
EURASIP Journal on Advances
in Signal Processing

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31

https://doi.org/10.1186/s13634-021-00744-4

RESEARCH Open Access

An efficient pruning scheme of deep
neural networks for Internet of Things
applications
Chen Qi1, Shibo Shen1, Rongpeng Li1*, Zhifeng Zhao2, Qing Liu3, Jing Liang3 and Honggang Zhang1

*Correspondence:

lirongpeng@zju.edu.cn
1College of Information Science and

Electronic Engineering, Zhejiang

University, Hangzhou, China

Full list of author information is

available at the end of the article

Abstract

Nowadays, deep neural networks (DNNs) have been rapidly deployed to realize a

number of functionalities like sensing, imaging, classification, recognition, etc. However,

the computational-intensive requirement of DNNs makes it difficult to be applicable for

resource-limited Internet of Things (IoT) devices. In this paper, we propose a novel

pruning-based paradigm that aims to reduce the computational cost of DNNs, by

uncovering a more compact structure and learning the effective weights therein, on

the basis of not compromising the expressive capability of DNNs. In particular, our

algorithm can achieve efficient end-to-end training that transfers a redundant neural

network to a compact one with a specifically targeted compression rate directly. We

comprehensively evaluate our approach on various representative benchmark datasets

and compared with typical advanced convolutional neural network (CNN)

architectures. The experimental results verify the superior performance and robust

effectiveness of our scheme. For example, when pruning VGG on CIFAR-10, our

proposed scheme is able to significantly reduce its FLOPs (floating-point operations)

and number of parameters with a proportion of 76.2% and 94.1%, respectively, while

still maintaining a satisfactory accuracy. To sum up, our scheme could facilitate the

integration of DNNs into the common machine-learning-based IoT framework and

establish distributed training of neural networks in both cloud and edge.

Keywords: Deep neural networks, Deep learning, Internet of Things, Resource-limited

edge computing, Pruning, Efficiency

1 Introduction

The Internet of Things (IoT), which aims to integrate the physical world by collecting and

sharing information [1, 2], has been widely used in various areas, including smart city[3],

smart transportation [1], smart home [4], and smart agriculture [5]. Moreover, extensive

applications with IoT devices generate a large amount of data and it becomes incentive

to utilize data-driven deep neural networks (DNNs) to further extract accurate informa-

tion [6]. For example, a large number of biomedical data such as medical images could

be smartly recognized by the convolutional neural network (CNN) to monitor human

health [7]. Moreover, CNN has been widely used to process image data on IoT devices

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-021-00744-4&domain=pdf
mailto: lirongpeng@zju.edu.cn
http://creativecommons.org/licenses/by/4.0/

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 2 of 21

such as wireless sensor cameras [6, 8] and smart phones [7]. The authors in [3] propose

several CNN-based applications in typical IoT scenarios, such as recognizing garbage

images for waste management and monitoring parking spaces for smart parking lot man-

agement. Statistical evidence in [3] also shows that CNN is considered as one of the most

extensively applied deep learning models for various IoT applications.

However, though it is generally believed that neural networks need to be complicated

enough to represent the real-world targeted objects [9, 10], deep convolutional neural

networks, usually with huge overhead and complexity in both storage and computing,

are very difficult to be directly applied to resource-limited IoT devices [2]. It is essential

to reduce the model size of CNN due to its large computational overhead. To address

this issue, previous work primarily focuses on reducing the computational overhead and

storage cost of DNNs by carefully designing the corresponding network architecture, e.g.,

VGG [11], GoogLeNet [12], ResNet [13], and MobileNet [14], in regarding to complex

CNN for processing images. Besides, network-pruning is often adopted to compress the

deep neural network itself by removing un-important inter-layer connections [15, 16],

neurons or entire channels in CNN [17–19]. An intuitive overview is depicted in Fig. 1.

Pruning at the scale of kernel in the convolutional layer, called as filter-level pruning

or channel pruning, has been extensively studied and achieved exciting results with huge

reduction in computation and negligible performance loss in accuracy [17–20]. How-

ever, these pruning schemes generally follow the basic three-stage procedure (as shown

in Fig. 2), i.e., training a redundant network from scratch, pruning it and re-training

it for accuracy recovery [15], which is cumbersome and time-consuming especially for

resource-limited IoT devices, leading to a huge gap between theoretical performance and

practical applications. Therefore, it remains a critical concern in practical IoT scenarios

to improve the traditional pruning-based DNN compression process before its efficient

application.

To cope with the aforementioned issue, we put forward a more concise and lightweight

deep learning scheme to reveal an efficient and compact CNN structure in a more

efficient manner. The typical process of our proposed scheme is depicted in Fig. 2. Specif-

ically, the proposed strategy can be divided into two phases, i.e., structure learning and

weight learning, and the latter functions in the same way as the conventional training

Fig. 1 A high level view of how pruning functions in compressing deep neural networks. Traditional pruning

schemes can be divided into two classes, that is, unstructured pruning that simply removes inter-layer

connections between neurons while structured pruning removes neurons as well as their connected

weights, or channels with their corresponding kernels w.r.t. the convolutional neural network

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 3 of 21

Fig. 2 The comparison of conventional pruning process (upper) and our proposed one (lower). We divide

the original training and pruning procedure into two phases, that is, the short-term structure-learning and

the long-term weight-learning

process. During the period of structure-learning, we focus on evaluating the significance

of each channel and unveiling a compact yet effective structure. To achieve the objec-

tive, we propose to evaluate the channels’ significance by Taylor criterion introduced by

[17] and redistribute the remaining channels, which is stemed from weight-redistribution

proposed by [21, 22]. The criterion of Taylor-expansion aims to discover those channels

whose removal leads to more impact on the final loss. However, such a criterion is only

calculated on the basis of a single mini-batch. In order to obtain all the channels’ signifi-

cance evaluation over the entire data set, we propose a long-term assessing variable called

as feature-saliency, which is computed by the moving average on each batch’s evaluation

criterion. Simultaneously, considering the common finding that layers are not equally

important in a deep neural network [18], we prefer to allocate more channels to sensitive

layers, namely pruning less parameters in these layers. To achieve this goal, we extend the

original algorithm with regard to weight-redistribution [21] to convolutional kernels and

call it as channel-redistribution. Generally, inspired by the basic weights redistributing

steps suggested in [21], we firstly calculate the saliency of different layers, then temporar-

ily remove a certain proportion of channels in each layer and finally redistribute those

removing channels according to the layer-wise saliency.We summarize the novel channel-

redistribution algorithm in Fig. 3. Next, we have to remove the surplus channels with

Fig. 3 An overview of channel-redistribution. The basic procedure includes evaluating the layer-level

saliency, temporarily removing a certain proportion of channels and redistribution. Note that a process of

sparsification is conducted at the beginning of channel-redistribution

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 4 of 21

their corresponding kernels and train the preserved weights after obtaining the compact

structure.

It is noteworthy that the new training model at the final stage (i.e., weight learning)

is much smaller than the original one in terms of both computational cost and number

of hyperparameters, implying the training process is relatively fast. In other words, the

time-consuming training of a large neural network in traditional pruning methods could

be avoided in our proposed scheme. The process of learning the compact structure also

solves the problem of how to design an efficient DNN, namely determining the appro-

priate structure of neural network to be used for resource-stringent IoT devices. On the

other hand, there are also some researches on solving the time-consuming training of

DNNs for IoT applications by introducing the distributed architecture [2, 6, 23, 24]. A

typical distributed learning process for IoT consists of training a redundant deep neural

network at the cloud computing servers, and then pushing it to edge nodes. Actually, our

scheme can further bridge the connection between redundant and compact neural net-

works at cloud and edge nodes, as depicted in Fig. 4. Considering a kind of application

scenario where a large DNN model has been trained generally at a cloud server, we can

retrain and prune it to gain compact networks to be more suitable for some specific IoT

tasks. Compared with directly training a compact neural network from scratch, our pro-

posed scheme transfers the knowledge of original neural networks and is able to achieve

better performance, e.g., faster convergence and higher efficiency.

Our major contribution can be summarized as follows.

• Inspired by previous work on pruning [17, 21], we propose a novel training strategy

for learning compact and efficient neural networks. The proposed scheme can

achieve comparatively good performance with significantly reduced model size,

computational complexity, and negligible accuracy loss. Compared with the

traditional pruning-based DNN compression methods, our scheme is more concise

and realizes end-to-end DNN compression. Moreover, our scheme also overcomes

the dilemma of designing neural network structures through adaptive

structure-learning.

• We incorporate our lightweight scheme into the common IoT applications and

establish a novel paradigm for applying DNN to IoT scenarios with resource

constraints yet heavy tasks. The proposed paradigm is also capable to migrate large

deep neural networks to edge computing nodes through compression and

re-training, which efficiently facilitates to adapt to any specific edge tasks.

Fig. 4 A high level view of how our proposed scheme functions in converting a large neural network at

cloud level to a lightweight neural network in edge nodes

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 5 of 21

• We conduct extensive experiments on various standard benchmark datasets,

including CIFAR-10 [25] and ILSVRC-12 [9], and compare with the well-recognized

advanced CNN architectures, including VGG [11], ResNet [13], and MobileNet [14].

Simulation results verify the effectiveness of our scheme.

The remainder of this paper is organized as follows: Section 2 talks about some

necessary backgrounds on deep neural networks and formulates the DNN-based IoT

applications scenario. Section 3 gives the details of our proposed pruning scheme in

terms of mathematical formulation and algorithm, while Section 4 presents the detailed

experimental results. Finally, Section 5 summarizes the paper and offers future directions.

2 Background of CNN pruning

2.1 DNN-powered IoT

As mentioned before, a large amount of data produced by IoT devices promotes the

application of data-driven deep nerural networks to automatically extract useful repre-

sentations from raw data [2, 6]. Among many deep learning methods, CNN has been

extensively used to process two-dimensional data and is further applied to IoT devices,

such as smart wireless cameras [6, 8], or applications [3, 6–8, 26]. Typically, CNN, being

composed of convolutional layers, pooling layers, and fully connected layers (as shown

in Fig. 5), has a large number of parameters and huge computational overhead that lim-

its its extensive application for resource-constrained IoT devices. Therefore, reducing the

complexity of CNN has become an imperative research topic and pruning belongs to one

popular means.

2.2 Related works on pruning

Unstructured pruning Early works generally focus on pruning deep neural networks by

removing redundant weights according to their magnitude [15, 16]. However, in order

to obtain the significance of various weights, they have to start from training a redun-

dant neural network in advance. In addition, the pruning weights are determined by

rigidly setting a global threshold of magnitude for the whole deep neural network. Later

work [27] proposes to improve the traditional pruning process by selectively learning the

corresponding weights with greater impact on loss while discarding the others through

cutting off their gradient flow. Moreover, both [22] and [21] propose a smoother way,

namely redistributing the remaining weights, in order to obtain a proper compact struc-

ture instead of setting a threshold. They both suggest to allocate more weights to the

sensitive layers, although the detailed approaches differ concretely. Our scheme aims to

Fig. 5 A typical architecture of CNN that consists of several convolutional layers, pooling layers, and

fully-connected layers

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 6 of 21

extend their work to another kind of redistribution at the scale of convolutional kernel,

namely channel-wise redistribution for structured pruning.

Structured pruning Due to the reason that weight-pruning does not significantly reduce

the amount of computation load, researchers begin to pay attention to large-scale prun-

ing, i.e., filter-pruning or channel-pruning. Specifically, both the work [28] and [19]

introduce an extra loss of “Group LASSO” to compel some kernels or the correspond-

ing weights in batch-normalization layers [29] to zero and prune them at the end of each

training. In addition, the work [30] introduces a discrimination-aware loss to keep chan-

nels that contribute to the discriminative power of neural networks. Some other methods

propose to prune channels through optimizing the formulation of reconstruction error

[20, 31], reducing the similarity between features [32, 33], and directly evaluating chan-

nels’ significance [17, 18]. Our algorithm is based on the evaluation of channel saliency as

well. Furthermore, some recent pruning methods introduce advanced machine-learning-

based approaches, such as meta-learning [34] and generative-adversarial-learning [35],

which also achieve remarkable results.

Pruning with new paradigms Nearly none of the aforementioned methods deviates

from the three basic steps of pruning, that is, training an over-parameterized neural

network, pruning, and fine-tuning it. Based on the argument in [36] that a compact

DNN model trained from scratch can reach competitive performance compared with its

redundant counterpart, the traditional pruning strategy may be too time-consuming and

outdated, thereby not suitable for the cloud-to-edge distributed computing architecture

for IoT applications. Recent work like [37] introduces a novel pruning strategy that tem-

porally removes unimportant kernels but keeps them updated in the phase of training,

namely soft pruning. Moreover, the paper [38] proposes to prune the model from scratch

on the basis of random initialization. This model in [38] to find a compact structure by

introducing group LASSO loss to the batch-normalization layers as same as network slim-

ming [19]. However, our scheme differs in that we are inspired by the works in [17] and

[21] and design a completely different structure-learning algorithm through evaluating

channels’ importance and channel redistribution accordingly. In addition, all the parame-

ters of the neural network are also updated simultaneously during the structure-learning

process, in contrast to [38], since some prior weights in the training of large neural net-

works are still effective for the training of the compact counterparts, which is better than

random initialization. In addition, some other pruning methods [39] propose to learn an

efficient structure by automatic search that functions in a similar way to Network Archi-

tecture Search (NAS) [40]. In fact, many NAS schemes [41–43] aim to find a proper

structure with excellent performance on exact datasets. However, NAS-based schemes

requiremuchmore computing resources and data to search for connections between neu-

rons or convolutional channels from scratch, while pruning-oriented schemes, based on

exiting models, aim to reduce the complexity by searching over a smaller space with less

resource overhead, and therefore are more suitable for IoT terminal deployment.

2.3 Potential applications in IoT scenarios

In order to reduce both training and inference cost of DNN, previous works take into

account the cloud-and-edge computing architecture for data-heavy IoT applications and

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 7 of 21

propose a distributed computing paradigm [2, 6, 23, 24]. As illustrated in Fig. 4, one may

regard our proposed paradigm as a supplement to the original architecture, in which

we improve the conventional process of copying the parameters from the cloud to the

edge by introducing an efficient re-training scheme with structure-learning and weight-

optimization, thereby making the model adaptable to any personalized IoT applications

as well as reducing the redundant parameters and computational overhead.

3 Methods

3.1 Notations

Beforehand, we formally give some symbol notations used throughout the paper. Suppose

we have a deep neural network with L convolutional layers, wl
k and zlk are used to repre-

sent the convolutional kernel and the individual output channel of the l-th convolutional

layer, respectively. The subscript k ∈[1, · · · ,Cl] represents the channel index, where Cl

indicates the total number of output channels in the corresponding layer. We further use

H l andW l to indicate the height andwidth of channels in the l-th layer, respectively. Prun-

ing the k-th channel in layer l signifies removing the corresponding kernel wl
k . Moreover,

we define fl to represent long-term evaluation of channels, i.e., feature saliency, fl ∈ R
Cl
.

Overall, we summarize all notations in Table 1.

At the beginning of training, each layer retains the same proportion of channels, which

is controlled by the pruning rate p. These preserved channels will be adaptively redis-

tributed at the end of each training epoch. Succinctly, the preserved channels are called

as activated channels. We further define [al]i to represent the number of activated chan-

nels in the l-th layer where the subscript i refers to the iterative epoch of training. The

initialized values of [al]i are

Table 1 Notations and their definitions

Notation Definition

L The number of convolutional layers

p The overall pruning rate for all channels

Cl The original total number of channels in

each layer, 1 ≤ l ≤ L

wl
k The convolutional kernel,

wl
k ∈ R

Cl−1×3×3 , 1 ≤ l ≤ L, 1 ≤ k ≤ Cl

Hl The height of channels, 1 ≤ l ≤ L

W l The width of channels, 1 ≤ l ≤ L

zlk The feature map or channel,

zlk ∈ R
Hl×W l

, 1 ≤ l ≤ L, 1 ≤ k ≤ Cl

fl The feature saliency, fl ∈ R
Cl

f lk ∈ fl , 1 ≤ k ≤ Cl

[al]i The remaining channels in each layer in

the i-th training epoch, 1 ≤ l ≤ L

�l
k The evaluation on channels’ significance w.r.t.

a single mini-batch, 1 ≤ l ≤ L, 1 ≤ k ≤ Cl

[ξ l]i The layers’ significance evaluation in the i-th

training epoch, 1 ≤ l ≤ L

J The loss function adopted to evaluate the difference

between the observed values and the actual ones

ǫ The smoothing factor

s The proportion of redistributing channels

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 8 of 21

[al]0 = pCl ∀ l, 1 ≤ l ≤ L (1)

3.2 Criterion of channel significance

In order to evaluate the channels’ saliency, we adopt a Taylor-expansion [17] based cri-

terion. Considering a mini-batch B =
{

X = {x1, x2, ..., xm},Y = {y1, y2, ..., ym}
}

, the final

loss on the batch B can be defined as J(B,W) where W represents the network parame-

ters. Suppose a kernel wl
k with respect to its activation zlk is removed, the corresponding

impact on the cost function J can be expressed as
∣

∣

∣
�J(zlk)

∣

∣

∣
=

∣

∣

∣
J(B, zlk) − J(B, zlk → 0)

∣

∣

∣
(2)

We use the Taylor series to expand the cost function at point zl
k

= 0

J(B, zlk → 0) = J(B, zlk) −
∂J

∂zlk

zlk + o

(

(

zlk

)2
)

(3)

Ignoring the higher-order remainder and substituting (3) to (2), we have

�l
k �

∣

∣

∣
�J(zlk)

∣

∣

∣
=

∣

∣

∣

∣

∣

J(B, zlk) − J(B, zlk) +
∂J

∂zlk

zlk

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂J

∂zlk

zlk

∣

∣

∣

∣

∣

(4)

The criterion can be regarded as a measure of the significance of feature maps for a

single-entry mini-batch. For a channel with multi-variate output, the item �l
k can be

rewritten as

�l
k =

∣

∣

∣

∣

∣

1

M

M
∑

m=1

∂J

∂zlk,m

zlk,m

∣

∣

∣

∣

∣

(5)

where M is the total number of channel’s entries. The computation of item �l
k requires

the activation and the gradient, which can be calculated from the forward and backward

propagation, respectively. Furthermore, we impose an extra re-scaling method with max-

normalization, that is

�̂l
k =

�l
k

max
j

{

�l
j

} (6)

Such normalization process is essential since we need to ensure that these evaluation

values of each layer are at the same scale. Its function is similar to batch-normalization

[29], which ensures that the statistics of layer-wise evaluation values are under the same

distribution. Equation (6) indicates that the maximum criterion values regarding different

layers are all normalized to 1, resulting in comparable scale of feature saliency fl, which is

defined as a long-time estimating variable for individual channels
[

f lk

]

new
= ǫ

[

f lk

]

old
+ �̂l

k , f
l
k ∈ fl, 1 ≤ k ≤ Cl (7)

where the hyper-parameter ǫ is a smoothing factor set to 0.98 for all experiments in this

paper. The feature-saliency helps determine which channels are retained when the struc-

ture is fixed. Note that the values of fl update with each mini-batch in a training epoch,

we omit the iterative epoch index i for simplicity of representation.

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 9 of 21

3.3 Channel redistribution

The proposed channel redistribution process occurs at the end of each training epoch,

which is indicated by the subscript i. Note that the aforementioned feature saliency eval-

uation is based on a single channel, it is necessary to calculate the significance of each

layer which has several channels in order to obtain an efficient structure. Suppose [ξ l]i

indicates the corresponding layer’s significance for the iterative epoch i

[ξ l]i =

∑

k f̂
l
k

[al]i−1
, f̂ lk ∈ f̂l (8)

where f̂l ∈ fl is its subset which contains several large values of feature saliency of the

corresponding layer and the total number of elements in f̂l is [al]i−1. Next we need to

normalize all [ξ l]i so that the sum of these values is 1.

[ξ̂ l]i =
[ξ l]i

∑

j[ξ
j]i

(9)

Looking again at the channel redistribution process shown in Fig. 3, after obtaining

each layer’s significance evaluation, the following step is to temporarily remove a fixed

proportion of channels to release some reallocating space, followed by redistributing

channels according to the calculated values about layers’ significance, that is, updating

the number of activated channels [al]i−1 in each layer. Given that the updated value may

exceed the maximum number of channels in the corresponding layer, the value of [al]i

is limited to Cl which is the total number of channels in the original structure as the

following formula

[al]i = min

{

(1 − s)[al]i−1 +[ξ̂ l]i

(

s

L
∑

l=1

[al]i−1

)

,Cl

}

(10)

where the sparsity s is a hyper-parameter which is predefined to indicate howmany chan-

nels are reallocated each time. Different from the original work [21] that adjusts the value

of s throughout training, the sparsity s is fixed to 0.5 in our experiments. Moreover, we

allocate the extra channels evenly among the other layers if necessary. All the relevant

details are shown in Algorithm 1.

Furthermore, after uncovering a suitable compact structure, we need to remove those

insignificant channels with their convolutional kernels and train the remaining weights

to obtain the representative capability, as depicted in Fig. 2. In the period of pruning, the

remaining channels are determined according to their feature saliency fl as well as the

number of the activated channels al in the corresponding layer. Overall, we summarize

the total process of our pruning scheme in Algorithm 2. For the reason that channel-

pruning is simply applied to convolutional layers, we have omitted the general batch-

normalization [29] layers, activation layers, pooling layers, and fully connected layers for

simplicity.

3.4 Discussion

As most of the heavy computation is concentrated on convolutional layers, we only need

to pay attention to computational overhead or saving in these layers. Suppose the output

channel size of the l-th layer is H l × W l and the final number of activated channels is Al,

accordingly
(

Cl − Al
)

kernels in the corresponding layers will be removed. Therefore, the

dimension of remaining channels in the lth layer is H l × W l × Al and the computation

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 10 of 21

Algorithm 1 Channel Redistribution

Input: feature saliency {fl, 1 ≤ l ≤ L}, activated channels in last epoch {[al]i−1 , 1 ≤ l ≤

L}, the sparsity s, maximum number of channels in each layer {Cl, 1 ≤ l ≤ L}

Output:the updated numbers

for l ← 1 to L do

calculate for layer-wise significance

[ξ l]i ←
(

∑

k f
l
k

)

/[al]i−1

end for

normalization across all layers [ξ l]i ←[ξ l]i /
∑

j[ξ
j]i

remove and redistribute channels, define a variable e to count for extra number of

which the reallocated channels exceed the original maximum e ← 0

for l ← 1 to L do

if (1 − s)[al]i−1 +[ξ̂ l]i
(

s
∑

l[a
l]i−1

)

<= Cl then

[al]i ← (1 − s)[al]i−1 +[ξ̂ l]i
(

s
∑

l[a
l]i−1

)

else

[al]i ← Cl

e ← e + (1 − s)[al]i−1 +[ξ̂ l]i

(

s
∑L

l=1[a
l]i−1

)

− Cl

end if

end for

reallocate extra channels in e

repeat

for l ← 1 to L do

if [al]i < Cl then

update both [al]i and e by

[al]i ←[al]i +1, e ← e − 1

end if

end for

until e <= 0

return the update numbers {[al]i , 1 ≤ l ≤ L}

in terms of FLOPs (floating-point operations) in such layer decreases from K2 × Cl−1 ×

H l × W l × Cl to K2 × Al−1 × H l × W l × Al, where the label K indicates the kernel

size. Compared to the raw FLOPs with respect to individual layers, a reduced ratio of
(

1 − Al−1Al

Cl−1Cl

)

is obtained, leading to large decrease in the computational cost of CNN.

4 Results and discussion

4.1 Experimental setting

We evaluate our scheme on various representative benchmark datasets, including CIFAR-

10 [25] and ILSVRC-12 [9], and compare with the advanced DNN architectures, including

VGG [12], ResNet [13], and MobileNet [14]. CIFAR-10 contains 50,000 training images

and 10,000 testing images, which are categorized into 10 classes. We follow the common

data augmentation suggested by [13] with shifting and mirroring. Both architectures are

trained from scratch using Stochastic Gradient Descent (SGD) with an initial learning

rate of 0.1. The learning rate is decayed by 10 times in every one third of the total number

of iterations. The weight decay and momentum is 10−4 and 0.9, respectively. ILSVRC-12

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 11 of 21

Algorithm 2 The proposed pruning scheme

Input: model {convl, 1 ≤ l ≤ L}, pruning rate p,other parameters in neural-network

training

Output:the compact model

Initialization Process

for l ← 1 to L do

obtain maximum number of channels in each layer Cl

Initialize feature-saliency fl ← 0

Initialize activated channels’ number [al]0 ← pCl

end for

Initialize smoothing factor ǫ ← 0.98

Initialize sparsity s ← 0.5

Structure Learning

set the epoch index i ← 1, stop criterion prop ← 1.0

repeat

for each mini-batch z0 in the i-th epoch do

forward zl ← convl(zl−1) for l ← 1 to L

set gL+1 ← 1, zL+1 ← J

backward gl ← gl+1 · ∂zl+1

∂zl
for l ← L to 1

compute the criterion according to (5) and (6)

�l ← Max-norm
[

average
(

gl · zl
)]

update feature saliency by fl ← ǫfl + �l

end for

reallocate channel numbers by Algorithm 1

[al]i ← Channel-Redistribution(fl, [al]i−1 , s,C
l)

calculate the redistributed proportion

prop ←
∑

l |[a
l]i −[al]i−1 |/

∑

l [a
l]i

update the training epoch i ← i + 1

until prop <= 0.01

Pruning

prune insignificant channels with their corresponding kernels and copy the remaining

parameters to a compact model

{convl, 1 ≤ l ≤ L} ← Pruning(convl, fl, al)

Weight Learning

train the compact model in the remaining epochs

return the compact and well-trained CNN {convl, 1 ≤ l ≤ L}

contains 1.3 million training images and 50,000 validating images without test set. While

evaluating on ILSVRC-12, we also follow the training settings and the strategy of data aug-

mentation suggested by [13] and adopt Pytorch [44] which is the fundamental framework

of our experiments. Note that those advanced CNN architectures including VGG and

MobileNet are designed for large dataset like ImageNet, re-training, and pruning them to

match small dataset like CIFAR-10 could be viewed as a suitable verification platform of

distributed training process in both cloud and edge nodes for IoT applications.

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 12 of 21

In order to verify the effectiveness of our proposed scheme, we formally compare our

scheme’s performance with that of various state-of-the-art pruning approaches, includ-

ing PFEC [18], NS [19], CP [31], ThiNet [20], SFP [37], CFP [32], DCP [30], FPGM [45],

COP [33], GAL [35], PFS [38], and ASS [39]. Moreover, we present the performance

of our scheme in terms of both theoretical acceleration and practical acceleration with

respect to various pruning rates to show the robustness and efficiency of our scheme.

Overall, our proposedmethod has achieved comparable and satisfactory results even with

more concise pruning program, which could be effectively incorporated into the common

distributed training paradigm for anticipated IoT applications.

4.2 Experiments on CIFAR-10

Pruning VGG. Though VGG is not designed for small data set like CIFAR-10, previous

work have studied its performance at extremely high pruning rates. We firstly train an

original non-pruned 16-layer VGG as baseline (no pruning) and then run several exper-

iments with different pruning rates from scratch. We compare the testing accuracy with

that of the previous state-of-the-art approaches and summarize the corresponding results

in Table 2.

As shown in Table 2, our proposed scheme can achieve comparable results with the

aforementioned state-of-the-art methods with different reduced FLOPs and parameters.

For instance, a compact model with 49.3% in FLOPs drop achieves superior accuracy

compared to the baseline performance. In the case where the FLOPs and number of

parameters are reduced by 72.6% and 94.1%, respectively, the pruned VGG based on our

scheme can still maintain an applicable accuracy of 93.27% for such dataset.

Pruning ResNet. Note that compact ResNet architectures with less channels in each

layer are built up in [13] for recognizing images from CIFAR-10, we adopt the rec-

ommended 32-layer and 56-layer ResNet as baselines (no pruning). Specifically, for the

reason that the input/output number of channels within a residual block must be consis-

tent to ensure the short-cut connection, we only prune the first layer’s output channels

per block.

It can be observed from Table 3 that our proposed strategy can achieve competitive

results. For example, the compact ResNet-32 with 49.0% reduction in FLOPs and 60.1%

reduction in parameters still retains an accuracy of 92.50% (i.e., 93.20–0.70% = 92.50%). In

addition, more experiments on pruning ResNet-56 further verify the effectiveness of our

Table 2 Results of pruning VGG on CIFAR-10

Method Baseline (%) Accuracy (%) FLOPs pruned (%) Parameters pruned (%)

PFEC[18] 93.25 ↑ 0.15 34.2 64.0

NS[19] 93.66 ↑ 0.14 51.0 88.5

CFP[32] 93.49 ↓ 0.51 81.9 -

COP[33] 93.56 ↓ 0.25 73.5 92.8

GAL[35] 93.96 ↓ 0.54 45.2 82.2

PFS[38] 93.44 ↑ 0.19 50.0 -

Ours 93.50 ↑ 0.25 49.3 83.8

↓ 0.23 72.6 94.1

We report both baseline and after-pruning accuracy of the state-of-the-art methods referring to their papers. The label “-” in last

column indicates that such item is not reported

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 13 of 21

Table 3 Results of pruning ResNet on CIFAR-10

Architecture Method Baseline (%) Accuracy (%) FLOPs pruned (%) Parameters pruned (%)

ResNet-32 SFP[37] 92.63 ↓ 0.55 41.5 -

FPGM[45] 92.63 ↓ 0.70 53.2 -

COP[33] 92.64 ↓ 0.67 53.9 57.5

Ours 93.20 ↓ 0.21 33.0 31.7

↓ 0.70 49.0 60.1

ResNet-56 PFEC[18] 93.04 ↑ 0.02 27.6 13.7

CFP[32] 93.57 ↓ 0.25 61.5 -

DCP[30] 93.80 ↓ 0.31 50.3 50.7

PFS[38] 93.23 ↓ 0.18 50.0 -

ASS[39] 93.26 ↓ 0.03 54.1 54.2

GAL[35] 93.26 ↓ 1.68 60.2 65.9

Ours 93.65 ↑ 0.08 35.0 41.1

↓ 0.17 49.6 58.0

↓ 0.51 56.7 62.2

algorithm. For example, in the case where the FLOPs reduction and the parameters reduc-

tion are 49.6% and 58.0%, respectively, the performance of the compact model established

by our scheme only decreases by 0.17% in accuracy.

Pruning MobileNet. We design a MobileNet-like neural network with less layers for

simplicity. Its primeval structure contains ten blocks with each block including a depth-

wise convolutional layer and a point-wise convolutional layer [14]. Since the output

channels of depth-wise convolutional layer change as soon as the channel number of its

previous point-wise layer changes, we only need to focus on pruning channels in the

point-wise convolutional layers. The pruning results are shown in Table 4. Overall, our

algorithm can still achieve good performance even for such computationally efficient

architecture. For example, when FLOPs and parameters compression ratio increases to

61.3% and 92.9%, respectively, the accuracy loss is only 0.27%.

4.3 Experiments on ImageNet

We adopt a widely studied architecture ResNet-50 as in the previous pruning approaches.

Different from general ResNet architecture, ResNet-50 contains a special structure called

“bottleneck” [13], which includes three convolutional layers with only the middle layer

being expressive in each residual block. Similar to pruning ResNet on CIFAR-10, we focus

on pruning the channels of the first two layers in a bottleneck, so that we do not need to

worry about the identity mapping when copying the parameters to a compact model. We

summarize the experimental results on ILSVRC-12 in Table 5 where we report the per-

formance of both the advanced approaches and ours. It can be observed that the pruned

model based on our scheme can reach a comparable accuracy along with significant

reduction in both FLOPs and parameters.

Table 4 Results of pruning MobileNet on CIFAR-10

Network Baseline (%) Accuracy (%) FLOPs pruned (%) Parameters pruned (%)

MobileNet 91.80 ↑ 0.07 45.7 87.3

↓ 0.27 61.3 92.9

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 14 of 21

Table 5 Results of pruning ResNet-50 on ILSVRC-12

Method Top-1 Top-1 Top-5 Top-5 FLOPs Parameters

baseline (%) Accuracy (%) baseline (%) Accuracy (%) pruned (%) pruned (%)

CP[31] - - 92.20 ↓ 1.40 50.0 -

ThiNet[20] 72.88 ↓ 1.87 91.14 ↓ 1.12 55.8 51.6

SFP[37] 76.15 ↓ 1.54 92.87 ↓ 0.81 41.8 -

CFP[32] - - 92.20 ↓ 0.80 49.6 -

DCP[30] 76.01 ↓ 1.06 92.93 ↓ 0.61 55.7 51.5

FPGM[45] 76.15 ↓ 1.21 92.87 ↓ 0.48 42.2 -

PFS[38] 77.20 ↓ 1.60 - - 51.2 57.2

GAL[35] 76.15 ↓ 4.20 92.87 ↓ 1.93 43.0 16.9

ASS[39] 76.01 ↓ 2.49 92.96 ↓ 1.45 56.6 56.0

Ours 76.13 ↓ 2.38 92.86 ↓ 1.09 49.5 66.3

Note-worthily, our method is indeed not as effective as some start-of-the-art algo-

rithms. However, these advanced algorithms have added additional training strategies

or enlarged the training time, but our algorithm is very efficient and simple, thus being

deployed in a wide range of IoT scenarios.

4.4 Trade-off between performance and compression rate

In practical IoT scenarios, it is necessary to balance the performance and compression

rates according to different computing requirements and energy consumption restric-

tions. On the other hand, showing the performance with various compression rates can

also illustrate the robustness and efficiency of an pruning algorithm. Thus in this section,

we explore the performance of our scheme upon different pruning rates. For all experi-

ments with different network architectures, we use the same hyper-parameter settings.

We summarize the results in Figs. 6, 7, and 8, which corresponds to ResNet, VGG, and

MobileNet, respectively.

Fig. 6 The pruned results with respect to various pruning rates, which are obtained by pruning ResNet-32 on

CIFAR-10

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 15 of 21

Fig. 7 The results are based on pruning VGG on CIFAR-10 with various pruned proportions in both FLOPs

and parameters

As can be observed in Fig. 6, ResNet architecture is sensitive to pruning. When the

FLOP reduction proportion increases to 0.6, the performance in accuracy drops by nearly

1.0%. In addition, when pruning VGG and MobileNet, our proposed scheme is more

robust in terms of various reduced FLOPs as well as pruned parameters. As depicted in

Figs. 7 and 8 with regard to pruning VGG and MobileNet, respectively, our proposed

strategy can achieve efficient neural network structures with even higher testing accura-

cies compared to their baselines at the low level of compression rate for both VGG and

MobileNet. Such interesting results also indicate that the performance of compact models

Fig. 8 Pruning MobileNet on CIFAR-10 with the compression-rate varying from 0.0 to 0.9

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 16 of 21

may outperform that of redundant models to some extent, which implies that the premise

of efficient training is to unveil superior neural network with a suitable structure.

4.5 The uncovered compact structures

In this section, we take advantage of the sub-neural-network architectures revealed by

our proposed method. Note that a practical problem of deploying DNNs is how to design

appropriate lightweight structures to adapt to resource-limited IoT computing tasks, so

learning the compact structures can help us design efficient neural networks beyond the

state-of-the-art architectures. As seen from Fig. 9, compared with the original deep neural

networks with no pruning, our scheme keeps more channels in the middle layers of the

designed neural networks while effectively pruning more channels in the last layers and

the first layer in the case of pruning VGG onCIFAR-10. The discovered structure suggests

that the middle layers are more sensitive whereas the first layer and the last layers are

easier to be pruned, which is consistent with the previous findings in [18, 19], indicating

the effectiveness of our proposed method.

It can be observed from Fig. 10 that when pruning ResNet on CIFAR-10, the compact

model tends to maintain more channels in layers where the number of channels doubles,

suggesting those layers are more salient. Similar interesting phenomenon is found when

pruning ResNet on ImageNet as well. As depicted in Fig. 11, although the distribution

of the pruned channels appears to be disordered to some extent, more channels are still

retained in the “turning-point” layers where the number of channels in the original neural

network jumps abruptly. Our proposed compact ResNet structure is consistent with the

conclusion of sensitivity analysis in [18].

4.6 Acceleration in practice

In this section, we show the running-time acceleration performance of the designed com-

pressive neural networks in practice. We test all compact CNNs on several Intel E5 CPUs

Fig. 9 Channel distribution of the pruned VGG on CIFAR-10. The abscissa indicates the indices of layers and

the ordinate indicates the number of reserved channels accordingly

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 17 of 21

Fig. 10 Channel distribution of the pruned model for ResNet on CIFAR-10. We only present the pruned

layers, namely the first layer within each residual block

with the software platform of Pytorch deep learning framework in the operating system

of Ubuntu 16.04. Due to the reason that the running time on GPUs is too short to man-

ifest the differences among different methods as well as running on GPUs is not suitable

for practical IoT devices, we have not shown the actual acceleration performance on such

devices. For each compact neural network, we measure the time of forward propaga-

tion for 100 rounds and average them. The overall experimental results are organized in

Table 6 where we present both theoretical amount of computation in FLOPs and practical

acceleration results.

As shown in Table 6, the test results of each row are obtained by reducing the

FLOPs of the corresponding neural network model by 50%, and the practical acceleration

Fig. 11 The architecture of pruned ResNet-50 on ImageNet

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 18 of 21

Table 6 Theoretical amount of computation in FLOPs and the corresponding acceleration in practice

Archi. Original FLOPs Original time (s) Pruned FLOPs Pruned time (s) Acceleration (%)

VGG 3.13 × 108 0.428 1.59 × 108 0.259 39.5

ResNet-56 1.25 × 108 0.256 6.43 × 107 0.215 16.1

MobileNet 2.97 × 107 0.421 1.15 × 107 0.200 52.5

ResNet-50 3.38 × 109 5.453 1.71 × 109 4.098 25.0

performance is consistently effective and impressive for all representative CNN archi-

tectures. In addition, the actual acceleration performance of MobileNet is significantly

higher than that of both ResNet-50 and ResNet-56, indicating its potential suitability for

resource-stringent IoT devices.

4.7 Training timemeasurement

In fact, one important issue hindering the application of DNN is its complexity in train-

ing time. However, our scheme is more efficient as both structure and weight learning are

relatively faster in terms of the common training time, especially in the case where initial

weights are transferred from post-training models (e.g., inheriting the network parame-

ters from cloud). To be specific, we experiment on one Nvidia RTX-2080 GPU, with the

software platform of Pytorch and the dataset of CIFAR-10. Figure 12 provides the per-

formance comparison in terms of the normalized training time of all neural networks. It

can be observed from Fig. 12 that the time cost of structure learning is much shorter than

that of parameter optimization, which indicates that our scheme is very efficient in find-

ing the compact structures. In addition, the total training time decreases as the pruning

rate increases in all experiments, implying our proposed scheme’s efficiency as well.

Fig. 12 The normalized training time w.r.t. different pruning rates and CNN architectures. The training time

refers to the total time spent in training the neural networks to achieve the highest testing accuracy

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 19 of 21

5 Conclusions

In this paper, we proposed a novel pruning-based paradigm that aims to apply DNN, espe-

cially CNN, to resource-limited IoT scenarios. Our proposed scheme has the capability

to train and compress deep neural networks simultaneously. Specifically, we introduce a

heuristic algorithm to learn both the architecture and weights of the targeted neural net-

work. Once a compression rate is given, our scheme can train a redundant and randomly

initialized neural network into a compact, representative one. A large number of experi-

ments have illustrated the effectiveness of our scheme, which can reduce the complexity

of the redundant CNN while maintaining its performance, for example, a satisfying accu-

racy of 93.27% of the pruned VGG with dramatic reduction in FLOPs and the number of

the involved parameters (i.e., 72.6% and 94.1%, respecitvely). In addition, extensive experi-

ments also verify the performance of our scheme regarding various pruning rates in terms

of both theoretical acceleration and practical running time reduction.

As mentioned before, our proposed strategy can realize efficient end-to-end training

and compression of CNN and is able to be incorporated into the conventional distributed

computing paradigm to apply deep learning to resource-limited IoT applications. More-

over, our scheme is lightweight and can be easily extended to other types of DNNs. For

future work, we will apply the proposed pruning scheme to actual IoT scenarios to further

testify its effectiveness.

Acknowledgements

Not applicable.

Authors’ contributions

QC is the major contributor of this paper. She has written most of the sections of the paper and carried out most

simulations. SS completes the simulation program and adjusted the hyperparameters of the algorithm. RL is the

corresponding author. He participates in discussing the main core content of the paper and approved the submitted

manuscript. QL participates in designing the simulation program and revising the final manuscript. JL analyzed the

effectiveness of the algorithm and revised the paper. The authors read and approved the final manuscript.

Funding

This work was supported in part by National Key R&D Program of China (No. 2020YFB1804804), National Natural Science

Foundation of China (No. 62071425, 61731002), Zhejiang Key Research and Development Plan (No. 2019C01002,

2019C03131), Huawei Cooperation Project, the Project sponsored by Zhejiang Lab (2019LC0AB01), and Zhejiang

Provincial Natural Science Foundation of China (No. LY20F010016).

Availability of data andmaterials

Both CIFAR-10 and ILSVRC-12 data sets are public and can be searched on Google.

Declarations

Competing interests

The authors declare that they have no competing interests.

Author details
1College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China. 2Zhejiang Lab,

Hangzhou, China. 3Huawei Technologies Co. Ltd., Shanghai, China.

Received: 29 January 2021 Accepted: 13 June 2021

References

1. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on Internet of Things: Architecture, enabling

technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)

2. M. A. Al-Garadi, A. Mohamed, A. Al-Ali, X. Du, M. Guizani, A survey of machine and deep learning methods for

Internet of Things (IoT) security. arXiv preprint arXiv:1807.11023 (2018)

3. M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep learning for IoT big data and streaming analytics: a survey.

IEEE Commun. Surv. Tutorials. 20(4), 2923–2960 (2018)

4. E. Park, Y. Cho, J. Han, S. J. Kwon, Comprehensive approaches to user acceptance of Internet of Things in a smart

home environment. IEEE Internet Things J. 4(6), 2342–2350 (2017)

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 20 of 21

5. O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, M. N. Hindia, An overview of Internet of Things (IoT) and data analytics

in agriculture: Benefits and challenges. IEEE Internet Things J. 5(5), 3758–3773 (2018)

6. H. Li, K. Ota, M. Dong, Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE

Netw. 32(1), 96–101 (2018)

7. X. Ma, T. Yao, M. Hu, Y. Dong, W. Liu, F. Wang, J. Liu, A survey on deep learning empowered IoT applications. IEEE

Access. 7, 181721–181732 (2019)

8. X. Xie, K.-H. Kim, in The 25th Annual International Conference onMobile Computing and Networking, Source

compression with bounded DNN perception loss for IoT edge computer vision (ACM, Los Cabos, 2019), pp. 1–16

9. D. Jia, D. Wei, S. Richard, L. Li-Jia, L. Kai, L. Fei-Fei, in The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Imagenet: A large-scale hierarchical image database (IEEE, Miami, 2009)

10. A. Krizhevsky, I. Sutskever, G. E. Hinton, in Advances in Neural Information Processing Systems, Imagenet classification

with deep convolutional neural networks (Curran Associates, Inc., Harrahs and Harveys, Lake Tahoe, 2012),

pp. 1097–1105

11. K. Simonyan, A. Zisserman, in International Conference on Learning Representations (ICLR), Very deep convolutional

networks for large-scale image recognition (OpenReview.net, San Diego, 2015)

12. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, in The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Going deeper with convolutions (IEEE, Boston, 2015)

13. K. He, X. Zhang, S. Ren, J. Sun, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Deep residual

learning for image recognition (IEEE, Las Vegas Nevada, 2016)

14. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

15. S. Han, J. Pool, J. Tran, W. Dally, in Advances in Neural Information Processing Systems 28. ed. by C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Learning both weights and connections for efficient neural

network (Curran Associates, Inc., Montreal, 2015), pp. 1135–1143

16. S. Han, H. Mao, W. Dally, in International Conference on Learning Representations (ICLR), Deep compression:

Compressing deep neural networks with pruning, trained quantization and huffman coding (OpenReview.net,

Caribe Hilton, San Juan, 2016)

17. P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, in International Conference on Learning Representations (ICLR), Pruning

convolutional neural networks for resource efficient inference (OpenReview.net, Palais des Congreptune, Toulon,

2017)

18. H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, in International Conference on Learning Representations (ICLR),

Pruning filters for efficient convnets (OpenReview.net, Palais des Congreptune, Toulon, 2017)

19. Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, in The IEEE International Conference on Computer Vision (ICCV), Learning

efficient convolutional networks through network slimming (IEEE, Venice, 2017)

20. J. Luo, J. Wu, W. Lin, in The IEEE International Conference on Computer Vision (ICCV), Thinet: A filter level pruning

method for deep neural network compression (IEEE, Venice, 2017)

21. T. Dettmers, L. Zettlemoyer, Sparse networks from scratch: Faster training without losing performance. arXiv preprint

arXiv:1907.04840 (2019)

22. H. Mostafa, X. Wang, in Proceedings of the 36th International Conference onMachine Learning. Proceedings of Machine

Learning Research, vol.97. ed. by K. Chaudhuri, R. Salakhutdinov, Parameter efficient training of deep convolutional

neural networks by dynamic sparse reparameterization, (Long Beach, 2019), pp. 4646–4655

23. E. De Coninck, T. Verbelen, B. Vankeirsbilck, S. Bohez, P. Simoens, P. Demeester, B. Dhoedt, in International Internet of

Things Summit, Distributed neural networks for Internet of Things: The big-little approach (Springer, 2015),

pp. 484–492

24. R. Hu, Y. Guo, E. P. Ratazzi, Y. Gong, Differentially private federated learning for resource-constrained Internet of

Things. arXiv preprint arXiv:2003.12705 (2020)

25. A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images. Technical Report (2009)

26. H. Amroun, M. H. Temkit, M. Ammi, in 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green

Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart

Data (SmartData), Best feature for CNN classification of human activity using IoT network (IEEE, Exeter, 2017),

pp. 943–950

27. X. Ding, G. Ding, X. Zhou, Y. Guo, J. Han, J. Liu, in Advances in Neural Information Processing Systems 32, Global sparse

momentum SGD for pruning very deep neural networks (Curran Associates, Inc., Vancouver, 2019)

28. W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, in Advances in Neural Information Processing Systems 29, Learning structured

sparsity in deep neural networks (Curran Associates, Inc., Vancouver, 2016), pp. 2074–2082

29. S. Ioffe, C. Szegedy, in Proceedings of the 32nd International Conference onMachine Learning (ICML), Batch

normalization: Accelerating deep network training by reducing internal covariate shift (ACM, Lille, 2015)

30. Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, J. Zhu, in Advances in Neural Information Processing

Systems 31, Discrimination-aware channel pruning for deep neural networks (Curran Associates, Inc., Montreal, 2018),

pp. 875–886

31. Y. He, X. Zhang, J. Sun, in The IEEE International Conference on Computer Vision (ICCV), Channel pruning for

accelerating very deep neural networks (IEEE, Venice, 2017)

32. P. Singh, V. K. Verma, P. Rai, V. P. Namboodiri, Leveraging filter correlations for deep model compression. arXiv

e-prints, 1811–10559 (2018)

33. W. Wang, C. Fu, J. Guo, D. Cai, X. He, in Proceedings of the Twenty-Eighth International Joint Conference on Artificial

Intelligence, IJCAI-19, Cop: Customized deep model compression via regularized correlation-based filter-level

pruning (Morgan Kaufmann, Macao, 2019)

34. Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, J. Sun, in Proceedings of the IEEE International Conference on

Computer Vision (ICCV), Metapruning: Meta learning for automatic neural network channel pruning (IEEE, Seoul,

2019), pp. 3296–3305

Qi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:31 Page 21 of 21

35. S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, D. Doermann, in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Towards optimal structured CNN pruning via generative adversarial learning (IEEE, Long

Beach, 2019)

36. Z. Liu, M. Sun, T. Zhou, G. Huang, T. Darrell, in International Conference on Learning Representations (ICLR), Rethinking

the value of network pruning (OpenReview.net, New Orleans, 2019)

37. Y. He, G. Kang, X. Dong, Y. Fu, Y. Yang, in IJCAI International Joint Conference on Artificial Intelligence, Soft filter pruning

for accelerating deep convolutional neural networks (Morgan Kaufmann, Stockholm, 2018)

38. Y. Wang, X. Zhang, L. Xie, J. Zhou, H. Su, B. Zhang, X. Hu, Pruning from scratch. arXiv e-prints, 1909–12579 (2019)

39. M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, Y. Tian, Channel pruning via automatic structure search. arXiv e-prints,

2001–08565 (2020)

40. T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search: A survey. J. Mach. Learn. Res. 20(55), 1–21 (2019)

41. M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q. V. Le, in 2019 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Mnasnet: Platform-aware neural architecture search for mobile (IEEE, Long Beach, 2019)

42. H. Liu, K. Simonyan, Y. Yang, in International Conference on Learning Representations(ICLR), DARTS: Differentiable

architecture search (OpenReview.net, New Orleans, 2019)

43. Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, H. Xiong, in International Conference on Learning Representations(ICLR),

Pc-darts: Partial channel connections for memory-efficient architecture search (OpenReview.net, Virtual Conference,

Formerly Addis Ababa ETHIOPIA, 2020)

44. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, in NIPS-W,

Automatic differentiation in pytorch (Curran Associates, Inc., Long Beach, 2017)

45. Y. He, P. Liu, Z. Wang, Z. Hu, Y. Yang, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Filter

pruning via geometric median for deep convolutional neural networks acceleration (IEEE, Long Beach, 2019)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Abstract
	Keywords

	Introduction
	Background of CNN pruning
	DNN-powered IoT
	Related works on pruning
	Unstructured pruning
	Structured pruning
	Pruning with new paradigms

	Potential applications in IoT scenarios

	Methods
	Notations
	Criterion of channel significance
	Channel redistribution
	Discussion

	Results and discussion
	Experimental setting
	Experiments on CIFAR-10
	Experiments on ImageNet
	Trade-off between performance and compression rate
	The uncovered compact structures
	Acceleration in practice
	Training time measurement

	Conclusions
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

