
page 1May 29, 2007 Eurocrypt 2007

An Efficient Protocol for Secure
Two-Party Computation in the

Presence of Malicious Adversaries

Benny Pinkas
University of Haifa

Yehuda Lindell, Bar-Ilan University

page 2May 29, 2007 Eurocrypt 2007

Secure Two-Party Computation

x yInput:
F(x,y) and nothing elseOutput:

E.g., the millionaires problem

F(x,y) = 1 iff x>y.

Alice Bob

page 3May 29, 2007 Eurocrypt 2007

Secure Two-Party Computation: security

x y

F(x,y) and nothing else
Input:
Output:

x yAs if…

F(x,y) F(x,y)

x y

Wish to have similar privacy, without the aid of a TTP.

page 4May 29, 2007 Eurocrypt 2007

Possible scenarios

• Two parties vs. Multi-party
• Adversaries

– Semi-honest: follow the protocol but try to learn more
– Malicious: can do anything

– It is easier to design solutions which are only good
against semi-honest adversaries

• Yao [82,86]:
– A generic protocol for two-party computation (of any

function!) secure against semi-honest adversaries

page 5May 29, 2007 Eurocrypt 2007

This talk

• Securing Yao’s protocol against malicious adversaries

• Using “cut-and-choose”, unlike other solutions which
use generic or number-theoretic ZK proofs

• Keeping it efficient
– Similar computational overhead ☺
– Larger communication overhead �

page 6May 29, 2007 Eurocrypt 2007

…This talk

• …And proving security in the ideal/real simulation
paradigm
– This is the main motivation:

• Implement a functionality (efficiently!) using our protocol

• Use it as a primitive in more complex protocols

• Analyze in the hybrid model (i.e., assuming a trusted
party computes the functionality) [C]

• Example: computing the k’th ranked element [AMP]

page 7May 29, 2007 Eurocrypt 2007

Theorem (stating our results)

• Constant-round black-box reduction of secure two-party
computation (secure in the real/ideal model simulation
paradigm against malicious parties) to
– oblivious transfer
– and perfectly hiding commitments

• Also, a black-box reduction to
– oblivious transfer alone
– with a number of rounds which is linear in a statistical

security parameter.

page 8May 29, 2007 Eurocrypt 2007

Yao’s Protocol for Generic secure two-party computation

• P1 and P2 wish to compute a function F, defined as a Binary circuit.
• P1 (aka circuit constructor) constructs a Binary circuit computing F,

and then garbles it.

• Garbled values:

G

ki0,ki1 kJ0,kJ1

kl0,kl1

ki
0 = 0 on wire i

ki
1 = 1 on wire i

P2 will learn one
string per wire, but
not which bit it
corresponds to.

Therefore doesn’t
learn intermediate
values.

page 9May 29, 2007 Eurocrypt 2007

Bird’s eye view of Yao’s protocol

• P1 defines garbled values for every wire

• P1 constructs tables which enable to
– compute the garbled output of a gate
– given the garbled values of the gate’s input wires

• Applying this to the entire circuit, it is possible to
compute the circuit’s output (and no internal value),
given the garbled values of the circuit’s input wires.

• It is also possible to let each player learn a different
output

page 10May 29, 2007 Eurocrypt 2007

Running the protocol (semi-honest case)

• P1 sends to P2

– Tables encoding each gate.
– Garbled values (k’s) of P1’s input values.

• For every wire i of P2’s input:
– The parties run an oblivious transfer (OT) protocol
– P1’s input is ki

0,ki
1

– P2’s input is its input bit (b).
– P2 learns ki

b

• Afterwards P2 can compute the circuit by itself.
• Efficient for medium size circuits [Fairplay - NMPS]
• Full proof (after modifications) against semi-honest

adversaries [LP06]

page 12May 29, 2007 Eurocrypt 2007

Security against malicious adversaries

How can parties prove that they behave correctly?
1. A zero-knowledge proof based on a reduction to an NP

complete problem [GMW]
– GMW’s compiler
– Generic, shows feasibility, non black-box, rather

inefficient.
2. Prove correctness of the circuit gate-by-gate

– Jarecki-Shmatikov (Eurocrypt ‘07).
– More efficient than the reduction based approach, but still

requires a ZK proof per gate.
• � instead of doing symmetric key operations per gate, we

now have to do public key operations.

3. Cut-and-choose based solutions…

page 13May 29, 2007 Eurocrypt 2007

Malicious Behavior and Cut-and-Choose

• What can a malicious circuit constructor (P1) do?
– Can certainly construct a circuit which computes F’ instead

of F.

• Folk solution: “cut and choose”
– P1 constructs many circuits and commits to them.
– P2 asks P1 to open a randomly chosen subset of the

circuits, and checks that they are all correct.
– The parties evaluate the remaining circuits.

• Intuition: An illegitimate circuit is identified whp.
– But there are more problems…

• Efficiency: more copies of the circuit, but the
computation does not change by much.

page 14May 29, 2007 Eurocrypt 2007

Cut-and-Choose based security for Yao’s protocol

• Mohassel-Franklin 2006
– Cut-and-choose based protocol against malicious adversaries.
– Cannot be fully proven in the ideal/real model paradigm.
– Only one party learns output; no output for the circuit

constructor.
• Main issue (found by Kiraz-Schoenmakers)

– P1 can cheat in the OT protocol (where it is the sender):
provides corrupt input to the 0 choice, and good input for 1.

– If P2’s input is 1 all checks go well.
– If P2’s input is 0, it must abort (and cannot complain) !
– Checking the circuits does not help.
– Therefore MF cannot be proven in the ideal/real model
– KS suggest a solution using committing OT.

page 15May 29, 2007 Eurocrypt 2007

Our contributions

• Efficient protocol for malicious parties
– A cut-and-choose based implementation of Yao’s protocol.
– Both parties can have (possibly differing) outputs.
– Proof is complex but protocol is efficient:

• Public key ops: only O(1) (regular) OTs per input bit.

• Communication is multiplied by a statistical security
parameter s (to obtain cheating probability < 2-O(s)).

• Simulation based proof
– Proof based on the real/ideal model simulation paradigm.
– Rather than separate proofs for privacy and correctness.
– The protocol can therefore be called by other protocols.

• Rest of talk: discuss the problems we encountered.

page 16May 29, 2007 Eurocrypt 2007

Basic Protocol

n-bit inputs. Statistical security parameter s.
1. The parties agree to a circuit C computing F(). P1

constructs s garbled copies of C and commits to them.
2. P2 uses OT to learn its garbled inputs to all circuits

(only n OTs: one per input bit for all s garbled circuits).
3. P1 sends the commitments to the circuits.
4. P2 asks P1 to open s/2 circuits, and verifies them.
5. If P2 is happy, P1 sends the garbled values of P1’s

inputs in the remaining s/2 circuits.
6. P2 evaluates these circuits

But what happens if not all circuits have the same output?

page 17May 29, 2007 Eurocrypt 2007

Problem 1: Inconsistent outputs

• What should P2 do if not evaluated circuits yield the
same output?
– P1 definitely cheated, but should P2 abort?
– If P2 aborts, it reveals information to P1.

• Example: suppose P2 aborts if outputs are inconsistent.
– P1 constructs s-1 circuits computing F.
– One circuit computes F if and only if P2’s input is 0.
– With probability ½, P1’s cheating is not detected in the first

stage. Then P2 aborts iff its input is not 0.
• Solution (providing exponential security):

– P2 computes the circuits, and outputs the same value as
the majority of the circuits.

– Intuition: In order to cheat, P1 needs s/4 corrupt circuits,
and none of them should be checked by P2.

page 18May 29, 2007 Eurocrypt 2007

Problem 2: Input Consistency

• P1 might provide different inputs (of P1) to different
circuits.

• Does this matter?
– Suppose the parties compute the inner product. (Inputs

are X=x1,…,xs and Y=y1,…,ys, and F(X,Y)=∑i=1…s xi⋅yi.)
– P1 sets different inputs to different circuits: its input to the

i’th circuit has xi=1 and xj=0 for j≠i.
– Circuit i now outputs yi. The majority result output by P2 is

therefore 1 iff the Hamming weight of Y > s/2.
• Solution: must verify consistency of P1’s inputs.
• Problem 3: a simulation based proof of security (input

extraction?).
• And many more issues…

page 20May 29, 2007 Eurocrypt 2007

Proving consistency of P1’s inputs

• We use cut-and-choose to prove consistency of
commitment sets of P1’s inputs
– And combine it with the cut-and-choose test used to prove

consistency of circuits
– (two “cut-and-choose”s)

• P1 generates for each of its input wires s pairs of
commitments sets. In each pair:
– One set contains commitments to the garbled value of 0

for this wire, in all s circuits.
– The other set contains commitments to the garbled value

of 1 for this wire, in all s circuits.
– The order of the pairs is random
– P2 receives a total of n⋅s⋅s commitments

page 21May 29, 2007 Eurocrypt 2007

The commitment sets corresponding to P1’s first
input wire

same value

page 22May 29, 2007 Eurocrypt 2007

Proving consistency of P1’s inputs

• P1 sends to P2 the s garbled circuits and the n⋅s
commitment sets

• The parties jointly pick random strings
– ρ∈ {0,1}s decides which circuits will be checked and

which will be evaluated
– ρ’∈ {0,1}s decides which commitment sets will be checked

and which will be evaluated

page 24May 29, 2007 Eurocrypt 2007

P1 opens in checked sets the commitments to
values in checked circuits

page 25May 29, 2007 Eurocrypt 2007

Evaluation

• P1 opens the commitments in evaluation sets, for the garbled
values of P1’s input in evaluation circuits. P2 verifies that these
values are consistent (row wise and column wise).

page 26May 29, 2007 Eurocrypt 2007

Why does this prove consistency of P1’s inputs?

• Suppose that P1 wants an input bit to be 0 in circuit Ci
and 1 in Cj.
– If Ci and Cj are evaluated circuits then all evaluation sets

must contain a commitment to 0 for Ci and a commitment
to 1 for Cj.

– If Ci and Cj are checked circuits then their values must be
equal in all checked sets .

• Since P2 outputs the majority result, P1’s cheating is
effective only if applied to > s/4 circuits.
– Therefore P1 must guess exactly which circuits and which

sets will be checked ⇒⇒⇒⇒ exponentially small success
probability.

page 28May 29, 2007 Eurocrypt 2007

What about P2’s inputs?

• Seems easy
– P2 uses OT to learn them

• But, P1 can cheat in the OT protocol [KS]:
– It can provide corrupt decommitment keys for the choice

corresponding to a 0 input value, and good keys for 1.
– If P2’s input is 1 all checks go well.
– If P2’s input is 0, it cannot open the garbled values and

must abort!

page 30May 29, 2007 Eurocrypt 2007

Preventing the OT attack

• An easy fix: Replace each of P2’s input bits with the xor
of s new input bits of P2.
– P2 assigns to the new bits random values whose xor is the

original input bit.
– P2 aborts if the decommitment keys to any bit are corrupt
– P2’s abort probability is almost independent of its input:

• If P1 corrupts < s new bits, the probability of P2 aborting is
independent of whether its original input is 0 or 1.

• P1 must corrupt s bits and gains advantage of 2-(s-1) in
guessing P2’s input

• Caveat: Number of OTs multiplied by s.
Solution: Use coding to replace n
original bits with only 4n new ones.

page 31May 29, 2007 Eurocrypt 2007

Security definition

• Simulation of a real execution in the ideal model
– Any admissible adversary in the real model can be

simulated by an adversary in the ideal model
– And therefore cannot learn more than is leaked in the ideal

model.
– The exact definition is more complex [C,G]

• Security is proved in the hybrid model, where the OT is
implemented by a trusted party [C,G].

page 32May 29, 2007 Eurocrypt 2007

Choosing which circuits/sets to open

• This is done in order to check that P1 is not cheating, so
naturally P2 can choose which commitments to open.
– This is sufficient in order to handle a malicious P1.

• However, in this case we don’t know how to prove
simulation in in case of a malicious P2 … (the proof
requires to cheat P2 in the simulation)

• The parties therefore run a joint coin-tossing protocol:
• P2 commits to a random ρ2

• P1 commits to a random ρ1

• P2 decommits and reveals ρ2

• P1 decommits and reveals ρ1

– ρ = ρ1⊕ρ2 is used to decide which circuits to open

page 33May 29, 2007 Eurocrypt 2007

OTs are done before the circuits commitments
are sent to P2

• This is done in order to enable us to prove security
against a malicious P2

– In the simulation, we extract P2’s input to F from its inputs
to the OT.

– We can send this value to the trusted party and learn the
resulting output

– Then, construct s/2 circuits which always output this value
– And cheat in the joint coin flipping to ensure P2 evaluates

only these circuits

• This is the essence of the proof for the case P2 is
corrupt.

page 36May 29, 2007 Eurocrypt 2007

Security against a corrupt P1

• Construct a simulator which gets access to the corrupt
P1 and to the trusted party, and emulates the behavior
of a corrupt P1 in a real execution:
– Receive the circuit commitments from P1

– Run the protocol to obtain a random ρ (deciding which
circuits are opened). Perform P2’s checks.

– Rewind, and run again with a different ρ*.
– Whp, there are many (> s/8) circuits which are checked in

the first run and chosen to be evaluated in the second.
– We can learn P1’s input to these circuits. Since the checks

before went well, whp this is the input of sufficiently many
circuits.

– We send this input X of P1 to the TTP and learn F(X,Y).

page 38May 29, 2007 Eurocrypt 2007

Conclusions

• Security in the ideal/real simulation paradigm for Yao’s protocol
– The basic protocol structure is kept. More copies are sent, to perform cut-

and-choose. Several tweaks needed for the proof to go through.
– The same number (order) of public key operations.
– The proof is complicated but the protocol is efficient

• O(1) public key operations per input bit, O(1) rounds.

• O(|C|⋅s + n⋅s2) communication.

• Woodruff shows how to use expanders to achieve O(|C|⋅s)
communication for [MF]. Can probably also be applied here.

• THM: Constant-round black-box reduction of secure two-party
computation to oblivious transfer and perfectly hiding
commitments.

• Implementation?

