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Secure Two-Party Computation

x yInput:
F(x,y) and nothing elseOutput:

E.g., the millionaires problem

F(x,y) = 1 iff x>y.

Alice Bob
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Secure Two-Party Computation: security

x y

F(x,y) and nothing else
Input:
Output:

x yAs if…

F(x,y) F(x,y)

x y

Wish to have similar privacy, without the aid of a TTP.
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Possible scenarios

• Two parties vs. Multi-party
• Adversaries

– Semi-honest: follow the protocol but try to learn more
– Malicious: can do anything

– It is easier to design solutions which are only good 
against semi-honest adversaries

• Yao [82,86]: 
– A generic protocol for two-party computation (of any 

function!) secure against semi-honest adversaries
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This talk

• Securing Yao’s protocol against malicious adversaries

• Using “cut-and-choose”, unlike other solutions which 
use generic or number-theoretic ZK proofs

• Keeping it efficient
– Similar computational overhead   ☺
– Larger communication overhead  �
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…This talk

• …And proving security in the ideal/real simulation 
paradigm
– This is the main motivation:

• Implement a functionality (efficiently!) using our protocol

• Use it as a primitive in more complex protocols

• Analyze in the hybrid model (i.e., assuming a trusted 
party computes the functionality)  [C]

• Example: computing the k’th ranked element  [AMP]
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Theorem (stating our results)

• Constant-round black-box reduction of secure two-party 
computation (secure in the real/ideal model simulation 
paradigm against malicious parties) to
– oblivious transfer
– and perfectly hiding commitments

• Also, a black-box reduction to 
– oblivious transfer alone
– with a number of rounds which is linear in a statistical 

security parameter.
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Yao’s Protocol for Generic secure two-party computation 

• P1 and P2 wish to compute a function F, defined as a Binary circuit.
• P1 (aka circuit constructor) constructs a Binary circuit computing F, 

and then garbles it. 

• Garbled values:

G

ki0,ki1 kJ0,kJ1

kl0,kl1

ki
0 = 0 on wire i

ki
1 = 1 on wire i

P2 will learn one
string per wire, but
not which bit it 
corresponds to.

Therefore doesn’t 
learn intermediate 
values.
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Bird’s eye view of Yao’s protocol

• P1 defines garbled values for every wire

• P1 constructs tables which enable to
– compute the garbled output of a gate
– given the garbled values of the gate’s input wires

• Applying this to the entire circuit, it is possible to 
compute the circuit’s output (and no internal value), 
given the garbled values of the circuit’s input wires.

• It is also possible to let each player learn a different 
output
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Running the protocol (semi-honest case)

• P1 sends to P2

– Tables encoding each gate.
– Garbled values (k’s) of P1’s input values.

• For every wire i of P2’s input:
– The parties run an oblivious transfer (OT) protocol
– P1’s input is ki

0,ki
1

– P2’s input is its input bit (b).
– P2 learns ki

b

• Afterwards P2 can compute the circuit by itself.
• Efficient for medium size circuits [Fairplay - NMPS]
• Full proof (after modifications) against semi-honest

adversaries [LP06]
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Security against malicious adversaries

How can parties prove that they behave correctly?
1. A zero-knowledge proof based on a reduction to an NP 

complete problem  [GMW]
– GMW’s compiler
– Generic, shows feasibility, non black-box, rather 

inefficient.
2. Prove correctness of the circuit gate-by-gate

– Jarecki-Shmatikov (Eurocrypt ‘07).
– More efficient than the reduction based approach, but still 

requires a ZK proof per gate.
• � instead of doing symmetric key operations per gate, we 

now have to do public key operations.

3. Cut-and-choose based solutions…
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Malicious Behavior and Cut-and-Choose

• What can a malicious circuit constructor (P1) do?
– Can certainly construct a circuit which computes F’ instead 

of F.

• Folk solution: “cut and choose”
– P1 constructs many circuits and commits to them.
– P2 asks P1 to open a randomly chosen subset of the 

circuits, and checks that they are all correct.
– The parties evaluate the remaining circuits.

• Intuition: An illegitimate circuit is identified whp.
– But there are more problems…

• Efficiency: more copies of the circuit, but the 
computation does not change by much. 
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Cut-and-Choose based security for Yao’s protocol

• Mohassel-Franklin 2006
– Cut-and-choose based protocol against malicious adversaries.
– Cannot be fully proven in the ideal/real model paradigm.
– Only one party learns output; no output for the circuit 

constructor.
• Main issue (found by Kiraz-Schoenmakers)

– P1 can cheat in the OT protocol (where it is the sender): 
provides corrupt input to the 0 choice, and good input for 1.

– If P2’s input is 1 all checks go well.
– If P2’s input is 0, it must abort (and cannot complain) !
– Checking the circuits does not help.
– Therefore MF cannot be proven in the ideal/real model
– KS suggest a solution using committing OT.
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Our contributions

• Efficient protocol for malicious parties
– A cut-and-choose based implementation of Yao’s protocol.
– Both parties can have (possibly differing) outputs.
– Proof is complex but protocol is efficient:

• Public key ops: only O(1) (regular) OTs per input bit. 

• Communication is multiplied by a statistical security 
parameter s (to obtain cheating probability < 2-O(s) ).

• Simulation based proof
– Proof based on the real/ideal model simulation paradigm. 
– Rather than separate proofs for privacy and correctness.
– The protocol can therefore be called by other protocols. 

• Rest of talk: discuss the problems we encountered.
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Basic Protocol

n-bit inputs. Statistical security parameter s.
1. The parties agree to a circuit C computing F(). P1

constructs s garbled copies of C and commits to them.
2. P2 uses OT to learn its garbled inputs to all circuits 

(only n OTs: one per input bit for all s garbled circuits).
3. P1 sends the commitments to the circuits.
4. P2 asks P1 to open s/2 circuits, and verifies them.
5. If P2 is happy, P1 sends the garbled values of P1’s 

inputs in the remaining s/2 circuits.
6. P2 evaluates these circuits

But what happens if not all circuits have the same output?
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Problem 1: Inconsistent outputs

• What should P2 do if not evaluated circuits yield the 
same output?
– P1 definitely cheated, but should P2 abort?
– If P2  aborts, it reveals information to P1.

• Example: suppose P2 aborts if outputs are inconsistent.
– P1 constructs s-1 circuits computing F.
– One circuit computes F if and only if  P2’s input is 0.
– With probability ½, P1’s cheating is not detected in the first 

stage. Then P2 aborts iff its input is not 0.
• Solution (providing exponential security):

– P2 computes the circuits, and outputs the same value as 
the majority of the circuits.

– Intuition: In order to cheat, P1 needs s/4 corrupt circuits, 
and none of them should be checked by P2.
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Problem 2: Input Consistency

• P1 might provide different inputs (of P1) to different 
circuits.

• Does this matter?
– Suppose the parties compute the inner product. (Inputs 

are X=x1,…,xs and Y=y1,…,ys, and F(X,Y)=∑i=1…s xi⋅yi.)
– P1 sets different inputs to different circuits: its input to the 

i’th circuit has xi=1 and xj=0 for j≠i.
– Circuit i now outputs yi. The majority result output by P2 is 

therefore 1 iff the Hamming weight of Y > s/2.
• Solution: must verify consistency of P1’s inputs.
• Problem 3: a simulation based proof of security (input 

extraction?).
• And many more issues…
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Proving consistency of P1’s inputs

• We use cut-and-choose to prove consistency of 
commitment sets of P1’s inputs
– And combine it with the cut-and-choose test used to prove 

consistency of circuits
– (two “cut-and-choose”s)

• P1 generates for each of its input wires s pairs of 
commitments sets. In each pair:
– One set contains commitments to the garbled value of 0 

for this wire, in all s circuits.
– The other set contains commitments to the garbled value 

of 1 for this wire, in all s circuits.
– The order of the pairs is random
– P2 receives a total of n⋅s⋅s commitments
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The commitment sets corresponding to P1’s first 
input wire

same value
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Proving consistency of P1’s inputs

• P1 sends to P2 the s garbled circuits and the n⋅s
commitment sets

• The parties jointly pick random strings
– ρ∈ {0,1}s decides which circuits will be checked and 

which will be evaluated
– ρ’∈ {0,1}s decides which commitment sets will be checked

and which will be evaluated
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P1 opens in checked sets the commitments to 
values in checked circuits
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Evaluation

• P1 opens the commitments in evaluation sets, for the garbled 
values of P1’s input in evaluation circuits. P2 verifies that these 
values are consistent (row wise and column wise).
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Why does this prove consistency of P1’s inputs?

• Suppose that P1 wants an input bit to be 0 in circuit Ci
and 1 in Cj.
– If Ci and Cj are evaluated circuits then all evaluation sets

must contain a commitment to 0 for Ci and a commitment 
to 1 for Cj.

– If Ci and Cj are checked circuits then their values must be 
equal in all checked sets .

• Since P2 outputs the majority result, P1’s cheating is 
effective only if applied to > s/4 circuits. 
– Therefore P1 must guess exactly which circuits and which 

sets will be checked ⇒⇒⇒⇒ exponentially small success 
probability.
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What about P2’s inputs?

• Seems easy
– P2 uses OT to learn them

• But, P1 can cheat in the OT protocol [KS]:
– It can provide corrupt decommitment keys for the choice 

corresponding to a 0 input value, and good keys for 1.
– If P2’s input is 1 all checks go well.
– If P2’s input is 0, it cannot open the garbled values and 

must abort!
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Preventing the OT attack

• An easy fix: Replace each of P2’s input bits with the xor
of s new input bits of P2.
– P2 assigns to the new bits random values whose xor is the 

original input bit.
– P2 aborts if the decommitment keys to any bit are corrupt
– P2’s abort probability is almost independent of its input:

• If P1 corrupts < s new bits, the probability of P2 aborting is 
independent of whether its original input is 0 or 1.

• P1 must corrupt s bits and gains advantage of 2-(s-1) in 
guessing P2’s input

• Caveat: Number of OTs multiplied by s.
Solution: Use coding to replace n 
original bits with only 4n new ones.
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Security definition

• Simulation of a real execution in the ideal model
– Any admissible adversary in the real model can be 

simulated by an adversary in the ideal model
– And therefore cannot learn more than is leaked in the ideal 

model.
– The exact definition is more complex [C,G]

• Security is proved in the hybrid model, where the OT is 
implemented by a trusted party [C,G].
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Choosing which circuits/sets to open

• This is done in order to check that P1 is not cheating, so 
naturally P2 can choose which commitments to open.
– This is sufficient in order to handle a malicious P1.

• However, in this case we don’t know how to prove 
simulation in in case of a malicious P2 … (the proof 
requires to cheat P2 in the simulation)

• The parties therefore run a joint coin-tossing protocol:
• P2 commits to a random ρ2

• P1 commits to a random ρ1

• P2 decommits and reveals ρ2

• P1 decommits and reveals ρ1

– ρ = ρ1⊕ρ2 is used to decide which circuits to open
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OTs are done before the circuits commitments 
are sent to P2

• This is done in order to enable us to prove security 
against a malicious P2

– In the simulation, we extract P2’s input to F from its inputs 
to the OT.

– We can send this value to the trusted party and learn the 
resulting output

– Then, construct s/2 circuits which always output this value
– And cheat in the joint coin flipping to ensure P2 evaluates 

only these circuits

• This is the essence of the proof for the case P2 is 
corrupt.
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Security against a corrupt P1

• Construct a simulator which gets access to the corrupt 
P1 and to the trusted party, and emulates the behavior 
of a corrupt P1 in a real execution:
– Receive the circuit commitments from P1

– Run the protocol to obtain a random ρ (deciding which 
circuits are opened). Perform P2’s checks.

– Rewind, and run again with a different ρ*.
– Whp, there are many ( > s/8) circuits which are checked in 

the first run and chosen to be evaluated in the second.
– We can learn P1’s input to these circuits. Since the checks 

before went well, whp this is the input of sufficiently many 
circuits.

– We send this input X of P1 to the TTP and learn F(X,Y).
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Conclusions

• Security in the ideal/real simulation paradigm for Yao’s protocol
– The basic protocol structure is kept. More copies are sent, to perform cut-

and-choose. Several tweaks needed for the proof to go through.
– The same number (order) of public key operations.
– The proof is complicated but the protocol is efficient

• O(1) public key operations per input bit, O(1) rounds. 

• O(|C|⋅s + n⋅s2) communication.

• Woodruff shows how to use expanders to achieve O(|C|⋅s) 
communication for [MF]. Can probably also be applied here.

• THM: Constant-round black-box reduction of secure two-party 
computation to oblivious transfer and perfectly hiding 
commitments.

• Implementation?


