2s−1 ways to encode a 1, and given its input it
chooses an encoding with uniform probability. The parties then execute the protocol
with the new circuit, and P2 uses oblivious transfer to learn the garbled values of its
new inputs. As we will show, if P1 supplies incorrect values as garbled values that
are associated with P2’s input, the probability of P2 detecting this cheating is almost
independent (up to a bias of 2−s+1) of P2’s actual input. This is not true if P2’s inputs
are not “split” in the way described above. The encoding presented here increases the
number of P2 ’s input bits and, respectively, the number of OTs, from n to ns. In Sect. 5.2
we show how to reduce the number of new inputs for P2 (and thus OTs) to a total of
only O(max(s, n)).

An unsatisfactory method for proving consistency of P1’s input: Consider the fol-
lowing idea for forcing P1 to provide the same input to all circuits. Let s be a security
parameter and assume that there are s garbled copies of the circuit. Then, P1 generates
two ordered sets of commitments for every wire of the circuit. Each set contains s com-
mitments: the “0 set” contains commitments to the garbled encodings of 0 for this wire
in every circuit, and the “1 set” contains commitments to the garbled encodings of 1 for
this wire in every circuit. P2 receives these commitments from P1 and then chooses a
random subset of the circuits, which will be defined as check-circuits. These circuits
will never be evaluated and are used only for checking correctness and consistency.
Specifically, P2 asks P1 to de-garble all of the check-circuits and to open the values
that correspond to the check-circuits in both commitment sets. (That is, if circuit i is a
check-circuit, then P1 decommits to both the 0 encoding and 1 encoding of all the input
wires in circuit i .) Upon receiving the decommitments, P2 verifies that all opened com-
mitments from the “0 set” correspond to garbled values of 0, and that a similar property
holds for commitments from the “1 set”.

It now remains for P2 to evaluate the remaining circuits. In order to do this, P1 provides
(for each of its input wires) the garbled values that are associated with the wire in all of
the remaining circuits. Then, P1 must prove that all of these values come from the same
set, without revealing whether the set that they come from is the “0 set” or the “1 set”
(otherwise, P2 will know P1’s input). In this way, on the one hand, P2 does not learn
the input of P1, and on the other hand, it is guaranteed that all of the values come from
the same set, and so P1 is forced into using the same input in all circuits. This proof can
be carried out using, for example, the proofs of partial knowledge of [6]. However, this
would require n proofs, each for s values, thereby incurring O(ns) costly asymmetric
operations which we want to avoid.

An Efficient Protocol for Secure Two-Party Computation 325

Proving consistency of P1 ’s input: P1 can prove consistency of its inputs without using
public-key operations. The proof is based on a cut-and-choose test for the consistency of
the commitment sets, which is combined with the cut-and-choose test for the correctness
of the circuits. (Note that in the previous proposal, there is only one cut-and-choose test,
and it is for the correctness of the circuits.) We start by providing a high-level description
of the proof of consistency: The proof is based on P1 constructing, for each of its input
wires, s pairs of sets of commitments. One set in every pair contains commitments to the
0 values of this wire in all circuits, and the other set is the same with respect to 1. The
protocol chooses a random subset of these pairs, and a random subset of the circuits,
and checks that these sets provide consistent inputs for these circuits. Then the protocol
evaluates the remaining circuits, and asks P1 to open, in each of the remaining pairs, and
only in one set in every pair, its garbled values for all evaluated circuits. (In this way, P2
does not learn whether these garbled values correspond to a 0 or to a 1.) In order for the
committed sets and circuits to pass P2 ’s checks, there must be large subsets C and S, of
the circuits and commitment sets, respectively, such that every choice of a circuit from
C and a commitment set from S results in a circuit and garbled values which compute
the desired function f . P2 accepts the verification stage only if all the circuits and sets
it chooses to check are from C and S, respectively. This means that if P2 does not abort
then circuits which are not from C are likely to be a minority of the evaluated circuits,
and a similar argument holds for S. Therefore the majority result of the evaluation stage
is correct. The exact construction is as follows:

Stage 1—Commitments: P1 generates s garbled versions of the circuit. Furthermore,
it generates commitments to the garbled values of the wires corresponding to P2’s input
in each circuit. These commitments are generated in ordered pairs so that the first item in
a pair corresponds to the 0 value and the second to the 1 value. The procedure regarding
the input bits of P1 is more complicated (see Fig. 2 for a diagram explaining this
construction). P1 generates s pairs of sets of committed values for each of its input wires.
Specifically, for every input wire i of P1, it generates s sets of the form {Wi, j , W ′i, j }sj=1;
we call these commitment sets. Before describing the content of these sets, denote
by kb

i,r the garbled value that is assigned to the value b ∈ {0, 1} in wire i of circuit r .
Then, the sets Wi, j and W ′i, j both contain s+1 commitments and are defined as follows.
Let b ∈R {0, 1} be a random bit, chosen independently for every {Wi, j , W ′i, j } pair.
Define Wi, j to contain a commitment to b, as well as commitments to the garbled value
corresponding to b in wire i in all of the s circuits, and define W ′i, j similarly, but with

respect to 1−b. In other words, Wi, j = {com(b), com(kb
i,1), . . . , com(kb

i,s)} and W ′i, j =
{com(1−b), com(k1−b

i,1 , . . . , com(k1−b
i,s)}. The fact that b is chosen randomly means

that with probability 1/2 the set Wi, j contains the commitments to values corresponding
to 0, and with probability 1/2 it contains the commitments to values corresponding to 1.
We stress that in each of the pairs (Wi,1, W ′i,1), . . . , (Wi,s, W ′i,s), the values that are
committed to are the same. The only difference is that independent randomness is used
in each pair for choosing b and constructing the commitments. We denote the first bit
committed to in a commitment set as the indicator bit.

After constructing these circuits and commitment sets, party P1 sends to P2 all of
the s garbled circuits (i.e., the garbled gate-tables and output-tables, but not the garbled

326 Y. Lindell and B. Pinkas

Fig. 2. The commitment sets corresponding to P1 ’s first input wire.

values corresponding to the input wires), and all the commitment sets. Note that if
P1’s input is of length n, then there are sn pairs of commitment sets; and a total of
sn(2s + 2) = O(s2n) commitments.

Stage 2—Challenge: Two random strings ρ, ρ′ ∈R {0, 1}s are chosen and sent to P1
(in the actual protocol, these strings are determined via a simple coin-tossing protocol).
The string ρ is a challenge indicating which garbled circuits to open, and the string ρ′ is a
challenge indicating which commitment sets to open. We call the opened circuits check-
circuits and the unopened ones evaluation-circuits. Likewise, we call the opened sets
check-sets and the unopened ones evaluation-sets. A circuit (resp., commitment set)
is defined to be a check-circuit (resp., check-set) if the corresponding bit in ρ (resp., ρ′)
equals 1; otherwise, it is defined to be an evaluation-circuit (resp., evaluation-set).

Stage 3—Opening: First, party P1 opens all the commitments corresponding to P2’s
input wires in all of the check-circuits. Second, in all of the check-sets P1 opens the
commitments that correspond to check-circuits. That is, if circuit r is a check circuit,
then P1 decommits to all of the values com(k0

i,r), com(k1
i,r) in check-sets, where i is

any of P1 ’s input bits. Finally, for every check-set, P1 opens the commitment to the
indicator bit, the initial value in each of the sets Wi, j , W ′i, j . See Fig. 3 for a diagram in
which the values which are opened are highlighted (the diagram refers to only one of
P1 ’s input wires in the circuit).

Stage 4—Verification: In this step, party P2 verifies that all of the check-circuits
were correctly constructed. In addition, it verifies that, with regards to P1 ’s inputs, all
the opened commitments in sets whose first item is a commitment to 0 are to garbled

An Efficient Protocol for Secure Two-Party Computation 327

Fig. 3. In every check-set, the commitment to the indicator bit, and the commitments corresponding to check-
circuits are all opened.

encodings of 0; likewise for 1. These checks are carried out as follows. First, in all of the
check-circuits, P2 receives the decommitments to the garbled values corresponding to
its own input, and by the order of the commitments P2 knows which value corresponds
to 0 and which value corresponds to 1. Second, for every check-circuit, P2 receives
decommitments to the garbled input values of P1 in all the check-sets, along with a bit
indicating whether these garbled values correspond to 0 or to 1. It first checks that
for every wire, the garbled values of 0 (resp., of 1) are all equal. Then, the above
decommitments enable the complete opening of the garbled circuits (i.e., the decryption
of all of the garbled tables). Once this has been carried out, it is possible to simply
check that the check-circuits are all correctly constructed. Namely, that they agree with
a specific and agreed-upon circuit computing f .

Stage 5—Evaluation and Verification: Party P1 reveals the garbled values corre-
sponding to its input: If i is a wire that corresponds to a bit of P1’s input and r is an
evaluation-circuit, then P1 decommits to the commitments kb

i,r in all of the evaluation-
sets, where b is the value of its input bit. This is depicted in Fig. 4. Finally, P2 verifies
that (1) for every input wire, all the opened commitments that were opened in evaluation-
sets contain the same garbled value, and (2) for every i, j P1 opened commitments of
evaluated circuits in exactly one of Wi, j or W ′i, j . If these checks pass, it continues to
evaluate the circuit.

Intuition. Having described the mechanism for checking consistency, we now provide
some intuition as to why it is correct. A simple cut-and-choose check verifies that most
of the evaluated circuits are correctly constructed. The main remaining issue is ensuring
that P1 ’s inputs to most circuits are consistent. If P1 wants to provide different inputs to

328 Y. Lindell and B. Pinkas

Fig. 4. P1 opens in the evaluation-sets, the commitments that correspond to its input. In every evaluation-set
these commitments come from the same item in the pair.

a certain wire in two circuits, then all the Wi, j (or W ′i, j) sets it opens in evaluation-sets
must contain a commitment to 0 in the first circuit and a commitment to 1 in the other
circuit. However, if any of these sets is chosen to be checked, and the circuits are among
the checked circuits, then P2 aborts. This means that if P1 attempts to provide different
inputs to two circuits and they are checked, it is almost surely caught. Now, since P2
outputs the majority output of the evaluated circuits, the result is affected by P1 providing
different inputs only if these inputs affect a constant fraction of the circuits. But since
all of these circuits must not be checked, P1 ’s probability of success is exponentially
small in s.

3.3. The Full Protocol

We now describe the full protocol in detail. We use the notation comb to refer to a per-
fectly binding commitment scheme, and comh to refer to a perfectly hiding commitment
scheme (See [9] for definitions).

Protocol 2. (protocol for computing f (x, y)):

• Input: P1 has input x ∈ {0, 1}n and P2 has input y ∈ {0, 1}n.
• Auxiliary input: a statistical security parameter s and the description of a circuit

C0 such that C0(x, y) = f (x, y).
• Specified output: party P2 should receive f (x, y), and party P1 should receive

no output. (Recall that this suffices for the general case where both parties receive
possibly different outputs; see Sect. 2.2.)

An Efficient Protocol for Secure Two-Party Computation 329

• The protocol:

0. Circuit construction: The parties replace C0 with a circuit C which is
constructed by replacing each input wire of P2 by the result of an exclusive-or
of s new input wires of P2 , as depicted in Fig. 1. (We show in Sect. 5.2 how the
number of new input bits can be reduced.) The number of input wires of P2 is
increased from |y| = n to sn. Let the bit-wise representation of P2 ’s original
input be y = y1, . . . , yn. Denote its new input as ŷ = ŷ1, . . . , ŷns . P2 chooses
its new input at random subject to the constraint yi = ŷ(i−1)·s+1 ⊕ · · · ⊕ ŷi ·s .

1. Commitment construction: P1 constructs the circuits and commits to them,
as follows:

(a) P1 constructs s independent copies of a garbled circuit of C, denoted
GC1, . . . , GCs.

(b) P1 commits to the garbled values of the wires corresponding to P2 ’s
input to each circuit. That is, for every input wire i corresponding to an
input bit of P2, and for every circuit GCr , P1 computes the ordered pair
(comb(k0

i,r), comb(k1
i,r)), where kb

i,r is the garbled value associated with
b on input wire i in circuit GCr .

(c) P1 computes commitment-sets for the garbled values that correspond to
its own inputs to the circuits. That is, for every wire i that corresponds to
an input bit of P1, it generates s pairs of commitment sets {Wi, j , W ′i, j }sj=1,
in the following way:
Denote by kb

i,r the garbled value that was assigned by P1 to the value
b ∈ {0, 1} of wire i in GCr . Then, P1 chooses b ∈R {0, 1} and computes

Wi, j = 〈comb(b), comb(k
b
i,1), . . . , comb(k

b
i,s)〉, and

W ′i, j = 〈comb(1−b), comb(k
1−b
i,1), . . . , comb(k

1−b
i,s)〉.

For each i, j , the sets are constructed using independent randomness,
and in particular the value of b is chosen independently for every
j = 1 . . . s. There is a total of ns commitment-sets. We divide them
into s supersets, where superset S j is defined to be the set containing
the j th commitment set for all wires. Namely, it is defined as S j =
{(W1, j , W ′1, j), . . . , (Wn, j , W ′n, j)}.

2. Oblivious transfers: For every input bit of P2 , parties P1 and P2 run a
1-out-of-2 oblivious transfer protocol in which P2 receives the garbled values
for the wires that correspond to its input bit (in every circuit). That is, let
cb

i,r denote the commitment to the garbled value kb
i,r and let dcb

i,r denote the

decommitment value for cb
i,r . Furthermore, let i1, . . . , ins be the input wires

that correspond to P2’s input.
Then, for every j = 1, . . . , ns, parties P1 and P2 run a 1-out-of-2 OT protocol
in which:

(a) P1’s input is the pair of vectors ([dc0
i j ,1

, . . . , dc0
i j ,s
], [dc1

i j ,1
, . . . , dc1

i j ,s
]).

330 Y. Lindell and B. Pinkas

(b) P2’s input is its j th input bit ŷ j (and its output should thus be

[dc
ŷ j
i j ,1

, . . . , dc
ŷ j
i j ,s
]).

If the oblivious transfer protocol provides security for parallel execution, then
these executions will run in parallel. Otherwise, they will run sequentially.

3. Send circuits and commitments: P1 sends to P2 the garbled circuits (i.e.,
the gate and output tables), as well as all of the commitments that it prepared
above.

4. Prepare challenge strings:

(a) P2 chooses a random string ρ2 ∈R {0, 1}s and sends comh(ρ2) to P1 .
(b) P1 chooses a random string ρ1 ∈ {0, 1}s and sends comb(ρ1) to P2 .
(c) P2 decommits, revealing ρ2.
(d) P1 decommits, revealing ρ1.
(e) P1 and P2 set ρ = ρ1 ⊕ ρ2.

The above steps are run a second time, defining an additional string ρ′.4
5. Decommitment phase for check-circuits: From here on, we refer to the

circuits for which the corresponding bit in ρ is 1 as check-circuits, and we
refer to the other circuits as evaluation-circuits. Likewise, if the j th bit of ρ′
equals 1, then all commitments sets in superset S j = {(Wi, j , W ′i, j)}i=1...n are
referred to as check-sets; otherwise, they are referred to as evaluation-sets.
For every check-circuit GCr , party P1 operates in the following way:

(a) For every input wire i corresponding to an input bit of P2, party P1 decom-
mits to the pair (com(k0

i,r), com(k1
i,r)) (namely to both of P2 ’s inputs).

(b) For every input wire i corresponding to an input bit of P1, party P1 decom-
mits to the appropriate values in the check-sets {Wi, j , W ′i, j }. Specifically,

P1 decommits to the com(k0
i,r) and com(k1

i,r) values in (Wi, j , W ′i, j), for
every check-set S j (see Fig. 3). In addition, P1 decommits to the indicator
bits of these sets (i.e., to the first committed value in each set).

For every pair of check-sets (Wi, j , W ′i, j), party P1 decommits to the first value
in each set (i.e., to the value that is supposed to be a commitment to the indicator
bit, com(0) or com(1)).

6. Decommitment phase for P1’s input in evaluation-circuits: P1 decom-
mits to the garbled values that correspond to its inputs in evaluation-circuits.
Let i be the index of an input wire that corresponds to P1’s input (the follow-
ing procedure is applied to all such wires). Let b be the binary value that P1
assigns to input wire i . In every evaluation-set (Wi, j , W ′i, j), P1 chooses the set
(out of (Wi, j , W ′, j)), which corresponds to the value b. It then opens in this set
the commitments that correspond to evaluation-circuits. Namely, to the values
kb

i,r , where r is an index of an evaluation circuit (see Fig. 4).

4 Recall that ρ and ρ′ are used to ensure that P1 constructs the circuits correctly and uses consistent input
in each circuit. Thus, it may seem strange that they are generated via a coin-tossing protocol, and not just
chosen singlehandedly by P2. Indeed, in order to prove the security of the protocol when P1 is corrupted,
there is no need for a coin-tossing protocol here. However, having P2 choose ρ and ρ′ singlehandedly creates
a problem for the simulation in the case that P2 is corrupted. We therefore use a coin-tossing protocol instead.

An Efficient Protocol for Secure Two-Party Computation 331

7. Correctness and consistency checks: P2 performs the following checks;
if any of them fails it aborts.

(a) Checking correctness of the check-circuits: P2 verifies that each check-
circuit GCi is a garbled version of C. This check is carried out by P2
first constructing the input tables that associate every garbled value of
an input wire to a binary value. The input tables for P2’s inputs are
constructed by checking that the decommitments in Step 5a to the pairs
(com(k0

i,r), com(k1
i,r)) (where i is a wire index, and r is a circuit index)

are valid, and then interpreting the first value to be associated with 0 and
the second value to be associated with 1.
Next, P2 checks the decommitments to P1 ’s inputs. This check involves
first checking that the decommitment values of Step 5b are valid. Then,
P2 verifies that in each pair of check-sets, one of (Wi, j , W ′i, j) begins with
a commitment to 0 (henceforth the 0-tuple), and the other begins with a
commitment to 1 (henceforth the 1-tuple). Then P2 checks that for every
wire, the values that are decommitted to in the 0-tuples in all check-sets
are all equal, and that a similar property holds for the 1-tuples. P2 then
assigns the logical value of 0 to all of the opened commitments in the
0-tuples, and the logical value of 1 to the opened commitments in the
1-tuples.
Finally, given all the garbled values to the input wires and their associated
binary values, P2 decrypts the circuit and compares it to the circuit C.

(b) Verifying P2 ’s input in the check-circuits: P2 verifies that P1 ’s decommit-
ments to the wires corresponding to P2 ’s input values in the check-circuits
are correct, and agree with the logical values of these wires (the indicator
bits). P2 also checks that the inputs it learned in the oblivious transfer
stage for the check-circuits correspond to its actual input. Specifically,
it checks that the decommitment values that it received in the oblivious
transfer stage open the committed values that correspond to the garbled
values of its logical input (namely, that it received the first value in the
pair if the input bit is 0 and the second value if it is 1).5

(c) Checking P1 ’s input to evaluation-circuits: Finally, P2 verifies that for
every input wire i of P1 the following two properties hold:

i. In every evaluation-set, P1 chose one of the two sets and decommitted
to all the commitments in it which correspond to evaluation-circuits.

ii. For every evaluation-circuit, all of the commitments that P1 opened
in evaluation-sets commit to the same garbled value.

8. Circuit evaluation: If any of the above checks fails, P2 aborts and outputs
⊥. Otherwise, P2 evaluates the evaluation circuits (in the same way as for the
semi-honest protocol of Yao). It might be that in certain circuits the garbled
values provided for P1 ’s inputs, or the garbled values learned by P2 in the OT
stage, do not match the tables and so decryption of the circuit fails. In this case

5 This check is crucial and thus the order of first running the oblivious transfer and then sending the circuits
and commitments is not at all arbitrary.

332 Y. Lindell and B. Pinkas

P2 also aborts and outputs ⊥. Otherwise, P2 takes the output that appears in
most circuits, and outputs it (the proof shows that this value is well defined).

4. Proof of Security

The security of Protocol 2 is stated in the following theorem.

Theorem 3. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be any probabilistic polynomial-time
two-party functionality and consider the instantiation of Protocol 2 for functionality f .
Assume that the oblivious transfer protocol is secure, that comb is a perfectly binding
commitment scheme, that comh is a perfectly hiding commitment scheme, and that the
garbled circuits are constructed as in [22]. Then, Protocol 2 securely computes f .

The theorem is proved in two stages: first for the case that P1 is corrupted, and next
for the case that P2 is corrupted.

4.1. Security Against a Malicious P1

Intuition. The proof constructs an ideal-model adversary/simulator which has access
to P1 and to the trusted party, and can simulate the view of an actual run of the pro-
tocol. It uses the fact that the strings ρ, ρ′, which choose the circuits and commitment
sets that are checked, are uniformly distributed even if P1 is malicious. The simulator
runs the protocol until P1 opens the commitments of the checked circuits and checked
commitment sets, and then rewinds the execution and runs it again with new random
ρ, ρ′ values. We expect that about one quarter of the circuits will be checked in the first
execution and evaluated in the second execution. For these circuits, in the first execution
the simulator learns the translation between the garbled values of P1 ’s input wires and
the actual values of these wires, and in the second execution it learns the garbled values
that are associated with P1 ’s input (this association is learned from the garbled values
that P1 sends to P2). Combining the two, it learns P1 ’s input x , which can then be sent
to the trusted party. The trusted party answers with f (x, y), which we use to define P2 ’s
output and complete the simulation.

When examining the detailed proof, first note that the strings ρ, ρ′ computed in Step 4
of Protocol 2, are uniformly distributed even in the presence of a malicious P1 . This
is due to the perfect hiding of P2’s commitments in the coin-tossing subprotocol. We
say that a circuit GCi and a superset S j agree if the checks in Step 7 of the protocol
succeed when considering only the check-circuit GCi and the superset of check sets
S j . In particular, this means that GCi computes the required function when the garbled
values of P1 ’s input wires are taken from S j , and that these garbled values agree with the
indicator bit of the sets in S j . This also means that the committed values of the garbled
values of P2 ’s input wires in GCi are correctly constructed. (Some circuits might not
agree with any set S j , e.g., if they do not compute f . Other circuits might agree with
some supersets and not agree with others.)

We begin by proving two lemmas that will be used in analyzing the simulation
(described below). We say that a circuit is ε-bad if more than εs of the supersets
disagree with it. The following lemma shows that P2 aborts (with high probability) if

An Efficient Protocol for Secure Two-Party Computation 333

more than εs of the circuits are ε-bad . We can therefore concentrate on the case that εs
or less of the circuits are bad.

Lemma 4. If at least εs of the circuits are ε-bad , then P2 aborts with probability of
at least 1− 2 · 2−εs .

Proof. As a warmup, suppose that there is a single ε-bad circuit. Then the probability
of P2 not aborting is at most 1/2+ 1/2 · 2−εs ; i.e., the probability that the bad circuit is
not chosen as a check-circuit plus the probability that it is a check circuit but all check-
sets agree with it (since the circuits are chosen independently, we can just multiply the
probabilities in the latter case). Suppose now that there are j different ε-bad circuits.
Then the probability of P2 not aborting is at most 2− j + (1− 2− j)2−εs ≤ 2− j + 2−εs .
Setting j = εs yields the lemma. �

The following lemma shows that P2 aborting does not reveal information to P1 about
P2 ’s input.

Lemma 5. For any two different inputs y and y′ of P2 for the function f , the difference
between the probability that P2 aborts Protocol 2 when its input is y and when its input
is y′ is at most n2−s+1.

Proof. P2 may abort Protocol 2 in Step 7(a) while checking the correctness of the
check circuits and the check sets. In this case, the decision to abort is based on P1 ’s
construction of the sets and circuits, and on the random inputs of the parties, and is
independent of P2 ’s input. The same is true of Step 7(c) where P2 checks P1 ’s input
to the evaluation circuits. In Step 7(b), however, P2 aborts based on whether the values
it learned in the oblivious transfer invocations open P1 ’s commitments to the garbled
values of P2 ’s input. This case must be examined in detail.

Consider a specific input bit of P2 . In Step 0 of Protocol 2 the circuit is changed so
that this bit is computed as the exclusive-or of s new input bits of P2 . Consider the s
new inputs which replace a single input wire of the original circuit. Suppose that P1
provides in the OT protocol corrupt values to both garbled values of one of P2 ’s (new)
input wires. Then P2 aborts with probability 1 regardless of its input. If P1 provides
a corrupt OT value to exactly one of the two possible OT choices, of 1 ≤ j < s new
wires, then P2 aborts with probability 1 − 2− j , again regardless of the actual value of
its original input. This holds because the values assigned by P2 to any proper subset of
the s bits are independent of P2 ’s actual input. Assume now that P1 corrupts one OT
value for each of the s new wires (say all ‘1’ values). Then P2 aborts with probability
1 if its original input had one value (‘1’ in this example), and aborts with probability
1− 2−s+1 if its original input had the other value (in this example, P2 does not abort if
its input is ‘0’ and it chose only ‘0’ inputs in the s OT invocations). Therefore, for any
two different inputs y and y′ of P2 of length n-bits each, the probability that P2 aborts
the protocol differs by at most n2−s+1, as required. �

We are now ready to prove the security of the protocol under simulation-based definitions.

334 Y. Lindell and B. Pinkas

Lemma 6. Assume that the oblivious transfer protocol is secure, that the commitment
scheme comh is perfectly hiding, and that the commitment scheme comb is perfectly
binding. Then, Protocol 2 is secure in the case that P1 is corrupted. (We say that a protocol
is secure in the case that P1 is corrupted if Definition 1 holds when A = (A1, A2) is
such that A2 is honest.)

Proof. Let A1 be an adversary corrupting P1; we construct an ideal-model adver-
sary/simulator B1. Since we assume that the oblivious transfer protocol is secure, we
analyze the security of Protocol 2 in the hybrid model with a trusted party computing
the oblivious transfer functionality.

The simulator. The simulator B1 chooses a random input y′ for P2 and uses it in all but
the last stage of the simulation. B1 receives all of the garbled circuits and commitments
from A1. Simulator B1 then runs the coin-tossing phase (for preparing the challenge
strings) as P2 would, and receives all of the required decommitments from A1, including
the garbled values that supposedly correspond to its input. B1 runs all of the checks that
P2 would run. If any of the checks fail, B1 sends an abort message to A1, sends ⊥ to
the trusted party and halts, outputting whatever A1 outputs. Otherwise, B1 rewinds A1
and returns to the coin-tossing phase. Once again B1 runs this phase as P2 would (but
with new randomness) and runs all of the checks that P2 would run. B1 continues this
until all of the checks pass for a second time. Let α be the output of A1 in this second
successful execution (note that an honest P1 has no output).

Denote by ρ, ρ′ the (uniformly distributed) challenge strings from the first execution
of B1 with A1, and denote by ρ̂, ρ̂′ the challenge strings from the second execution.
Furthermore, denote ρ = ρ1 · · · ρs and ρ̂ = ρ̂1 · · · ρ̂s . Now, if there are less than s/8
indices i for which ρi = 1 and ρ̂i = 0, then B1 outputs fail1. Otherwise, let I be a
subset of indices of size exactly s/8 for which ρi = 1 and ρ̂i = 0 (it is easier to work
with a fixed number of i’s that have this property, so we choose them here). Then, for
every i ∈ I , we have that in the first execution GCi is a check circuit and in the second
execution it is an evaluation circuit. Thus, B1 obtains all of the decommitments of GCi in
the first execution (including the association of the garbled values corresponding to P1’s
input—i.e., the decommitment to com(b) in the commitment-sets), and in the second
execution it obtains the garbled values corresponding to P1’s input that P1 sends to P2.
For each such i , it is possible to define P1’s input in circuit GCi by associating the
indicator bit obtained when GCi was a check circuit with the garbled value sent by P1
when GCi was an evaluation circuit. Thus, B1 obtains s/8 possible n-bit input vectors
for P1. If no input value appears more than s/16 times, then B1 outputs fail2. Otherwise,
B1 sets x to be the value that appears more than s/16 times and sends it to the trusted
party. B1 then outputs α (the output of A1 in the second execution) and halts.

Analysis. We claim that the view of A1 in the simulation with B1 is statistically close to
its view in a hybrid execution of Protocol 2 with a trusted party computing the oblivious
transfer protocol. We first claim that the difference between the probability that P2
receives “abort” (i.e., ⊥) in an ideal execution with B1 and the probability that P2
outputs “abort” (i.e. ⊥) in a real execution with A1 is at most negligible. Observe that
in the simulation, B1 uses a random input for its emulation of P2 instead of the real

An Efficient Protocol for Secure Two-Party Computation 335

y that P2 holds. This makes a difference when B1 checks the decommitments for the
wires that are associated with P2 ’s input. (Notice that in the real protocol P2 also uses
its input in oblivious transfer subprotocols. Nevertheless, in the hybrid model that we
are analyzing here, A1 learns nothing about P2’s input in the oblivious transfer because
it is ideal.) Nevertheless, by Lemma 5 we know that the probability of abort is at most
negligibly different between the case that P2 has a random input and the case that it has
a specific input y. From here on, we therefore consider the case that P2 does not abort
the protocol (i.e., does not output ⊥). We now prove that B1 outputs fail1 or fail2 with
at most negligible probability. The proof that fail1 occurs with negligible probability
follows from the Chernoff bound, as follows. Denote an index i as good if ρi = 1 and
ρ̂i = 0. The probability of this event is 1/4, independently of other indices. Event fail1
happens if less than s/8 of the indices are good. Let Xi = 1 if and only if index i is
good. Then, Pr[Xi = 1] = 1/4 and the Chernoff bound implies that

Pr

[
s∑

i=1

Xi <
s

8

]
= Pr

[∑s
i=1 Xi

s
<

1

8

]
≤ Pr

[∣∣∣∣
∑s

i=1 Xi

s
− 1

4

∣∣∣∣ >
1

8

]

< 2 · e− (1/8)2

2·(1/4)·(3/4)
·s = 2 · e−s

24 < 2 · 2−s
17

Bounding fail2. We now show that the event fail2 occurs with negligible probability. Let
ε = 1/16 and denote by B the event that at least εs of the circuits are ε-bad (i.e., the
event that s/16 of the circuits are 1/16-bad). Denote by A the event that B1 sends ⊥ to
the trusted party. Lemma 4 shows that Pr[Ā|B] ≤ 2 · 2−s/16.

We begin by analyzing the probability that fail2 occurs given B̄; i.e., given the event
that less than s/16 of the circuits are 1/16-bad. Consider the set of s/8 circuits GCi with
i ∈ I . The definition of B̄ implies that a majority of the s/8 circuits in I are not 1/16-bad.
The circuits which are not 1/16-bad agree with at least 15s/16 of the commitment sets.
The probability that any of these circuits does not agree with a majority of the evaluation
sets is negligible: this event only happens if the number of evaluation sets is less than
s/8, and the probability of this event happening can be bounded (using the Chernoff

bound) by (s/8) · 2 · e−
(3/8)2

2·(1/2)2
·s = (s/8) · e− 9s

32 < 2
−s
2.5 . If a circuit agrees with a majority

of the evaluation sets then the committed values of these sets open the circuit correctly.
In the evaluation step, for each of its input wires P1 opens the values for all evaluation
circuits, taken from the same commitment set. P2 and B1 check that the values opened
for a wire in all sets are equal. For the good circuits in I these values agree with the
same logical value (the indicator bit of the set). Therefore in this case a majority of the
circuits in I obtain the same logical input, and fail2 does not occur.

When ε = 1/16, the previous argument shows that Pr[fail2|B̄] < 2−s/2.5, and
Lemma 4 shows that Pr[Ā|B] < 2 · 2−s/16. We are interested in Pr[fail2], which we
bound as follows:

Pr[fail2] = Pr[fail2 ∧ A] + Pr[fail2 ∧ Ā] = Pr[fail2 ∧ Ā]

where the last equality is due to the fact that in the event of fail2 the simulator B1 does
not send ⊥ (and so Ā does not occur) and vice versa. Thus, Pr[fail2 ∧ A] = 0. Now,

336 Y. Lindell and B. Pinkas

Pr[fail2 ∧ Ā] = Pr[fail2 ∧ Ā ∧ B] + Pr[fail2 ∧ Ā ∧ B̄] ≤ Pr[Ā ∧ B] + Pr[fail2 ∧ B̄]

Combining the above and using the fact that for all two events X and Y it holds that
Pr[X ∧ Y] ≤ Pr[X |Y] we conclude that

Pr[fail2] ≤ Pr[Ā|B] + Pr[fail2|B̄] < 2 · 2−s/16 + 2−s/2.5 < 3 · 2−s/16

Completing the proof. We now show that conditioned on B1 not outputting any fail
message, the view of A1 in the simulation is statistically close to its view in an execution
of Protocol 2. First note that the probability of abort in the real and ideal executions is at
most negligibly far apart (this follows from Lemma 5 and the fact that B1 uses a random
input instead of the one that the honest P2 has). Next, consider the case that abort does
not occur. Recall that B1 just runs the honest P2’s instructions. The only difference is
that in the event that all of B1’s checks pass in the first execution (which is the event of
no abort that we are considering here), it rewinds the second execution until this event
occurs again. The final view of A1 is then the view that appears in this second execution
in which this occurs. Since B1 uses independent random coins each time, and follows
P2’s instructions each time, the above process results in a distribution that is identical
to the view of A1 in a real execution with P2.

We now proceed to show that the joint distribution of B1’s output (which is just A1’s
output α) and the honest B2’s output is computationally indistinguishable from the joint
distribution of A1 and P2’s output in an execution of Protocol 2 (where an ideal oblivious
transfer is used instead of the OT subprotocol). We will actually show statistical close-
ness. (This does not mean, however, that the overall protocol gives statistical security
because our analysis is in the hybrid model for an oblivious transfer functionality and
it depends on the security of the actual oblivious transfer subprotocol used.) In order to
prove this, we show that if the real P2 would have received the set of evaluation-circuits
and decommitments that A1 sent in the second execution with B1, and it has input y,
then it would compute f (x, y) in a majority of the circuits (where x is the input value
that B1 sent to the trusted party computing f). This follows from the same argument
that was used to show above that fail2 occurs with negligible probability: with all but
negligible probability, most of the evaluation circuits are not ε-bad and they each agree
with a majority of the evaluation sets. Denote these circuits as good (or ε-good) circuits.
In particular, the committed values provided in these sets for P1 ’s inputs in these cir-
cuits correctly decrypt the circuit according to their association with the indicator bit.
P2 also checks that each of P1 ’s input wires receives the same garbled value in all sets.
Therefore, the evaluation step is aborted unless P1 opens garbled values for the good
circuits that agree with the same logical value (the indicator bit of the set). The fact that
these circuits are good also implies that P2 obtains garbled values in the OT stage that
agree with its input. As a result, a majority of the evaluation circuits obtain the same
logical input (x, y) and compute f (x, y).

It remains to show that B1 runs in expected polynomial-time. In order to see this,
notice that aside from the rewinding, all of B1’s work takes a strict polynomial number
of steps. Furthermore, each rewinding attempt also takes a strict polynomial number of
steps. Now, denote by p the probability that A1 responds correctly and so B1’s checks all
pass. Then, the probability that B1 enters the rewinding phase equals p. Furthermore, the

An Efficient Protocol for Secure Two-Party Computation 337

expected number of rewinding attempts equals exactly 1/p (notice that B1 runs exactly
the same strategy in each rewinding attempt). Thus, the overall expected running-time
of B1 equals poly(n, s)+ p · 1/p · poly(n, s) = poly(n, s). This completes the proof of
Lemma 6 and thus the case that P1 is corrupted.

(We note one important subtlety in this part of the proof: the sequential composition
theorem of [5] was only proven for the case that the security of the subprotocol is proven
via a simulator that runs in strict polynomial-time (see [18] for a full discussion of this
issue). Thus, [5] does not cover the case that the simulator for the oblivious transfer
subprotocol runs in expected polynomial-time. Despite this, we claim that this is no
problem in our specific case. In order to see that B1 runs in expected polynomial-time
even if the oblivious transfer protocol is proven secure using expected polynomial-time
simulation, note that we can divide A1 into two parts. The first part runs up until the end
of the oblivious transfer protocol and outputs state information; the second part takes the
state information and continues until the end of the execution. Now, the simulator for
the oblivious transfer protocol may result in an expected polynomial-time adversary for
the first part of A1. However, the second part of A1 still runs in strict polynomial-
time, and B1 only rewinds this second part. Therefore, the overall running-time of
B1—even after replacing the ideal oblivious transfer functionality with a real protocol
that may use expected polynomial-time simulation—is expected polynomial-time, as
required.) �

4.2. Security Against a Malicious P2

Intuition. Intuitively, the security in this case is derived from the fact that: (a) the obliv-
ious transfer protocol is secure, and so P2 only learns a single set of keys (corresponding
to a single input y) for decrypting the garbled circuits, and (b) the commitment schemes
are hiding and so P2 does not know what input corresponds to the garbled values that
P1 sends it for evaluating the circuit. Of course, in order to formally prove security we
construct an ideal-model simulator B2 working with an adversary A2 that has corrupted
P2. The simulator first extracts A2’s input bits from the oblivious transfer protocol, and
then sends the input y it obtained to the trusted party and receives back z = f (x, y).
Given the output, the simulator constructs the garbled circuits. However, rather than
constructing them all correctly, for each circuit it tosses a coin and, based on the result,
either constructs the circuit correctly, or constructs it to compute the constant function
outputting z (the output is received from the trusted party). In order to make sure that
the simulator is not caught cheating, it biases the coin-tossing phase so that all of the
correctly constructed garbled circuits are check-circuits, and all of the other circuits are
evaluation-circuits (this is why the protocol uses joint coin-tossing rather than let P2
alone choose the circuits to be opened). A2 then checks the correctly constructed circuits,
and is satisfied with the result as if it were interacting with a legitimate P1 . A2 therefore
continues the execution with the circuits which always output z. The proof is based on
the following lemma:

Lemma 7. Assume that the oblivious transfer protocol is secure, that comh is a per-
fectly hiding commitment scheme, and that com and comb are perfectly binding com-
mitment schemes. Then, Protocol 2 is secure in the case that P2 is corrupted.

338 Y. Lindell and B. Pinkas

Proof. As have described above, the simulator works by constructing some of the
circuits correctly and some of them incorrectly. Before proceeding with the formal
proof of the lemma, we show that it is possible to construct such “false circuits”, so that
A2 cannot distinguish between them and correctly constructed circuits.

Claim 8. Given a circuit C and an output value z (of the same length as the output of
C) it is possible to construct a garbled circuit˜GC such that:

1. The output of˜GC is always z, regardless of the garbled values that are provided
for P1 and P2’s input wires, and

2. If z = f (x, y), then no non-uniform probabilistic polynomial-time adversary A
can distinguish between the distribution ensemble consisting of˜GC and a single
arbitrary garbled value for every input wire, and the distribution ensemble con-
sisting of a real garbled version of C, together with garbled values that correspond
to x for P1’s input wires, and to y for P2’s input wires.

Proof sketch. The proof of this lemma is taken from [22] (it is not stated in this way
there, but is proven). We sketch the construction of G̃C here for the sake of complete-
ness, and refer the reader to [22] for a full description and proof. The first step in the
construction of the fake circuit G̃C is to choose two random keys ki and k′i for every
wire wi in the circuit C . Next, the gate tables of C are computed: let g be a gate with
input wires wi , w j and output wire w�. The table of gate g contains encryptions of the
single key k� that is associated with wire w�, under all four combinations of the keys
ki , k′i , k j , k′j that are associated with the input wires wi and w j to g. (This is in contrast
to a real construction of the garbled circuit that involves encrypting both k� and k′�,
depending on the function that the gate in question computes.) That is, the following
values are computed:

c0,0 = Eki (Ek j (k�))

c0,1 = Eki (Ek′j (k�))

c1,0 = Ek′i (Ek j (k�))

c1,1 = Ek′i (Ek′j (k�))

The gate table for g is then just a random ordering of the above four values. This sprocess
is carried out for all of the gates of the circuit. It remains to describe how the output
decryption tables are constructed. Denote the n-bit output z by z1, . . . , zn , and denote the
circuit-output wires by wm−n+1, . . . , wm . In addition, for every i = 1, . . . , n, let km−n+i

be the (single) key encrypted in the gate whose output wire is wm−n+i , and let k′m−n+i be
the other key (as described above). Then, the output decryption table for wire wm−n+i is
given by: [(0, km−n+i), (1, k′m−n+i)] if zi = 0, and [(0, k′m−n+i), (1, km−n+i)] if zi = 1.

This completes the description of the construction of the fake garbled circuit G̃C .
Notice that by the above construction of the circuit, the output keys (or garbled values)

obtained by P2 for any set of input keys (or garbled values), equals km−n+1, . . . , km .
Furthermore, by the above construction of the output tables, these keys km−n+1, . . . , km

decrypt to z = z1, . . . , zn = z exactly. Thus, property (1) of the lemma trivially holds.

An Efficient Protocol for Secure Two-Party Computation 339

The proof of property (2) follows from a hybrid argument in which the gate construction
is changed one at a time from the real construction to the above fake one (indistinguisha-
bility follows from the indistinguishability of encryptions). The construction and proof
of this hybrid are described in full in [22]. �

We are now ready to begin with the formal proof of Lemma 7. We denote the number
of input wires of P2 as n′ (P2 had originally n input wires, but in Step 0 of the protocol
they are expanded to n′ = ns wires, to prevent an attack by P1). Let A2 be an adversary
controlling P2. We construct a simulator B2 as follows:

1. B2 chooses garbled values for the input wires of P2 in s garbled circuits. That is, it
chooses n′ · s pairs of garbled values k0

i and k1
i , and constructs 2n′ vectors of gar-

bled values of length s. Denote the vectors v0
1, v1

1, . . . , v0
n′ , v

1
n′ , where vb

i contains
the garbled values in all circuits that are associated with the bit b for the input wire
associated with P2’s i th input bit. Next, B2 computes the commitment and decom-
mitment values for these vectors. That is, let cb

i be a vector of commitments, with
the j th element being a commitment to the j th element of vb

i . Likewise, let dcb
i be

a vector of decommitments, where the j th element of dcb
i is the decommitment of

the j th element of cb
i .

2. B2 invokes A2 upon its initial input and obtains the inputs that A2 sends to the
trusted party computing the oblivious transfer functionality (recall that our analysis
is in the hybrid model). Let yi denote the bit sent by A2 that corresponds to the
i th oblivious transfer, and let y = y1, . . . , yn (note that y is not necessarily the
same as A2 and B2’s initial input). B2 hands A2 the vector of decommitments to
garbled values dcyi

i as if they are the output for A2 from the trusted party in the
i th computation of the oblivious transfer functionality.

3. B2 externally sends y to the trusted party computing f and receives back z =
f (x, y).

4. B2 chooses a random string ρ ∈R {0, 1}s and constructs s garbled circuits
GC1, . . . GCs , as follows. Let ρ = ρ1, . . . , ρs . Then, for i = 1, . . . , s, if ρi = 1
(and so GCi will be a check-circuit), simulator B2 constructs circuit GCi correctly
(exactly as described in Step 1 of Protocol 2). Otherwise, if ρi = 0 (and so GCi will
be an evaluation circuit), it constructs circuit GCi = G̃C as described in Claim 8.
That is, it constructs a garbled circuit whose output is always z, regardless of the
inputs used. The above constructions use the garbled values chosen for the input
wires above. That is, the garbled values from v0

i and v1
i are used to define the input

values for the i th wire in all of the s circuits (the j th value in vb
i defines the value

in the j th circuit).
B2 constructs the commitments and commitment sets as follows.

• First, for every r such that ρr = 1 (and so GCr will be a check-circuit), the
commitment pairs (com(k0

i,r), com(k1
i,r)) that correspond to P2’s input wires

in circuit GCr are computed correctly (note that kb
i,r is the r th value in vb

i and

com(kb
i,r) is taken from cb

i).
• In contrast, for every j for which ρr = 0 (and so GCr will be an evaluation-

circuit), these commitment pairs are computed as follows. Assume that P2’s i th
input bit is associated with wire i . Then, B2 sets kyi

i,r to equal the r th garbled

340 Y. Lindell and B. Pinkas

value in the vector v
yi
i , and sets k1−yi

i,r to be the string of all zeros. B2 then defines

the commitment pair to be (com(k0
i,r), com(k1

i,r)).
• Second, B2 chooses a random string ρ′ ∈R {0, 1}s and constructs the

commitment-sets Wi, j and W ′i, j (of P1 ’s inputs), as follows. For every input
wire i and for every j such that ρ′j = 0 (i.e., such that the sets Wi, j and W ′i, j are
evaluation-sets), B2 generates the commitment-set Wi, j so that the first com-
mitment is com(0) and the rest are “correct” (i.e., as instructed in the protocol).
It then computes W ′i, j incorrectly, committing to the exact same values as Wi, j

(we stress that the commitments are computed using fresh randomness, but they
are commitments to the same values).
• Finally, B2 constructs the commitment-sets for the values of j such that ρ′j = 1

(i.e., such that Wi, j and W ′i, j are check-sets). Recall that the commitment-set
Wi, j is made up of an initial indicator commitment (to 0 or 1) followed by s
commitments, where the r th commitment corresponds to the r th circuit; denote
the r th commitment in Wi, j by W r

i, j . Now, for every input wire i and every j
such that ρ′j = 1:

• For every r such that ρr = 1 (corresponding to a check-circuit), simulator
B2 places the correct commitments in W r

i, j and W ′ri, j .
• For every r such that ρr = 0 (corresponding to an evaluation-circuit),

simulator B2 places commitments to zeros. (These commitments are never
opened; see Figs. 3 and 4.)
B2 internally hands A2 the garbled circuits and commitments that it con-
structed. (Note that the commitments corresponding to P1 and P2’s input
wires in all of the evaluation circuits contain only a single garbled value
from the pair associated with the wire. This will be important later on.)

5. B2 simulates the coin-tossing (“prepare challenge strings”) phase with A2 so that
the outcome of ρ1⊕ρ2 equals the string ρ that it chose above. If it fails, its outputs
fail and halts. Likewise, the coin-tossing phase for the second challenge string is
also simulated so that the outcome is ρ′ as chosen above. Again, if it fails, it outputs
fail and halts. We describe how this is achieved below.

6. B2 opens the commitments for check-circuits and check-sets for A2, exactly as
described in Step 5 of Protocol 2.

7. B2 internally hands A2 decommitments for the garbled values for each of the input
wires corresponding to P1’s input, in each of the evaluation-circuits. In order to do
this, B2 just chooses randomly between Wi, j and W ′i, j for each evaluation-set, and
decommits to the garbled values that are associated with the evaluation-circuits.

8. B2 outputs whatever A2 outputs and halts.

If at any time during the simulation, A2 aborts (either explicitly or by sending an invalid
message that would cause the honest A1 to abort), B2 halts immediately and outputs
whatever A2 does.

Analysis. We now show that the view of A2 in the above simulation by B2 is computa-
tionally indistinguishable from its view in a real execution with A1. We note that since
only A2 receives output in this protocol, it suffices to consider the view of A2 only.

An Efficient Protocol for Secure Two-Party Computation 341

Before demonstrating this, we show that the coin-tossing phases can be simulated so
that B2 outputs fail with at most negligible probability. Intuitively, the simulation of this
phase (for ρ) is carried out as follows:

1. B2 receives a perfectly hiding commitment c from A2.
2. B2 generates a perfectly binding commitment ĉ to a random string ρ̂ and internally

hands it to A2.
3. If A2 aborts without decommitting, then B2 halts the simulation immediately and

outputs whatever A2 outputs. Otherwise, let ρ2 be the value decommitted to by
A2.

4. B2 rewinds A2 to after the point that it sends c, and sends it a new commitment c̃
to the string ρ1 = ρ ⊕ ρ2 (where the result of the coin-tossing is supposed to be
the string ρ).

5. If A2 decommits to ρ2, then B2 has succeeded. Thus, it continues by decommitting
to ρ1, and the result of the coin-tossing is ρ = ρ1 ⊕ ρ2.
If A2 decommits to some ρ′2 = ρ2, then B2 outputs ambiguous.
If A2 does not decommit (but rather aborts), then B2 continues by sending a new
commitment to ρ1 = ρ2 ⊕ ρ. Notice that B2 sends a commitment to the same
value ρ1, but uses fresh randomness in generating the commitments and executes
Step 5 of the simulation again.

Unfortunately, as was shown by [11], the above simulation strategy does not necessarily
run in expected polynomial-time. Rather, it is necessary to first estimate the probability
that A2 decommits when it receives a commitment ĉ to a random value ρ̂. Then, the num-
ber of rewinding attempts, when A2 is given a commitment to ρ1 = ρ⊕ρ2, is truncated
as some function of the estimate. In [11], it is shown that this strategy yields an expected
polynomial-time simulation that fails with only negligible probability (including the
probability of outputting ambiguous). Furthermore, the simulation has the property that
the view of A2 is computationally indistinguishable from its view in a real execution.
The analysis here is exactly the same as that of [11] and is therefore not repeated. (Note
that in the zero-knowledge protocol of [11] the verifier first sends a perfectly hiding com-
mitment, the prover then sends perfectly binding commitments, and finally the parties
decommit. Thus, the flow and structure of our protocol is identical to theirs.) Of course,
the same strategy exactly is used for the simulation of the coin-tossing phase for ρ′.

We now continue with the analysis of the simulation. Intuitively, given that the above
coin-tossing simulation succeeds, it follows that all of the check-circuits are correctly
constructed, as in the protocol (because B2 constructs all the circuits for which ρi = 1
correctly). Thus, the view of A2 with respect to these circuits is the same as in a real
execution with an honest A1. Furthermore, the commitments for the evaluation circuits
reveal only a single garbled value for each input wire. Thus, Claim 8 can be applied.

Formally, we prove indistinguishability in the following way. First, we modify B2
into B ′2 who works in exactly the same way as B2 except for how it generates the
circuits. Specifically, B ′2 is given the honest B1’s input value x and constructs all of the
circuits correctly. However, it only uses the garbled values corresponding to x in the
commitment-sets. That is, if the value ki,� is used in all of the commitment sets Wi, j and
W ′i, j with respect to circuit �, then ki,� is the garbled value associated with xi (i.e., the
i th bit of x) in circuit � (the other garbled value associated with the wire is associated

342 Y. Lindell and B. Pinkas

with 1 − xi). Everything else remains the same. In order to see that A2’s view in an
execution with B2 is indistinguishable from its view in an execution with B ′2, we apply
Claim 8. In order to apply this claim, recall first that the evaluation-circuits with B2
are all constructed according to G̃C , yielding output z = f (x, y) where y is the input
obtained from A2 and x is the honest party’s input. In contrast, the evaluation-circuits
with B ′2 are all correctly constructed. Note also that the input y obtained by B ′2 from
A2 is the same value as that obtained by B2, that defines z = f (x, y).6 Finally, note
that B ′2 sends A2 the garbled values that correspond to B1’s input x . Thus, by Claim 8,
A2’s view with B2 is indistinguishable from its view with B ′2. (The full reduction here
works by an adversary obtaining the garbled circuits and values, and then running the
simulation of B2 or B ′2. Specifically, it generates all the check-circuits correctly and uses
the garbled values it obtained to generate the evaluation-sets and the commitments in
the evaluation-sets. However, it does not generate the evaluation-circuits itself, but uses
the ones that it receives. If it receives real circuits then it will obtain the distribution of
B ′2, and if it receives fake garbled circuits then it will obtain the distribution of B2. We
therefore conclude by Claim 8 that these distributions are indistinguishable. We note that
the full proof of this also requires a hybrid argument over the many evaluation circuits,
versus the single circuit referred to in Claim 8.)

Next, we construct a simulator B ′′2 that works in the same way as B ′2 except that it
generates all of the commitments correctly (i.e., as in the protocol specification). Notice
that this only affects commitments that are never opened. Note also that B ′′2 is given
x and so it can do this. The indistinguishability between B ′2 and B ′′2 follows from the
hiding property of the commitment scheme com. (The full reduction is straightforward
and is therefore omitted.)

Finally, notice that the distribution generated by B ′′2 is the same as the one generated
by an honest A1, except for the simulation of the coin-tossing phases. Since, as we have
mentioned, the view of A2 in the simulation of the coin-tossing is indistinguishable from
its view of a real execution, we conclude that the view of A2 in the simulation by B ′′2 is
indistinguishable from its view in a real execution with A1. Combining the above steps,
we conclude that A2’s view in the simulation with B2 is indistinguishable from its view
in a real execution with A1. This completes the proof of Lemma 7 and thus the case that
P2 is corrupted. �
Combining the cases. The proof of Theorem 3 is completed by combining Lemmas 6
and 7.

5. Efficiency of the Protocol

We discuss below the efficient implementation of the different building blocks of the
protocol (namely, encryption, commitment schemes, and oblivious transfer). The over-

6 Notice that there is one oblivious transfer for each input bit. Furthermore, the input of A1 into these
executions is a pair of vectors of s garbled values so that in the i th execution, the first vector contains all of
the decommitments for garbled values that correspond to 0 for the i th input wire of P2, and the second vector
contains all of the decommitments for garbled values that correspond to 1 for the i th input wire of P2. This
means that in every circuit, A2 receives garbled values that correspond to the same input y.

An Efficient Protocol for Secure Two-Party Computation 343

head of the protocol depends on a statistical security parameter s. The security proof
shows that the adversary’s cheating probability is exponentially small in s. We note that
in this paper we preferred to present a full and clear proof, rather than overly optimize
the construction at the cost of complicating the proof.

The computation overhead is dominated by the oblivious transfers, as all other prim-
itives are implemented using symmetric operations. In Protocol 2 each input bit of P2
is replaced by s new input bits, and therefore O(ns) OTs are required. In Sect. 5.2 we
show how to use only O(max(n, s)) new input bits, and consequently the number of
OTs is reduced to O(max(n, s)) (namely O(1) OTs per input bit, assuming n = �(s)).

The communication overhead of the protocol is dominated by sending s copies of
the garbled circuit, and 2s(s + 1) commitments for each of the n inputs of P1 . In the
protocol, the original circuit C0 is modified by replacing each of the n original input
bits of P2 with the exclusive-or of s of the new input bits, and therefore the size of
the evaluated circuit C is |C | = |C0| + O(ns) gates. The communication overhead
is therefore O(s|C | + s2n) = O(s(|C0| + ns) + s2n) = O(s|C0| + s2n) times the
length of the secret-keys (and ciphertexts) used to construct the garbled circuit. (Note
that the improved construction in Sect. 5.2 reduces the size of the new circuit to |C | =
|C0| + O(max(n, s)) and therefore only improves the communication overhead by a
constant; the significance of the improvement is with respect to computation.)

5.1. Efficient Implementation of the Different Primitives

In this section, we describe efficient implementations of the different building blocks of
the protocol.

Encryption scheme. Following [22], the construction uses a symmetric key encryption
scheme that has indistinguishable encryptions for multiple messages and an elusive
efficiently verifiable range. Informally, this means (1) that for any two (known) messages
x and y, no polynomial-time adversary can distinguish between the encryptions of x
and y, and (2) that there is a negligible probability that an encryption under one key falls
into the range of encryptions under another key, and given a key k it is easy to verify
whether a certain ciphertext is in the range of encryptions with k. See [22] for a detailed
discussion of these properties, and for examples of easy implementations satisfying
them. For example, the encryption scheme could be Ek(m) = 〈r, fk(r)⊕ m0n〉, where
fk is a pseudo-random function keyed by k whose output is |m| + n bits long, and r is
a randomly chosen value.

Commitment schemes. The protocol uses both unconditionally hiding and uncondi-
tionally binding commitments. Our goal should be, of course, to use the most efficient
implementations of these primitives, and we therefore concentrate on schemes with
O(1) communication rounds (all commitment schemes we describe here have only two
rounds). Efficient unconditionally hiding commitment schemes can be based on num-
ber theoretic assumptions, and use O(1) exponentiations (see, e.g., [14,28]). The most
efficient implementation is probably the one due to Damgård, Pedersen, and Pfitzmann,
which uses a collision-free hashing function and no other cryptographic primitive [7],
see also [15]. Efficient unconditionally binding commitments can be constructed using
the scheme of Naor [26], which has two rounds and is based on using a pseudo-random
generator.

344 Y. Lindell and B. Pinkas

Oblivious transfer. The protocol needs to use an OT protocol which is secure accord-
ing to the real/ideal model simulation definition. Candidate protocols can be the pro-
tocol of [8] compiled according to the GMW paradigm, or the two-round protocols
of [2,17,27] with additional proofs of knowledge. Protocols of this latter type have been
shown in [21].

5.2. Reducing the Number of Oblivious Transfers

Protocol 2 uses a construction which replaces each input bit of P2 with s new input
bits, providing P2 with multiple options for encoding each of its inputs. This limits the
information that P1 can gain from corrupting OT inputs (and in particular, P2 aborts with
almost the same probability irrespective of its actual input). The construction increases
the number of input wires of P2 from n to ns. We describe here a probabilistic con-
struction which reduces the number of input wires of P2 to max(4n, 8s) (we also show
how to use codes to construct an explicit construction with similar performance). The
construction has a direct effect on the overhead of the protocol, since the number of OTs
is equal to the number of input wires of P2. The bottom line is that the number of OTs
can be reduced to be in the order as the length of P2’s input and the security parameter.

We denote the original input bits as w1, . . . , wn and the new input bits as w′1, . . . , w′m .
Our goal is to minimize m. Each wi is defined as the exclusive-or of a subset of the new
input bits. We define the indicator vector zi as an m-bit binary string whose j th bit is
1 iff w′j is in the subset of new input bits whose exclusive-or is wi . The construction
described in Protocol 2 corresponds to indicator vectors zi = (0 . . . 0︸ ︷︷ ︸

(i−1)s

1 . . . 1︸ ︷︷ ︸
s

0 . . . 0︸ ︷︷ ︸
(n−i)s

). We

describe here Protocol 3 which works with any set of indicator vectors z.

Protocol 3. (Protocol with a reduced number of input bits):

• Input, auxiliary input and specified output: These are as in Protocol 2. In addi-
tion, there is a parameter m which defines the number of new input bits of P2 , and
there are n linearly independent m-bit vectors z1, . . . , zm, specifying the relations
between the new and the original input bits of P2 .
• The protocol:

0. Circuit construction: The parties replace C0 with a circuit C in which
P2 has m input bits w′1, . . . , w′m. The circuit is constructed by replacing each
original input wire wi of P2 by the value ⊕ j=1...m zi, j · w′j , where zi, j is the
j th bit in the vector zi .
P2 chooses its new input at random subject to the constraints wi =
⊕ j=1...m zi, j · w′j .

The rest of the protocol is as in Protocol 2.

P2 chooses random values for the bits w′1, . . . , w′m , subject to the constraint that the
exclusive-or of any set of new bits corresponding to an original bit wi is equal the original
value of wi . P2 then runs an OT for each of its new input bits. If one of the answers it
receives in these OTs is corrupt, it aborts the protocol. Our goal is to make sure that the
decision to abort does not reveal information about P2 ’s original input (since this is the

An Efficient Protocol for Secure Two-Party Computation 345

only place that it is used in the proof). It is clear that if teh Hamming weight of each zi

is at least 2, and P1 corrupts the inputs of a single OT, then, since each input bit of P2
is the exclusive-or of several new bits, the decision to abort does not reveal information
about any specific input bit of P2 . This observation must be generalized for the case of
P1 corrupting more OT inputs, and hold with respect to any subset of P2 ’s inputs.

Warmup—reusing bits. In order to use less “new” than ns input bits, P2 must reuse
these bits. Assume that P2 has two input wires w1, w2 and that we replace them with
s + 1 new wires, w′1, . . . , w′s+1. The input values are defined as w1 = w′1 ⊕ · · · ⊕ w′s ,
and w2 = w′2 ⊕ · · · ⊕ w′s+1 (namely z1 = 11 · · · 10 and z2 = 01 · · · 11). In this case,
as is shown in Sect. 3.2, any strategy used by a malicious P1 to corrupt OT values
gives it an advantage of at most 2−s+1 in identifying a single bit of P2 ’s original input
(e.g., if P1 corrupts the ‘1’ inputs of w′1, . . . , w′s , then if w1 = 1 P2 always aborts,
whereas if w1 = 0 there is a probability of 2−s+1 that P2 does not abort). However,
w1 ⊕ w2 = w′1 ⊕ w′s+1 (namely, z1 ⊕ z2 = 10 · · · 01) and therefore if P1 corrupts the
OT values of both w′1 and w′s+1 it can obtain a non-negligible advantage in learning
w1 ⊕ w2. (For example, P1 can corrupt the ‘1’ inputs of w′1 and w′s+1. If P2 does not
abort P1 can conclude that w′1 = w′s+1 = 0 and therefore w1 ⊕ w2 = 0.)

The attack presented above can be prevented if the exclusive-or of any subset of P2 ’s
original bits contains at least s new input bits. Namely, if, in the general case, for every
non-empty subset L ⊆ {1, . . . , n} it holds that the Hamming weight of⊕i∈L zi is at least
s. The two lemmata stated below show that this requirement is sufficient to prove that,
up to a negligible probability, P2 ’s decision to abort is independent of its input values.

Lemma 9. Suppose that for all sets L = {i1, . . . , i|L|} (corresponding to a set
{wi1, . . . , wi|L| } of original input wires) it holds that the Hamming weight of zi1 ⊕ · · ·⊕
zi|L| is at least s. Fix the values of any subset of less than s new input wires arbitrarily,
and choose the values of all other new input wires uniformly at random. Then for any
set L = {i1, . . . , i|L|}, it holds that the value of the vector (wi1, . . . , wi|L|) is uniformly
distributed.

Proof. Denote the size of the set L as � = |L|. The lemma is proved by induction on
�. Any single original input bit is defined as the exclusive-or of s or more new inputs
bits and is thus uniformly distributed even given the (fewer than s) bits corrupted by P1 .
The claim therefore holds for � = 1.

Let us examine the induction step. For simplicity, let L = {w1, w2, . . . , w�}. Assume
that the value of an arbitrary set of less than s new input bits are set. For a fixed vector
b = b1, . . . , b� denote by Pb = Pb1b2...b�

the probability that ∀ 1 ≤ i ≤ � wi = bi (this
probability is taken over the distribution of the new input bits whose values have not been
set yet.) We need to show that for any � bit string b1 . . . b� it holds that Pb1...b�

= 2−�.
Consider any string b̄ = b1 . . . b�, and assume that Pb̄ = 2−� + ε for some ε between
−1/2 and 1/2. Take any string b̄′ whose Hamming difference from b̄ is 1. Consider
for example the string which differs from b̄ in its last bit. Then Pb̄ + Pb̄′ = Pb1...b�−1 ,
and is equal, by the induction step, to 2−�+1. Therefore Pb̄′ = 2−� − ε. By the same
argument, this is also the probability of any other string whose Hamming difference
from b̄ is 1. Now consider any string b̄′′ whose Hamming difference from b̄ is 2. There

346 Y. Lindell and B. Pinkas

must be a string b̄′ whose Hamming difference from both b̄ and b̄′′ is 1. We know that
Pb̄′ = 2−� − ε, and therefore, by applying the above argument to the relation between
b̄′ and b̄′′, we get that Pb̄′′ = 2−� + ε. Continuing to apply this argument we get for any
string c̄, that Pc̄ = 2−� − ε if the Hamming difference between c̄ and b̄ is odd, and that
Pc̄ = 2−� + ε if the Hamming difference is even. It remains to show that ε = 0.

Now, the value w1 ⊕ w2 ⊕ · · · ⊕ w� is equal to the exclusive-or of at least s new
input wires, and is therefore uniformly distributed when the value of less than s of these
wires is fixed. On the other hand, the probability that this value is equal to b1⊕ · · ·⊕ b�

is
∑

d(b̄,c̄) is even Pc̄ = 2�−1(2−� + ε) (where d(α, β) denotes the Hamming difference
between strings α and β). The probability that the value of exclusive-or is equal to
1⊕b1⊕· · ·⊕b� is

∑
d(b̄,c̄) is odd Pc̄ = 2�−1(2−�−ε). Therefore it must hold that ε = 0,

or otherwise we get a contradiction. �

Recall that a corrupt OT value is one that P2 receives in the circuit opening that is
different to its corresponding value that it received in the oblivious transfers.

Lemma 10. Suppose that for all sets L = {i1, . . . , i|L|} the Hamming weight of zi1 ⊕
· · ·⊕zi|L| is at least s. Then, for any two different inputs y and y′ of P2 for the function f ,
the difference between the probability that P2 aborts the protocol as a result of corrupt
OT values when its input is y and when its input is y′ is at most 2−s+1.

Proof. If P1 corrupts both its inputs to an OT instance then P2 aborts with probability
1, and the lemma holds. We therefore assume that P1 corrupts at most one of its pair of
inputs any OT instance.

Assume that P1 corrupts s − 1 or less OT instances. We know that P2 chooses its
new input values independently of P1 ’s actions. We can assume that P2 first chooses
its input values for the new wires (OTs) which P1 corrupts (and it chooses these values
uniformly at random, as was argued above). P2 then chooses its inputs to the other new
wires. The probability of P2 aborting depends only on its first step, whereas Lemma 9
shows that this step does not fix any of P2 ’s original inputs. The probability of abort is
therefore independent of P2 ’s original input.

Assume now that P1 corrupts s or more OT instances, and consider the first s − 1
of these OTs. Lemma 9 implies that P2 ’s input values in these OTs are independent
of its original input (since the original input values are not defined after fixing these
s − 1 values). Therefore, the distribution of P2 ’s inputs in these OTs, even given P2 ’s
original input, is uniformly random, and consequently P2 aborts with probability of at
least 1 − 2−(s−1) regardless of its input. It therefore holds, for any two input values y
and y′, that 2−(s−1) is an upper bound for the difference between the probability that P2
aborts the protocol (as a result of corrupt OT values) when its input is y and when its
input is y′. �

Following is a corollary of Lemma 10:

Corollary 11. Running Protocol 3 with vectors zi such that for any set L =
{i1, . . . , i|L|} the Hamming weight of zi1 ⊕ · · · ⊕ zi|L| is at least s, ensures that OT
corruptions by P1 reveal only negligible information about P2 ’s input.

An Efficient Protocol for Secure Two-Party Computation 347

We describe below an efficient randomized construction which achieves the desired
property of the vectors zi . As was pointed to us by David Woodruff, an explicit construc-
tion can be achieved using any explicit linear code from {0, 1}s to {0, 1}O(s), for which
any two codewords have a distance of at least �(s) (Justesen codes are an example of
such a code).

The randomized construction. We define 4n new input bits for P2 . Assume, without
loss of generality, that n > 2s. (Otherwise add dummy input bits. Therefore the exact
number of new input bits is max(4n, 8s).) The mapping between the n old input bits
and the 4n new input bits is chosen randomly in the following way: each original input
bit wi is defined to be equal to the exclusive-or of a uniformly chosen subset of the new
input bits (in other words, zi is a uniformly distributed string of 4n bits).

We examine the probability that there is a subset L ⊆ {0, 1}n for which the Hamming
weight of ⊕i∈L zi is less than s: Consider any subset L , then ⊕i∈L zi is a uniformly
distributed string with 4n > 8s bits, with an expected Hamming weight of 2n. Let X j be
a random variable which is set to 1 if the j th bit in this string is 1. Note that s/4n < 1/8
by our assumption that n > 2s. We therefore have:

Pr

⎡
⎣

4n∑
j=1

X j < s

⎤
⎦ = Pr

[∑
X j

4n
<

s

4n

]
< Pr

[∑
X j

4n
<

1

8

]
≤ Pr

[∣∣∣∣
∑

X j

4n
− 1

2

∣∣∣∣ >
3

8

]

Applying the Chernoff bound, we have that

Pr

⎡
⎣

4n∑
j=1

X j < s

⎤
⎦ ≤ 2e−

(3/8)2

2(1/2)(1/2)
4n = 2e−9n/8

There are a total of 2n subsets of the original input bits, and therefore the probability
that any of them is equal to the exclusive-or of less than s new input bits is bounded by
2n2e−9n/8 ≈ 2(1−9/8 log(e))n ≈ 2−0.6n < 2−1.2s . Lemma 10 therefore implies that with
probability 1− 2−1.2s the construction suffices for our proof of security.

Choosing the strings zi . In order to use the above construction, the parties must construct
a circuit that has 4n new input bits for P2. Furthermore, the parties must define n random
strings zi of length 4n and then have the circuit map P2’s i th input bit according to the
string zi (as described above). This can be done in two ways. One possibility is to
choose the mapping once and for all and hardwire it into the protocol specification.
This is problematic because then there is a negligible probability that the protocol is not
secure (in any execution). Thus, the mapping should instead be chosen as part of the
protocol execution (because negligible failure in any execution is allowed). Fortunately,
P2 can singlehandedly choose the strings z1, . . . , zn in the first step of the protocol and
send them to P1. The reason why this is fine is because this entire issue only arises in
the proof of the case that P1 is corrupted (indeed, for the case of a corrupted P2 there is
no need to split P2’s input bits at all).

348 Y. Lindell and B. Pinkas

Acknowledgements

We would like to thank Ivan Damgård, Yuval Ishai, Stas Jarecki, Moni Naor, Adam
Smith and David Woodruff for helpful discussions about this work.

Appendix A. Two-Party Computation Secure Against Semi-Honest Adversaries

We describe here the construction of secure two-party computation (for semi-honest
adversaries) which is described in [22]. This construction is based on Yao construction.
It is proved in [22] to be secure against semi-honest adversaries.

Let C be a Boolean circuit that receives two inputs x, y ∈ {0, 1}n and outputs C(x, y) ∈
{0, 1}n (for simplicity, we assume that the input length, output length and the security
parameter are all of the same length n). We also assume that C has the property that if a
circuit-output wire comes from a gate g, then gate g has no wires that are input to other
gates.7 (Likewise, if a circuit-input wire is itself also a circuit-output, then it is not input
into any gate.)

We begin by describing the construction of a single garbled gate g in C . The circuit C is
Boolean, and therefore any gate is represented by a function g : {0, 1}×{0, 1} → {0, 1}.
Now, let the two input wires to g be labeled w1 and w2, and let the output wire from g be
labeled w3. Furthermore, let k0

1, k1
1, k0

2, k1
2, k0

3, k1
3 be six keys obtained by independently

invoking the key-generation algorithm G(1n); for simplicity, assume that these keys are
also of length n. Intuitively, we wish to be able to compute kg(α,β)

3 from kα
1 and kβ

2 ,

without revealing any of the other three values kg(1−α,β)
3 , kg(α,1−β)

3 , kg(1−α,1−β)
3 . The

gate g is defined by the following four values

c0,0 = Ek0
1

(
Ek0

2

(
kg(0,0)

3

))

c0,1 = Ek0
1

(
Ek1

2

(
kg(0,1)

3

))

c1,0 = Ek1
1

(
Ek0

2

(
kg(1,0)

3

))

c1,1 = Ek1
1

(
Ek1

2

(
kg(1,1)

3

))

where E is from a private key encryption scheme (G, E, D) that has indistinguishable
encryptions for multiple messages, and has an elusive efficiently verifiable range; see
Sect. 5.1. The actual gate is defined by a random permutation of the above values,
denoted as c0, c1, c2, c3; from here on we call them the garbled table of gate g. Notice
that given kα

1 and kβ
2 , and the values c0, c1, c2, c3, it is possible to compute the output

of the gate kg(α,β)
3 as follows. For every i , compute D

kβ
2
(Dkα

1
(ci)). If more than one

decryption returns a non-⊥ value, then output abort. Otherwise, define kγ
3 to be the only

7 This requirement is due to our labelling of gates described below, that does not provide a unique label to
each wire (see [22] for more discussion). We note that this assumption on C increases the number of gates by
at most n.

An Efficient Protocol for Secure Two-Party Computation 349

non-⊥ value that is obtained. (Notice that if only a single non-⊥ value is obtained, then
this will be kg(α,β)

3 because it is encrypted under the given keys kα
1 and kβ

2 . Later we will
show that except with negligible probability, only one non-⊥ value is indeed obtained.)
We are now ready to show how to construct the entire garbled circuit. Let m be the
number of wires in the circuit C , and let w1, . . . , wm be labels of these wires. These
labels are all chosen uniquely with the following exception: if wi and w j are both output
wires from the same gate g, then wi = w j (this occurs if the fan-out of g is greater
than one). Likewise, if an input bit enters more than one gate, then all circuit-input
wires associated with this bit will have the same label. Next, for every label wi , choose
two independent keys k0

i , k1
i ← G(1n); we stress that all of these keys are chosen

independently of the others. Now, given these keys, the four garbled values of each gate
are computed as described above and the results are permuted randomly. Finally, the
output or decryption tables of the garbled circuit are computed. These tables simply
consist of the values (0, k0

i) and (1, k1
i) where wi is a circuit-output wire. (Alternatively,

output gates can just compute 0 or 1 directly. That is, in an output gate, one can define
cα,β = Ekα

1
(E

kβ
2
(g(α, β))) for every α, β ∈ {0, 1}.)

The entire garbled circuit of C , denoted GC , consists of the garbled table for each gate
and the output tables. We note that the structure of C is given, and the garbled version
of C is simply defined by specifying the output tables and the garbled table that belongs
to each gate. This completes the description of the garbled circuit.

Let x = x1 · · · xn and y = y1 · · · yn be two n-bit inputs for C . Furthermore, let
w1, . . . , wn be the input labels corresponding to x , and let wn+1, . . . , w2n be the input
labels corresponding to y. It is shown in [22] that given the garbled circuit GC and
the strings kx1

1 , . . . , kxn
n , ky1

n+1, . . . , kyn
2n , it is possible to compute C(x, y), except with

negligible probability.

References

[1] G. Aggarwal, N. Mishra, B. Pinkas, Secure computation of thek-th ranked element, in EUROCRYPT
2004. LNCS, vol. 3027 (Springer-Verlag, Berlin, 2004), pp. 40–55

[2] B. Aiello, Y. Ishai, O. Reingold, Priced oblivious transfer: howto sell digital goods, in EUROCRYPT
2001. LNCS, vol. 2045 (Springer-Verlag, Berlin, 2001), pp. 119–135

[3] B. Barak, Y. Lindell, Strict polynomial-time in simulation and extraction. SIAM J. Comput. 33(4), 783–
818 (2004)

[4] D. Beaver, Foundations of secure interactive computing. in CRYPTO’91. LNCS, vol. 576 (Springer-
Verlag, Berlin, 1991), pp. 377–391

[5] R. Canetti, Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202
(2000)

[6] R. Cramer, I. Damgård, B. Schoenmakers, Proofs of partial knowledge and simplified design of witness
hiding protocols, in CRYPTO’94. LNCS, vol. 839 (Springer-Verlag, Berlin, 1994), pp. 174–187

[7] I. Damgård, T.P. Pedersen, B. Pfitzmann, On the existence of statistically hiding bit commitment schemes
and fail-stop signatures, in CRYPTO’93. LNCS, vol. 773 (Springer-Verlag, Berlin, 1994), pp. 250–265

[8] S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing contracts. Commun. ACM 28(6),
637–647 (1985)

[9] O. Goldreich, Foundations of Cryptography: vol. 1—Basic Tools. Cambridge University Press, Cam-
bridge (2001)

[10] O. Goldreich, Foundations of Cryptography: vol. 2—Basic Applications. Cambridge University Press,
Cambridge (2004)

350 Y. Lindell and B. Pinkas

[11] O. Goldreich, A. Kahan, How to construct constant-round zero-knowledge proof systems for NP. J.
Cryptol. 9(3), 167–190 (1996)

[12] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game—a completeness theorem for
protocols with honest majority, in 19th STOC, pp. 218–229 (1987) (For details see [10])

[13] S. Goldwasser, L. Levin, Fair computation of general functions in presence of immoral majority, in
CRYPTO’90. LNCS, vol. 537 (Springer-Verlag, Berlin, 1990), pp. 77–93

[14] S. Goldwasser, S. Micali, R.L. Rivest, A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput. 17(2), 281–308 (1988)

[15] S. Halevi, S. Micali, Practical and provably-secure commitment schemes from collision-free hashing.
CRYPTO 1996. LNCS, vol. 1109 (Springer-Verlag, Berlin, 1996), pp. 201–215

[16] S. Jarecki, V. Shmatikov, Efficient two-party secure computation on committed inputs, in Eurocrypt ’07.
LNCS, vol. 4515 (Springer-Verlag, Berlin, 2007), pp. 97–114

[17] Y.T. Kalai, Smooth projective hashing and two-message oblivious transfer, in EUROCRYPT 2005. LNCS,
vol. 3494 (Springer-Verlag, Berlin, 2005), pp. 78–95

[18] J. Katz, Y. Lindell, Handling expected polynomial-time strategies in simulation-based security proofs, in
The 2nd Theory of Cryptography Conference (TCC). LNCS, vol. 3378 (Springer-Verlag, Berlin, 2005),
pp. 128–149

[19] J. Kilian, Founding cryptography on oblivious transfer, in 20th STOC, pp. 20–31 (1988)
[20] M. Kiraz, B. Schoenmakers. A protocol issue for the malicious case of Yao’s garbled circuit construction,

in Proceedings of 27th Symposium on Information Theory in the Benelux, pp. 283–290(2006)
[21] Y. Lindell, Efficient fully-simulatable oblivious transfer. Manuscript (2007)
[22] Y. Lindell, B. Pinkas, A proof of Yao’s protocol for secure two-party computation. J. Cryptol. (to appear).

Also appeared as Cryptology ePrint Archive, Report 2004/175,2004.
[23] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, Fairplay—a secure two-party computation system, in The 13th

USENIX Security Symposium, pp. 287–302 (2004)
[24] S. Micali, P. Rogaway, Secure computation. Unpublished manuscript, 1992. Preliminary version in

CRYPTO’91. LNCS, vol. 576 (Springer-Verlag, Berlin, 1991), pp. 392–404
[25] P. Mohassel, M.K. Franklin, Efficiency tradeoffs for Malicious two-party computation, in The 9th PKC

Conference. LNCS, vol. 3958 (Springer-Verlag, Berlin, 2006), pp. 458–473
[26] M. Naor, Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)
[27] M. Naor, B. Pinkas, Efficient oblivious transfer protocols, in The 12th SODA, pp. 448–457 (2001)
[28] T.P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in CRYPTO’91.

LNCS, vol. 576 (Springer-Verlag, Berlin, 1992), pp. 129–140
[29] M. Rabin, How to exchange secrets by oblivious transfer. Tech. Memo TR-81, Aiken Computation

Laboratory, Harvard University (1981)
[30] D. Woodruff, Revisiting the efficiency of Malicious two-party computation, in Eurocrypt ’07. LNCS,

vol. 4515 (Springer-Verlag, Berlin, 2007), pp. 79–96
[31] A. Yao, How to generate and exchange secrets, in 27th FOCS, pp. 162–167 (1986)

	An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries
	1. Introduction
	2. Preliminaries
	2.1. Definitions---Secure Computation
	2.2. Functionalities that Provide Output to a Single Party

	3. The Protocol
	3.1. High-Level Overview
	3.2. Checks for Correctness and Consistency
	3.3. The Full Protocol

	4. Proof of Security
	4.1. Security Against a Malicious P1
	4.2. Security Against a Malicious P2

	5. Efficiency of the Protocol
	5.1. Efficient Implementation of the Different Primitives
	5.2. Reducing the Number of Oblivious Transfers

	Acknowledgements
	References

