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Abstract: An aggregate signature scheme allows a public algo-
rithm to aggregate n signatures on n distinct messages from n signers
into a single signature. By validating the single resulting signature,
one can be convinced that the messages have been endorsed by all
the signers. Certificateless aggregate signatures allow the signers to
authenticate messages without suffering from the complex certifi-
cate management in the traditional public key cryptography or the
key escrow problem in identity-based cryptography. In this paper,
we present a new efficient certificateless aggregate signature scheme.
Compared with up-to-date certificateless aggregate signatures, our
scheme is equipped with a number of attracting features: (1) it is
shown to be secure under the standard computational Diffie-Hellman
assumption in the random oracle model; (2) the security is proven
in the strongest security model so far; (3) the signers do not need
to be synchronized; and (4) its performance is comparable to the
most efficient up-to-date schemes. These features are desirable in
a mobile networking and computing environment where the stor-
age/computation capacity of the end devices are limited, and due
to the wireless connection and distributed feature, the computing
devices are easy to be attacked and hard to be synchronized.
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1. Introduction

As information and communications technologies (ICT) become increasingly
pervasive, it is expectable for mobile devices to communicate with each other
anywhere anytime, e.g. vehicular networks in which each vehicle may exchanges
500-2000 messages/second in a high-density traffic scenario (see Wu et al., 2010;
or Zhang et al., 2010b). A basic requirement in these scenarios is that the ex-
changed messages have to be authentic “for the prevention, investigation, de-
tection, and prosecution of serious criminal offences (see European Parliament,
2005)”. Employing digital signatures is one of the main approaches to meet this
requirement, involving the challenges (1) to guarantee that the authorship of
the signatures is sound, (2) the signatures can be efficiently verified, and (3)
the signatures can be efficiently stored for possible juristical witnesses. These
challenges have to be addressed to extensively deploy signatures to secure such
applications.

Related work. Public key infrastructure is a conventional approach to
address the first challenge. In the traditional public key cryptography (PKC),
the public key of a user is usually a “random” string that is unrelated to the
identity of the user, so a trusted-by-all certificate authority (CA) is employed
to assure the relationship between the cryptographic keys and the user. As a
result, traditional PKC requires a large amount of storage space and computing
time to manage the certificates.

To circumvent complicated certificate management, Shamir (1984) intro-
duced the concept of ID-based public key cryptography (ID-PKC). In ID-PKC,
the public key of each user is easily computable from a string corresponding to
this user’s identity, e.g., a telephone number, while the private key associated
with that identity is computed and issued secretly to the user by a trusted pri-
vate key generator (PKG). This property dramatically simplifies the certificate
management in the traditional PKC. However, an inherent problem of ID-PKC
is key escrow, i.e., the PKG knows users’ private key. Clearly, a malicious PKG
can decrypt any ciphertext and forge the signature of any user. Due to this
inherent problem, ID-PKC is considered to be suitable only for close networks
(see Shamir, 1984).

To avoid the shortcomings of traditional PKC and ID-PKC, Al-Riyami and
Paterson (2003) proposed a paradigm called certificateless public key cryptog-
raphy (CL-PKC) in 2003. The concept was introduced to suppress the inherent
key-escrow property of ID-PKC without losing their most attractive advantage,
i.e., relief from numerous digital certificates and their heavy management over-
head. The basic idea of CL-PKC is that only the user has the authority to
compute his full private key by combining his partial private key generated by
a third party called Key Generation Center (KGC) and a secret value chosen
by himself. Hence, the KGC does not have access to the user’s full private key.
The public key of a user is computed from the KGC’s public parameters and the
secret value of the user, and it is published by the user himself. Thus, CL-PKC
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avoids the complicated certificate management problem in traditional PKC,
including revocation, storage and distribution and the computational cost of
certificate verification which are particularly acute in processor or bandwidth-
limited environments. It also avoids the key escrow problem which, restricts
ID-PKC to small, closed groups or to applications with limited security require-
ments.

Although CL-PKC seems to be the most efficient approach to guarantee the
authorship of signatures, it is not trivial to design secure certificateless signature
(CLS) schemes. In the seminal CL-PKC paper of Al-Riyami and Paterson
(2003), they presented a CLS scheme. Later, Huang et al. (2005) pointed out a
security drawback of the original scheme and proposed a secure one. A generic
construction of CLS scheme was proposed by Yum and Lee (2004) in ACISP
2004. However, Hu et al. (2006) showed that the Yum-Lee construction is
insecure and proposed a fix in the standard model. In ACNS 2006, Zhang and
Wong (2006) presented an efficient CLS scheme from pairings. Gorantla and
Saxena (2005) introduced a new construction of CLS scheme without providing
formal proofs. After that, several efficient and secure CLS schemes have been
proposed (see Choi et al.,2007, 2011; Zhang and Zhang, 2008).

Regarding the formal security model, two types of adversaries, Type I and
Type II adversaries, should be considered for the CL-PKC as defined by Al-
Riyami and Paterson (2003). Type I adversary represents the normal third
party attacker who has no access to the master key, but is allowed to replace
the public keys of the users. Type II adversary represents the malicious KGC
who is equipped with the master key, but is not able to replace public keys.
According to their attack power, Type I/II adversaries can be further classified
into three kinds of normal, strong, and super Type I/II adversaries, Huang et
al. (2007). The normal Type I/II adversary can only obtain the valid signatures
for the original public key. The strong Type I/II adversary can obtain the valid
signatures for the public key replaced by himself if he additionally submits the
secret value corresponding to the replaced public key. The super Type I/II
adversary can obtain the valid signatures for the replaced public key, without
additional submission. The last is the strongest security model of CLS schemes
and it is also employed in this paper.

Recently, efforts have been devoted to fast signature verification and effi-
cient signature storage. This is fulfilled by the advanced notion of aggregate
signatures introduced by Boneh et al. (2003). In this notion, given n signatures
(as well as the associating public keys) on n messages from n users, anyone can
combine all of these signatures into a single one. The resulting signature can
convince a verifier that the n users indeed signed the n corresponding messages.
This feature greatly reduces the computational overhead to verify signatures
and the communication/storage cost to relay/store signatures.

Since the Boneh et al. (2003) scheme, a number of aggregate signature
schemes have been proposed in PKC (see Ahn et al., 2010; Bagherzandi and
Jarecki, 2010; Boldyreva et al., 2007; Lu et al., 2006; Lysyanskaya et al., 2004;
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Neven, 2008) and ID-PKC (see Cheng et al., 2005; Gentry and Ramzan, 2006;
Herranz, 2006; Shim, 2010; Xu et al., 2005), respectively. To realize the merits of
aggregate signature and CL-PKC simultaneously, the concept of certificateless
aggregate signature (CL-AS) has been introduced and several CL-AS schemes
have been proposed (see Castro and Dahab, 2007; Gong et al., 2007; Zhang and
Zhang, 2009; Zhang et al., 2010a). Most CL-AS schemes are only provably se-
cure against the strong Type I/II adversary (see Castro and Dahab, 2007; Gong
et al., 2007; Zhang et al., 2010a). Only one scheme in Zhang and Zhang(2009)
is provably secure against the super Type I/II adversary. Furthermore, the
schemes (see Zhang and Zhang, 2009; Zhang et al., 2010a) require certain syn-
chronization, i.e., all signers must share the same string based on synchronized
clocks to generate the aggregate signature. One may observe that it is not easy
to achieve synchronization in many mobile computing scenarios. Also, many
schemes (see Castro and Dahab, 2007; Gong et al., 2007; Zhang and Zhang,
2009) require a large number of pairing operations and a long signature size,
meaning a departure from the main goals of aggregate signatures.

Our contribution. In this paper, we propose an efficient CL-AS scheme
and show its security in the random oracle model against the super Type I/II
adversary. The proof is built on the standard Computational Diffie-Hellman as-
sumption. The proposed scheme does not require synchronization among signers
for aggregating randomness, which makes it more suitable for ad hoc networks.
As for performance, our scheme allows multiple signers to sign multiple mes-
sages in an efficient way and the result of aggregate signature consists of only
two groups elements, and the verification procedure needs only a very small
constant number of pairing operations. The performance is comparable to the
most efficient schemes so far. These features show, that our scheme is secure
and practical for mobile applications where the end devices have only limited
computation and storage capacities.

Paper organization. The rest of this paper is organized as follows. A brief
review of some basic concepts and security notions used in our scheme is given
in Section 2. In Section 3, we construct an efficient CL-AS scheme and provide
its security proof. Finally, the conclusions are given in Section 4.

2. Preliminaries

In this section, we will review some background required in this paper, namely
bilinear pairing and the definition of a CL-AS scheme. The notations used
throughout the paper are listed in Table 1.

2.1. Bilinear pairing and complexity assumption

Following the notions of Wu et al. (2009, 2011), we briefly review bilinear
parings. Let G1 denote an additive group of prime order q and G2 be a mul-
tiplicative group of the same order. Let P be a generator of G1, and ê be a
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Table 1. Notations
Notations Descriptions
CL-AS: Certificateless Aggregate Signature
KGC: Key Generation Center
G1: An additive group of prime order q

G2: A multiplicative group of prime order q

ê : G1 ×G1 → G2 : An efficiently computable bilinear map
P,Q,Q′ Three different generators in G1

k: A security parameter
A1,A2: A type I/II adversary
IDi The identity of a user
pskIDi

The partial private key of a user with identity IDi

uskIDi
, upkIDi

The user secret key and user public key of a user with
identity IDi, respectively

mi : A message to be signed
Hi : A hash function
σi : A single signature on a message
σ : An aggregate signature

bilinear map such that ê : G1 ×G1 → G2, with the following properties:

1. Bilinearity: for all P,Q ∈ G1, and a, b ∈ Zq, ê(aP, bQ) = ê(P,Q)ab.
2. Non-degeneracy: ê(P, P ) 6= 1G2

.

3. Computability: it is efficient to compute ê(P,Q) for all P,Q ∈ G1.

The security of our signature scheme will be reduced to the hardness of
the Computational Diffe-Hellman (CDH) problem in the group, in which the
signature is constructed. We briefly review the definition of the CDH problem:

Definition 1 Given the elements P , aP and bP for some random values
a, b ∈ Zq the Computational Diffe-Hellman (CDH) problem consists of com-
puting the element abP .

The success probability of an algorithm A in solving CDH problem in G1 is
defined as

SuccCDH
A,G1

= Pr[A(P, aP, bP ) = abP : a, b ∈ Zq]. (1)

The CDH assumption states that for every probabilistic polynomial-time algo-
rithm A, SuccCDH

A,G1
is negligible.

2.2. Security notions

Components of Certificateless Aggregate Signature Scheme. A cer-
tificateless Aggregate Signature (CL-AS) scheme CL-AS= (MasterKeyGen, Par-

tialKeyGen, UserKeyGen, Sign, Aggregate and Aggregate Verify) is specified by
six polynomial time algorithms with the following functionality:
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1. The randomized parameter generation algorithm MasterKeyGen takes as
input 1k, where k is the security parameter, and outputs a master pub-
lic/secret key pair (mpk,msk). The algorithm is assumed to be run by a
Key Generation Center (KGC) for the initial setup of a CL-AS scheme.

2. The randomized private key generation algorithm PartialKeyGen takes as
input msk and user’s identity IDi ∈ {0, 1}

∗ and generates a key pskIDi

called partial private key. This algorithm is run by the KGC once for each
user, and the partial private key is assumed to be distributed securely to
the corresponding user.

3. The randomized user key generation algorithm UserKeyGen takes as input
mpk and user’s identity IDi and generates a user public/secret key pair
(upkIDi

, uskIDi
). This algorithm is supposed to be run by each user in

the system.
4. The randomized signing algorithm Sign is run by a signer IDi that takes as

input a signing key (pskIDi
, uskIDi

), a message mi ∈ {0, 1}
∗ and outputs

a signature σi ← Sign(pskIDi
, uskIDi

,mi).
5. The randomized aggregating algorithm Aggregate takes as input an ag-

gregating set U of n users {U1, · · · ,Un} with the identity IDi and the
corresponding public key upkIDi

of each user Ui, and a signature σi on a
message mi under identity IDi and the public key upkIDi

for each user
Ui ∈ U . The output of this algorithm is an aggregate signature σ on
messages {m1, · · · ,mn}.

6. The randomized verification algorithm Aggregate Verify takes as input
mpk, an aggregating set U of n users {U1, · · · ,Un} with the identity IDi

and the corresponding public key upkIDi
of each user Ui, an aggregate

signature σ on messages {m1, · · · ,mn}. It outputs True if the signature
is correct, or ⊥ otherwise.

The Adversaries Model of the CL-AS Scheme. Combining the se-
curity notions of CL-PKC and security models of aggregate signature schemes
in traditional PKC and ID-PKC, two types of security, Type-I security and
Type-II security, for CL-AS scheme along with two types of adversaries, A1 and
A2, have been defined, Choi et al. (2011), Zhang and Zhang (2009), Zhang et
al. (2010a). Adversary A1 models a malicious adversary which compromises
the user secret key uskID or replaces the user public key upkID, but cannot
compromise the master secret key msk nor get access to the partial private key
pskID. Adversary A2 models the malicious-but-passive KGC who controls the
generation of the master public/secret key pair, and that of any partial private
key pskID. The following are the five oracles which can be accessed by the
adversaries.

1. CreateUser: On input of an identity IDi ∈ {0, 1}
∗, if IDi has already

been created, nothing is to be carried out. Otherwise, the oracle generates
pskIDi

← PartialKeyGen(msk, IDi) and (upkIDi
, uskIDi

)←UserKeyGen
(mpk, IDi). It then stores (IDi, pskIDi

, upkIDi
, uskIDi

) in a list L. In
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both cases, upkIDi
is returned.

2. RevealPartialKey: On input of an identity IDi, the oracle searches
L for an entry corresponding to IDi. If it is not found, ⊥ is returned;
otherwise, the corresponding pskIDi

is returned.
3. RevealSecretKey: On input of an identity IDi, the oracle searches L for

an entry corresponding to IDi. If it is not found, ⊥ is returned; otherwise,
the corresponding uskIDi

is returned.
4. ReplaceKey: On input out an identity IDi and a user public/secret key

pair (upk∗IDi
, usk∗IDi

), the oracle searches L for the entry of IDi. If it
is not found, nothing will be carried out. Otherwise, the oracle updates
(ID, pskIDi

, upkIDi
, uskIDi

) to (ID, pskIDi
, upk∗IDi

, usk∗IDi
).

5. Super-Sign: On input of a message mi ∈ {0, 1}
∗ for IDi, the signing or-

acle returns a valid signature σi such that True← Verify(mpk, IDi, upkIDi
,

mi, σi), where upkIDi
is the current public key corresponding to IDi and

it may be replaced by the ReplaceKey query.

Note that when the oracle ReplaceKey is queried, usk∗IDi
can be an empty

string. In this case, it means that the user secret key is not provided. If usk∗IDi

is an empty string and the original user secret key of an identity IDi is replaced
with usk∗IDi

, then the empty string will be returned if the RevealSecretKey

oracle is queried on IDi. Also note that even if usk∗IDi
is not an empty string,

it does not mean that usk∗IDi
is the corresponding secret key of upk∗IDi

. Hence,
as mentioned, the signature generated by the signing oracle Super-Sign will
be a valid signature under the replaced user public key upk∗IDi

.
We define two games, one for A1 and the other one for A2.
Game I: Let S1 be the simulator/challenger game and k ∈ N be a security

parameter.

1. S1 executes MasterKeyGen(1k) to get (mpk,msk).
2. S1 runs A1 on 1k and mpk. During the simulation, A1 can make queries

onto the oracles CreateUser, RevealPartialKey, RevealSecretKey,
ReplaceKey and Super-Sign.

3. A1 outputs a set of n users with identities from the set L∗
ID = {ID∗

1 , · · · ,
ID∗

n} and corresponding public keys from the set L∗
upk = {upk∗1 , · · · ,

upk∗n}, n messages L∗
m = {m∗

1, · · · ,m
∗
n} and an aggregate signature σ∗.

We say that A1 wins Game I, iff
• σ∗ is a valid aggregate signature on messages {m∗

1, · · · , m
∗
n} under identi-

ties {ID∗
1 , · · · , ID

∗
n} and the corresponding public keys {upk∗1 , · · · , upk

∗
n}.

• At least one of the identities, without loss of generality, say ID∗
1 ∈ L∗

ID,
has not been submitted during the RevealPartialKey(ID∗

1) queries to
get the user partial key psk∗ID1

. Also, the oracle Super-Sign has never
been queried with (ID∗

1 ,m
∗
1).

Definition 2 A CL-AS scheme is said to be Type-I secure if there is no prob-
abilistic polynomial-time adversary A1 winning Game I with non-negligible
advantage.
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Game II: Let S2 be the game challenger and k ∈ N be a security parameter.
There are two phases of interactions between S2 and A2.

1. S2 executes A2 on input 1k, which returns a master public/secret key pair
(mpk,msk) to A2. Note that A2 cannot make any query at this stage.

2. During this stage of simulation, A2 can make queries onto oracle Re-

vealSecretKey and Super-Sign. A2 can also make queries to Cre-

ateUser. Note that oracle RevealPartialKey is not accessible and no
longer needed as A2 has the master secret key, and when A2 issues a query
to CreateUser oracle, it has to additionally provide the partial private
key pskID.

3. At the end of this phase, A2 is to output a set of n users whith identities
from the set L∗

ID = {ID∗
1 , · · · , ID

∗
n} and corresponding public keys from

the set L∗
upk = {upk∗1 , · · · , upk

∗
n}, n messages L∗

m = {m∗
1, · · · ,m

∗
n} and an

aggregate signature σ∗.

We say that A2 wins Game II, iff
• σ∗ is a valid aggregate signature on messages {m∗

1, · · · ,m
∗
n} under identi-

ties {ID∗
1 , · · · , ID

∗
n} and the corresponding public keys {upk∗1 , · · · , upk

∗
n}.

• At least one of the identities, without loss of generality, say ID∗
1 ∈ L∗

ID,
has not been submitted during the RevealSecretKey(ID∗

1) queries to
get the user secret key usk∗ID1

. Also, the oracle Super-Sign has never
been queried with (ID∗

1 ,m
∗
1).

Definition 3 A CL-AS scheme is said to be Type-II secure if there is no prob-
abilistic polynomial-time adversary A2 winning Game II with non-negligible
advantage.

3. New certificateless aggregate signature

3.1. The proposed certificateless aggregate signature scheme

In this section, we will give the concrete construction of our CL-AS scheme.
Compared to the preliminary version (see Xiong et al., 2011), randomness has
been added to the signature generation process to fix a flaw and guarantee strong
security. The proposed scheme comprises the following algorithms.

MasterKeyGen: Given a security parameter k ∈ Z, the algorithm works as
follows:

1. Run the parameter generator on input k to generate a prime q, two groups
G1, G2 of prime order q, three different generators P , Q and Q′ in G1 and
an admissible pairing ê : G1 ×G1 → G2.

2. Select a master-key s ∈R Z
∗
q and sets Ppub = sP .

3. Choose cryptographic hash functions H0, H
′
0 : {0, 1}∗ → G1 and H1, H2,

H ′
2 : {0, 1}∗ → Z

∗
q . The security analysis will review H1 and H2 as random

oracles. The master-key is s. The system parameters are {q,G1,G2, ê, P,

Q,Q′, Ppub, H0, H
′
0, H1, H2, H

′
2}.
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PartialKeyGen: Given a user’s identity IDi ∈ {0, 1}
∗, KGC first computes

QIDi
= H0(IDi) and Q′

IDi
= H ′

0(IDi). It then sets this user’s partial key
pskIDi

= (sQIDi
, sQ′

IDi
) and transmits it to user IDi secretly.

UserKeyGen: The user IDi selects a secret value xIDi
∈R Z

∗
q as his secret

key uskIDi
, and computes his public key as upkIDi

= xIDi
P .

Sign: Given its signing key (uskIDi
, pskIDi

), and a message mi ∈ {0, 1}
∗,

the signer, whose identity is IDi, and the corresponding public key is upkIDi

performs the following steps:

1. Compute hi1 = H1(mi, IDi, upkIDi
), hi2 = H2(mi, IDi, upkIDi

) and
h′
i2 = H ′

2(mi, IDi, upkIDi
).

2. Choose ri ∈R Z
∗
q and compute Ri = riP .

3. Compute σi = hi1 · xIDi
·Q+ ri ·Q

′ + hi2 · sQIDi
+ h′

i2 · sQ
′
IDi

.
4. Output (Ri, σi) as the signature on mi.

Aggregate: Anyone can act as an aggregate signature generator and aggre-
gate a collection of individual signatures. For an aggregating set of n users
{U1, · · · ,Un} with identities {ID1, · · · , IDn}, the corresponding public keys
{upk1, · · · , upkn}, and message-signature pairs (m1, R1, σ1), · · · , (mn, Rn, σn)
from {U1, · · · ,Un}, respectively, the aggregate signature generator computes
R =

∑n

i=1 Ri, σ =
∑n

i=1 σi and outputs (R, σ) as the aggregate signature.
Aggregate Verify: To verify an aggregate signature (R, σ) signed by n users

{U1, · · · ,Un} with identities {ID1, · · · , IDn} and the corresponding public keys
{upk1, · · · , upkn} on messages {m1, · · · ,mn}, the verifier performs the following
steps:

1) Compute QIDi
= H0(IDi), Q

′
IDi

= H ′
0(IDi), hi1 = H1(mi, IDi, upkIDi

),
hi2 = H2(mi, IDi, upkIDi

) and h′
i2 = H ′

2(mi, IDi, upkIDi
) for i = 1, · · · , n.

2) Verify the equation

ê(σ, P ) = ê(
n∑

i=1

hi1upkIDi
, Q)ê(R,Q′) (2)

×ê(

n∑

i=1

(hi2QIDi
+ h′

i2Q
′
IDi

), Ppub).

If it holds, accept the signature; else reject it.

3.2. Security proof

Assuming that the CDH problem is hard, we now show the security of our
CL-AS scheme.

Theorem 1 In the random oracle model, our CL-AS scheme is existentially
unforgeable against adaptive chosen-message attacks under the assumption that
the CDH problem in G1 is intractable.

The theorem follows at once from Lemmas 1 and 2, according to Definitions
2 and 3.
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Lemma 1 If a probabilistic polynomial-time forger A1 has an advantage ε in
forging a signature in an attack modeled by Game I of Definition 2 after run-
ning in time t and making qH0

queries to random oracles H0 and H ′
0, qH1

queries
to random oracle H1, qH2

queries to random oracles H2 and H ′
2, qCreU queries

to the CreateUser request oracle, qRPar queries to the RevealPartialKey ex-
traction oracle, qRSec queries to the RevealSecretKey extraction oracle, and
qSupSig queries to the Super-Sign oracle, then the CDH problem can be solved
with probability ε′ > (1− 1

qH0

)qRPar+n−1qH0
ε.

Proof. Let (X = aP, Y = bP ) be a random instance of the CDH problem in
G1. Here, P is a generator of G1 with prime order q, and the elements a, b are
taken uniformly at random from Z

∗
q . By using the forgery algorithm A1, we will

construct an algorithm S1 which outputs the CDH solution abP in G1.

Algorithm S1 chooses two random t, t′ ∈ Z
∗
q , and sets Ppub = X, Q = tP

and Q′ = t′P , and then starts performing oracle simulation. Without loss of
generality, we assume that, for any key extraction or signature query involving
an identity, an H0(·) and H ′

0(·) oracle query has previously been made on that
identity. And S1 maintains a list L = {(IDi, pskIDi

, upkIDi
, uskIDi

)}, while A1

is making queries throughout the game. S1 responds to A1’s oracle as follows.
Queries on Oracle H0, H

′
0: Suppose A1 makes at most qH0

queries to
H0, H

′
0 oracle. First, S1 chooses j ∈ [1, qH0

] randomly. When A1 makes an
H0, H

′
0 query on IDi, where 1 ≤ i ≤ qH0

, if i = j (we let IDi = ID∗ at this
point), S1 picks two random α, β ∈ Z

∗
q and returns (QIDi

= Y,Q′
IDi

= α(βP −
Y )). Then S1 inserts a tuple (IDi, QIDi

, Q′
IDi

, α, β) in a list L0. Otherwise, S1
picks two random ri, r

′
i ∈ Z

∗
q and returns (QIDi

= riP,Q
′
IDi

= r′iP ), and adds
(IDi, QIDi

, Q′
IDi

, ri, r
′
i) to L0.

Queries on Oracle H1: Suppose (mi, IDi, upkIDi
) is submitted to oracle

H1(·). S1 first scans L1 = {(mi, IDi, upkIDi
, hi1)} to check whether H1 has

already been defined for that input. If so, the previously defined value is re-
turned. Otherwise, S1 picks at random hi1 ∈ Z

∗
q and returns hi1 as a hash value

of H1(mi, IDi, upkIDi
) to A1 and also stores the values in the list L1.

Queries on Oracle H2, H
′
2: Suppose (mi, IDi, upkIDi

) is submitted to
oracle H2(·) and H ′

2(·). S1 first scans L2 = {(mi, IDi, upkIDi
, hi2, h

′
i2)} to

check whether H2 and H ′
2 have already been defined for that input. If so, the

previously defined value is returned. Otherwise, if IDi = ID∗, S1 randomly
picks at random hi2 ∈ Z

∗
q and computes h′

i2 = hi2α
−1; else if IDi 6= ID∗, S1

randomly picks at random hi2, h
′
i2 ∈ Z

∗
q . S1 returns hi2 and h′

i2 as the hash
values of H2(mi, IDi, upkIDi

) and H ′
2(mi, IDi, upkIDi

) to A1 and also stores
the values in the list L2.

RevealPartialKey Oracle: Suppose the request is on an identity IDi. If
IDi 6= ID∗, S1 recovers the corresponding (IDi, QIDi

, Q′
IDi

, ri, r
′
i) from the list

L0 and returns pskIDi
= (riX, r′iX). Otherwise S1 outputs “failure” and halts

because it is unable to coherently answer the query.
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CreateUser Oracle: Suppose the request is on an identity IDi.

• If the list L contains (IDi, pskIDi
, upkIDi

, uskIDi
), S1 checks whether

upkIDi
= ⊥. If upkIDi

6= ⊥, S1 returns upkIDi
to A1. Otherwise, S1

randomly chooses νi ∈ Z
∗
q and sets upkIDi

= νiP and uskIDi
= νi. S1

returns upkIDi
to A1 and saves (upkIDi

, uskIDi
) into the list L.

• If the list L does not contain (IDi, pskIDi
, upkIDi

, uskIDi
), S1 sets

pskIDi
= ⊥, and then randomly chooses νi ∈ Z

∗
q and sets upkIDi

= νiP

and uskIDi
= νi. S1 returns upkIDi

to A1 and adds (IDi, pskIDi
, upkIDi

,

uskIDi
) to list L.

RevealSecretKey Oracle: Suppose the request is on an identity IDi.

• If the list L contains (IDi, pskIDi
, upkIDi

, uskIDi
), S1 checks whether

uskIDi
= ⊥. If uskIDi

6= ⊥, S1 returns uskIDi
to A1. Otherwise, S1

makes a CreateUser query itself to generate (upkIDi
= νiP, uskIDi

=
νi). Then S1 saves these values in the list L and returns uskIDi

= νi to
A1.

• If the list L does not contain (IDi, pskIDi
, upkIDi

, uskIDi
), S1 makes a

CreateUser query itself, and then adds (IDi, pskIDi
, upkIDi

, uskIDi
) to

the list L and returns uskIDi
.

ReplaceKey Oracle: Suppose A1 makes the query with (IDi, upk
′
IDi

).

• If the list L contains an element (IDi, pskIDi
, upkIDi

, uskIDi
), S1 sets

upkIDi

= upk′IDi
and uskIDi

= ⊥.
• If the list L does not contain an item (IDi, pskIDi

, upkIDi
, uskIDi

), S1
sets pskIDi

= ⊥, upkIDi
= upk′IDi

and uskIDi
= ⊥, and adds an element

(IDi, pskIDi
, upkIDi

, uskIDi
) to L.

Super-Sign Oracle: When A1 makes a Super-Sign query on mi with
IDi, S1 first finds the corresponding (IDi, QIDi

, Q′
IDi

, ri, r
′
i) and (IDi, upkIDi

,

uskIDi
) from the lists L0 and L, respectively. Then, S1 performs as follows:

• If IDi = ID∗, S1 first checks whether IDi has been in L1 and L2. If it is
the case, S1 computes σi = hi1 · t · upkIDi

+ t′ · Ri + hi2βX and returns
(Ri, σi). Else S1 picks two random hi1, hi2 ∈ Z

∗
q , Ri ∈ G1 and computes

h′
i2 = hi2α

−1. S1 adds (mi, IDi, upkIDi
, hi1) and (mi, IDi, upkIDi

, hi2, h
′
i2)

to L1, L2, respectively. Finally, S1 computes σi = hi1 · t ·upkIDi
+ t′ ·Ri+

hi2βX and returns (Ri, σi).
• Otherwise, S1 first checks whether IDi has been in L1 and L2. If they are

in the list, S1 computes σi = hi1 · t · upkIDi
+ t′ · Ri + hi2riX + h′

i2r
′
iX.

S1 then returns (Ri, σi). Else, if IDi is not on the lists L1 or L2, S1 picks
three random hi1, hi2, h

′
i2 ∈ Z

∗
q , Ri ∈ G1 and adds (mi, IDi, upkIDi

, hi1)
and (mi, IDi, upkIDi

, hi2, h
′
i2) to L1, L2, respectively. Finally S1 computes

σi = hi1 · t · upkIDi
+ t′ ·Ri + hi2riX + h′

i2r
′
iX and returns (Ri, σi).

Eventually, A1 is to output a set of n users whith identities from the set
L∗
ID = {ID∗

1 , · · · , ID
∗
n} and corresponding public keys from the set L∗

upk =
{upk∗1 , · · · , upk

∗
n}, n messages L∗

m = {m∗
1, · · · ,m

∗
n} and an aggregate signature
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σ∗. It is required that there exist ID∗ ∈ {ID∗
1 , · · · , ID

∗
n} such that A1 has

not asked the partial private key. Without loss of generality, we assume that
ID∗ = ID∗

1 . And A1 has not made an (m∗
1, ID

∗
1) query to Super-Sign ora-

cle. Furthermore, the aggregate signature (R∗, σ∗) should satisfy the aggregate
verification as follows:

ê(σ∗, P ) = ê(R∗, Q′)ê(
n∑

i=1

h∗
i1upkID∗

i
, Q) (3)

×ê(

n∑

i=1

(h∗
i2QID∗

i
+ h′∗

i2Q
′
ID∗

i
), Ppub)

Then, S1 finds the corresponding tuples (ID∗
i , QID∗

i
, Q′

ID∗

i
, ri, r

′
i) for 2 ≤

i ≤ n and (ID∗
1 , QID∗

1
, Q′

ID∗

1

, α, β) from the list L0 respectively. The public
keys upkID∗

i
may be replaced by A1. The following equation holds because the

aggregate signature is valid.

ê(σ∗
, P ) = ê(R∗

, Q
′)ê(

n∑

i=1

h
∗
i1upkID∗

i
, Q)ê(

n∑

i=1

(h∗
i2QID∗

i
+ h

′∗
i2Q

′
ID∗

i
), Ppub) (4)

= ê(

n∑

i=1

h
∗
i1upkID∗

i
, tP )ê(

n∑

i=2

(h∗
i2riP + h

′∗
i2r

′
iP ), X)ê(R∗

, t
′
P )

×ê(h∗
12Y + h

′∗
12α(βP − Y ), X)

= ê(

n∑

i=1

th
∗
i1upkID∗

i
, P )ê(

n∑

i=2

(h∗
i2ri + h

′∗
i2r

′
i)X,P )ê((h∗

12 − h
′∗
12α)Y,X)

×ê(h′∗
12αβX,P )ê(t′R∗

, P ).

Finally, S1 outputs abP as a solution to the CDH instance by computing

abP = (h∗
12 − h′∗

12α)
−1(σ∗ −

n∑

i=1

th∗
i1upkID∗

i
−

n∑

i=2

(h∗
i2ri + h′∗

i2r
′
i)X (5)

−h′∗
12αβX − t′R∗)

This completes the description of S1. It remains to show that S1 solves the
given instance of the CDH problem with probability of at least ε′. To do so, we
analyze three events needed for S1 to succeed:

• E1 : S1 does not abort as a result of any of A1’s RevealPartialKey

queries.
• E2 : A1 generates a valid and non-trivial aggregate signature forgery.
• E3 : Event E2 occurs, ID∗

1 = ID∗ and ID∗
i 6= ID∗ for all i, 2 ≤ i ≤ n.
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S1 succeeds if all of these events happen. The probability Pr[E1 ∧E2 ∧E3]
is decomposed as Pr[E1 ∧ E2 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2]

The following claims give a lower bound for each of these terms.
Claim. The probability that algorithm S1 does not abort as a result of any

of A1’s RevealPartialKey queries is at least (1− 1
qH0

)qRPar .

Proof. As Pr[E1] = 1 − 1
qH0

, for a partial private key extraction query, the

probability that S1 does not abort is 1 − 1
qH0

. Since A1 makes at most qRPar

queries to the partial private key extraction oracle, the probability that S1 does
not abort as a result of A1’s partial private key extraction queries is at least
(1− 1

qH0

)qRPar .

Claim. If S1 does not abort as a result of A1’s Super-Sign queries and
RevealPartialKey queries, then A1’s view is identical to its view in the attack.
Hence, Pr[E2 | E1] ≥ ε.

Claim. The probability that algorithm S1 does not abort after A1 outputs
a valid and nontrivial forgery is at least qH0

(1 − 1
qH0

)n−1. Hence, Pr[E3 |

E1 ∧ E2] > qH0
(1− 1

qH0

)n−1.

Proof. Algorithm S1 succeeds only if A1 generates a forgery such that ID∗
1 =

ID∗ and ID∗
i 6= ID∗ for all i, 2 ≤ i ≤ n. Hence, Pr[E3 | E1 ∧ E2] > qH0

(1 −
1

qH0

)n−1.

Therefore, the S1’s advantage in solving the CDH problem in G1 is at least
(1− 1

qH0

)qRPar+n−1qH0
ε.

Lemma 2 If a probabilistic polynomial-time forger A2 has an advantage ε in
forging a signature in an attack modeled by Game II of Definition 3 after run-
ning in time t and making qH2

queries to random oracles H2, qCreU queries
to the CreateUser request oracle, qRSec queries to the RevealSecretKey ex-
traction oracle, and qSupSig queries to the Super-Sign oracle, then the CDH
problem can be solved with probability (1− 1

qCreU
)qSupSig+qRSec+n−1qCreUε.

Proof. Suppose A2 is a Type II adversary that (t, ε)-breaks our CL-AS scheme.
We show how to construct a t′-time algorithm S2 that solves the CDH problem
on G1 with probability of at least ε′. Let (X = aP, Y = bP ) ∈ G1 × G1 be a
random instance of the CDH problem taken as input by S2.

S2 randomly chooses s ∈ Z
∗
q as the master key, and then initializes A2 with

Ppub = sP and also the master key s. After that, S2 sets Q = X, and chooses
random t′ ∈ Z

∗
q , and sets Q′ = t′P . The adversary A2 then starts making

oracle queries as described in Definition 3. Note that the user’s partial key
pskIDi

= (sH0(IDi), sH
′
0(IDi)) can be computed by both S2 and A2, thus the

hash functions H0(·) and H ′
0(·) are not modelled as a random oracle in this case.
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CreateUser Oracle: Suppose A2 makes at most qCreU queries to Crea-

teUser oracle. First, S2 chooses j ∈ [1, qCreU ] randomly. When A2 makes a
CreateUser query on IDi, where 1 ≤ i ≤ qCreU , if i = j (we let IDi = ID∗ at
this point), S2 returns upkIDi

= Y . Then S2 inserts a tuple (IDi, upkIDi
,⊥) in

a list L. Otherwise, S2 chooses νi ∈ Z
∗
q and sets upkIDi

= νiP and uskIDi
= νi,

and adds (IDi, upkIDi
, uskIDi

) to L.

RevealSecretKey Oracle: Suppose the request is on an identity IDi. If
IDi 6= ID∗, S2 finds (IDi, upkIDi

, uskIDi
) in L and returns uskIDi

. Otherwise,
S2 halts the simulation.

Queries on Oracle H0, H
′
0: Suppose IDi is submitted to oracle H2(·) and

H ′
2(·). S2 first scans L0 = {(IDi, QIDi

, Q′
IDi

)} to check whether H0 and H ′
0

have already been defined for that input. If so, the previously defined value is
returned. Otherwise, S2 picks at random QIDi

, Q′
IDi
∈ G1 and returns QIDi

and Q′
IDi

as the hash values of H0(IDi) and H ′
0(IDi) to A2, and also stores

the values in the list L0.

Queries on Oracle H1: Suppose (mi, IDi, upkIDi
) is submitted to oracle

H1(·). S2 first scans L1 = {(mi, IDi, upkIDi
, hi1)} to check whether H1 has

already been defined for that input. If so, the previously defined value is re-
turned. Otherwise, S2 picks at random hi1 ∈ Z

∗
q and returns hi1 as a hash value

of H1(mi, IDi, upkIDi
) to A2 and also stores the values in the list L1.

Queries on Oracle H2, H
′
2: Suppose (mi, IDi, upkIDi

) is submitted to or-
acle H2(·) and H ′

2(·). S2 first scans L2 = {(mi, IDi, upkIDi
, hi2, h

′
i2)} to check

whether H2 and H ′
2 have already been defined for that input. If so, the pre-

viously defined value is returned. Otherwise, S2 picks at random hi2, h
′
i2 ∈

Z
∗
q and returns hi2 and h′

i2 as the hash values of H2(mi, IDi, upkIDi
) and

H ′
2(mi, IDi, upkIDi

) to A2 and also stores the values in the list L2.

Super-Sign Oracle: WhenA2 makes a Super-Sign query on mi with IDi,
S2 first finds the corresponding (IDi, QIDi

, Q′
IDi

) and (IDi, upkIDi
, uskIDi

)
from the lists L0 and L, respectively. Then, S2 performs as follows:

• If IDi = ID∗, S2 aborts the simulation.
• Otherwise, S2 picks three random hi1, hi2, h

′
i2 ∈ Z

∗
q and Ri ∈ G1, and

computes σi = t′·Ri+hi1·uskIDi
·X+hi2sQIDi

+h′
i2sQ

′
IDi

. S2 then returns
(Ri, σi) and adds (mi, IDi, upkIDi

, hi1) and (mi, IDi, upkIDi
, hi2, h

′
i2) to

L1, L2, respectively.

Eventually, A2 is to output a set of n users whith identities from the set
L∗
ID = {ID∗

1 , · · · , ID
∗
n} and corresponding public keys from the set L∗

upk =
{upk∗1 , · · · , upk

∗
n}, n messages L∗

m = {m∗
1, · · · ,m

∗
n} and an aggregate signature

(R∗, σ∗). It is required that there exist ID∗ ∈ {ID∗
1 , · · · , ID

∗
n} such that A2 has

not asked the secret key. Without loss of generality, we assume that ID∗ = ID∗
1 .

And A2 has not made an (m∗
1, ID

∗
1) query to Super-Sign oracle. Furthermore,
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the aggregate signature σ∗ should satisfy the aggregate verification as follows:

ê(σ∗, P ) = ê(

n∑

i=1

h∗
i1upkID∗

i
, Q)ê(R∗, Q′) (6)

×ê(

n∑

i=1

(h∗
i2QID∗

i
+ h′∗

i2Q
′
ID∗

i
), Ppub).

Then, S2 finds the corresponding tuples (IDi, upkIDi
, uskIDi

) for 2 ≤ i ≤ n

from the list L. The following equation holds because the aggregate signature
is valid:

ê(σ∗, P ) = ê(

n∑

i=1

h∗
i1upkID∗

i
, X)ê(

n∑

i=1

(h∗
i2QID∗

i
+ h′∗

i2Q
′
ID∗

i
), Ppub)ê(R

∗, Q′)(7)

= ê(h∗
11Y,X)ê(

n∑

i=2

h∗
i1uskID∗

i
P,X)ê(

n∑

i=1

(h∗
i2QID∗

i
+ h′∗

i2Q
′
ID∗

i
), sP )

×ê(R∗, t′P )

= ê(h∗
11Y,X)ê(

n∑

i=2

h∗
i1uskID∗

i
X,P )ê(

n∑

i=1

s(h∗
i2QID∗

i
+ h′∗

i2Q
′
ID∗

i
), P )

×ê(t′R∗, P ).

Finally, S2 outputs abP as a solution to the CDH instance by computing

abP = (h∗
11)

−1(σ∗ −

n∑

i=2

h∗
i1uskID∗

i
X − t′R∗ (8)

−
n∑

i=1

s(h∗
i2QID∗

i
+ h′∗

i2Q
′
ID∗

i
))

This completes the description of S2. It remains to show that S2 solves the
given instance of the CDH problem with probability of at least ε′. To do so, we
analyze three events needed for S2 to succeed:

• E1 : S2 does not abort as a result of any of A2’s RevealSecretKey and
Super Sign queries.

• E2 : A2 generates a valid and non-trivial aggregate signature forgery.
• E3 : Event E2 occurs, ID∗

1 = ID∗ and ID∗
i 6= ID∗ for all i, 2 ≤ i ≤ n.

S2 succeeds if all of these events happen. The probability Pr[E1 ∧E2 ∧E3]
is decomposed as Pr[E1 ∧ E2 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2].

Similarly to Lemma 1, it results that S2’s advantage in solving the CDH
problem in G1 is at least (1− 1

qCreU
)qSupSig+qRSec+n−1qCreUε.
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3.3. Comparison

We compare our scheme with existing CL-AS schemes (see Castro and Dahab,
2007; Gong et al., 2007; Zhang and Zhang, 2009; Zhang et al., 2010a). Regarding
the computational overhead, we only consider the costly operations and we omit
the computational efforts which can be delegated to pre-computing. We denote
by P a pairing operation, by S a scalar multiplication in G1, by P1 the length
of a point in G1. We know that pairing computation is more time-consuming
than multiplication and exponentiation computation. From Table 2, we can see
that in terms of computational cost our scheme is more efficient than the other
schemes. As for the signature size, our signature requires two elements in G1

and approximately 320 bits.

Table 2. Comparison of CL-AS schemes

size Sign Verify Security Syn.

Castro and Dahab (2007) P1 2S (2n + 1)P + nS Strong A ×

Sch-I Sch-I, Gong et al. (2007) (n + 1)P1 2S (2n + 1)P Strong A ×

Sch-II, Gong et al. (2007) 2P1 3S (n + 2)P + nS Strong A ×

Zhang and Zhang (2009) (n + 1)P1 3S (n + 3)P Super A X

Zhang et al. (2010a) 2P1 5S 5P + 2nS Strong A X

Ours 2P1 5S 4P + 3nS Super A ×

On the other hand, only our scheme and the scheme in Zhang and Zhang
(2009) are provably secure against the super Type I/II adversary in the random
oracle model. However, their scheme needs synchronization, which cannot be
easily achieved in the ad hoc networks.

4. Conclusion

We proposed an efficient CL-AS scheme requiring constant pairing operations
and signature size, comparable to the most efficient CL-AS scheme so far. Our
scheme has been proved secure against the super Type I/II adversary, which
is the strongest attacker in the literatures. Our security proof is carried out
under the standard CDH assumption. Furthermore, our scheme does not need
synchronization. All these features distinguish our proposal from the existing
ones as a practical scheme to secure mobile communication and computation
applications.
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