An Efficient Pseudo-Random Generator Provably
as Secure as Syndrome Decoding

Jean-Bernard Fischer! and Jacques Stern?

'"Thomson Consumer Electronics R&D France
Parc d’innovation n® 1, B.P. 120, 67403 Ilkirch Cedex, l'rance
fischerjOtce-rdf.fr

?Licole Normale Supérieure, Laboratoire d’informatique
45, rue d’Ulm, 75230 Paris Cedex 05, France
Jacques,Stern@ens.fr

Abstract. We show a simple and efficient construction of a pseudo-
random generator based on the intractability of an NP-complete problem
from the area of error-correcting codes. The generator is proved as secure
as a hard instance of the syndrome decoding problem. Llach application of
the scheme generates a linear amount of bits in only quadratic computing
time.

1 Introduction

A pseudo-random generator is an algorithm producing strings of bits that look
random. The concept of "randomly looking” has been formalized by Blum and
Micali [4] within the framework of complexity theory. Yao [22] has shown that the
existence of a one-way permutation is sufficient to construct a pseudo-random
generator. Subsequently, a long series of deep articles led to the conclusion that
the existence of a one-way function is equivalent to the hypothesis that a pseudo-
random generator exists [15, 10, 14]. However, the theoretical constructions pro-
posed in these ariicles are often impractical.

Several schemes have been proposed which have a "proven security”, i.e.
based on the difficulty of well known problems like factorization [21, 3, 1, 18] or
the discrete logarithm [4, 16, 12]. Bul these propositions suffer from a relatively
slow computing rate (i.c. they need much computation per generated bit). For
example, outputting a single bit for the BBS generator takes quadratic time,
and cubic time for the RSA based generators. This can be slightly enhanced to
a loga(n) output.

'Therefore, il is interesting to study new schemes based on difficult problems
not related to number theory. In an early work [9], Goldreich, Krawczyk and Luby
established that the existence of a pseudo-random generator could be based on
hard problems from the theory of crror-correcting codes. Unfortunately, their
construction was a bit intricate. In the same vein, Impagliazzo and Naor [13]
devised an elegant construction of a pseudo-random generator based on the
subset-sum problem. Unlortunately, many rescarchers think that the underlying

U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT 96, LNCS 1070, pp. 245-255, 1996.
© Springer-Verlag Berlin Heidelberg 1996

246

problem 1s computationnally rather weak. We present a new scheme bascd on
the syndrome decoding problem, which is believed to be hard on most instances.
Our scheme is extremely simple and achieves quadratic time with respect to the
security parameters for producing a lincar atnount of random bits.

1.1 The Syndrome Decoding problem

In the field of error correcting codes, one of the basic open problems is to find
efficient algorithms for the decoding of random linear codes. Codes with a con-
stant information rate and correcting a constant {raction of bits are particularly
interesting.

A (n,k, d) binary lincar code is a subspace of {0,1}" of size 2¥ where every
non zero word has weight at least d. It’s information rate is &/n and it can
correct up to H;—IJ errors. It can be defined by its parity check matrix which is
a n-by-(n — &) binary matrix with the property that, for each vector of the code,
the product (mod 2) of the matrix by the vector is zero; this product can actnally
be computed for any vector and is called the syndrome. If the vector is not in
the code, the syndrome is the sum of the columns of the matrix corresponding
to positions where one bits are located and is non zero.

Random linear codes are defined by a random parity check matrix. For such
codes, no cfficient algorithm is known for finding the closest code word to a
vector, given its syndrome. It is also difficult to find a word of given weight from
his syndrome’s value [2]. This is called the syndrome decoding problem.

Thesc problems are NP-complete. For further information, we refer to the
books by McWilliams and Sloane [L7] for error correcting codes, and by Garey
and Johnson [7] for NP-complete problems. The syndrome decoding problem is
NTP-hard; see Berlekamp, McEliece and van Tilborg [2] for a proof. It can be
stated as follows [7]:

Instance: An m X n binary matrix A = (ay;), a binary non-null vector y =
(y1,-..,¥m), and a positive integer w.
Question: Is there a binary vector # = {21,...,®,) with no more than w 1’s

such that, for 1 < j < m, 320 2 -a;; = y; (mod 2) ?

Comment: The variant in which we ask for an = with ezactly w 1’s 18 NI-
complete, even for y = (0,0,...,0). If we drop the word exactly, the question
becomes open.

NP-hardness ensures that there is no polynomial-time algorithm for solving
the problem in the worst casc; however many NP-complete problems can be
efliciently solved in the average case. So we have to study the hardness of a
random instance. This leads to practical issues that have been extensively studied
by various people, as reviewed by Chabaud [6, 19]. Algorithms known to solve the
syndrome decoding problem are all probabilistic, so that we will speak about the
probability of finding a word. They all have a computing complexity that grows
exponentially in the size of n. ‘They also give strong evidence that, in the case of

247

random codes, the problem is the hardest for weights in the neighbourghood of
the Gilbert-Warshamov bound corresponding to the dimensions of the code. The
Gilbert-Warshamov bound X of a (n, &, d) binary code is defined by the relation
1 —k/n = Hy(A) where Ha(z) = —zlogyx — (1 —) logs(1 —).

0.2
0 | L | |
0 02 04 06 088 1 A

What comes out of the analysis is that it is relatively easy to find words
of very low weight and given syndrome, but that the probability of finding one
increases exponentially with the weight of the word {these algorithms are all
probabilistic). However, the number of words having a given syndrome also grows
exponentially with the weight; the point where there is an average of one word
per syndrome value is the Gilbert-Warshamow bound. Finally, given a random
vector with weight below the bound, the probability for 1t of having a pre-image
is exponentially small in the weight.

We reach the following experimental conclusion: the difficulty of finding a
word is a function of its weight that is growing until the Gilbert-Warshamov
bound, and is then decreasing. So we can define a hard instance of syndrome
decoding as an instance where the weight of the vectors is close to the Gilbert-
Warshamov bound.

1.2 Formal version of the intractability assumption

In the sequel, we will only consider subsets D, such that, for suitable func-
tions k(n) and I{n), D, is included in {0,1}("®) and is the onc-one image of
{0, 1}’“(") by a polynomial-time function. This is a particular case of what 1s
called polynomially-samplable [8].

We now define what we mean by hard (this is essentially a simplified version

of Goldreich [8]):

Definition 1 A collection of functions {f, = D, + {0, 110 is called stron-
gly one-way if the following two conditions hold:

there exists a polynomial-time algorithm F that, on input x € Dy, always
outputs fp(z).

— for every probabilistic polynomial-time algorithm A, cvery ¢ > 0 and all
sufficiently large n'’s,

PrAU (Xn)) € fo Ja(X0)) < —

n¢

248

where X, is a random variable uniformely distributed over D, .

We now consider a very general collection of functions related to the syn-
drome decoding problem.

Definition 2 Let p be in |0, L[, let w and w' be two integer functions such that

w(n) < w'(n) < n. The SD(p,w,w') collection is the set of functions {fn} such
that:

Dy ={{Mx),Me |pn)xn,ze{0,1}"/wn) <|z| <w(n)}
fn Dy, — {0,1}[07”(”’4'1)
(M2} — (M, M - 2z)

As we have seen in the previous section, instances of the problem where
w(n} and w'(n) are very small or close to n/2 are not hard, so that we want to
restrict the collection to the instances where the weight of z is near the Gilbert-
Warshamov bound. Clearly, it is not known if such a collection is one-way, but
we have seen that, despite extensive research, no cfficient inversion algorithm
has been found. So we make the assumption that the collection is one-way for
weights slightly below the Gilbert-Warshamov hound.

Intractability assumption 1 Let p be in]0, 1[; let A be defined by p = Hy(A)

and A < 1/2. Then, for any positive real ¢, 1f we set w(n) = {licn and w'(n)

| An], the SD{p,w,w') collection is strongly one-way.

Note: D, has to be polynomially-samplable. We will discuss this point later
on.

Of particular interest to us is the case where the weight of z is fixed and
is a constant fraction of n, i.e. w(n) = w'{n) = |dn] for some § in]0,1[. The
corresponding intractability assumption reads as follows:

Intractability assumption 2 Let p be in |0, 1[. Then, for all § in]0,1/2[such
that 115(0) < p, the SD(p,d,8) collection of functions is strongly one-way.

We now write SD(p,d) to refer to our second assumption with fixed param-
eters p and 4. We will occasionnally omit the parameters thus writing SD in
place of SD{p,d). The corresponding [unction will be denoted by f£? or simply
J» and has domain D£° = {(M,z), M € |pn|xn,z € {0,1}*/|z| = &)}

Cryptographic applications of the syndrome decoding problem have appeared
in an identification scheme devised by the second named author [20].

Note that if Ho(A) = p and § < 2, the intractability of SD(p,d) is a partic-
ular case of the difliculty of decodinug below half the minimum distance. Thus
our assumption is stronger than the usual decoding assumptions (see [9]). The
construction that appears in section 2 can equally be based on the hardness of
decoding but, when we come to practical issues, codes of a larger dimension will
be needed. 'I'his is why we chose to work with our SD assumption.

249

2 A pseudo-random generator based on the syndrome
decoding problem

2.1 Construction of the generator

Our goal is to construct an eflicient pseudo-random generator based on a hard
problem, so that the gencrator inherits the hardness of the problem. We have
defined a hard instance of the syndrome decoding problem and a collection of
functions SD(p, d) one-way under the second intractability assumption.

et us first note that f{l"é expands its input: the size of the input set is

olen] . ((;l), the size of the image set is 2Len) . 2lenls since Ho(8) < p, there
n

n

on
a sufficiently large n, f.r’:’(s cxpands its input by some lincar amount, of bits. We
note also that f{;"S can be computed in time O(n?), since it is exactly the binary

product of a [pn| x n matrix with a | pn} column vector.
We construct the generator (7, s in the following way:

exists a positive real € such that (1 4 €) log, (> = |pn]. 'That means that for

Input: (M, x) € D?*°
OQutput: [2%(M,z) = (M, M -)

Following a standard coustruction, we also consider an 1iterative generator
4,5 that, on input (M, z), outputs as many bits as we like. To perform this
iteration, we need an efficient algorithm that computes a vector of size n and

n
(5n
algorithm A as granted and we will describe one in the next section. We get the
following:

weight § from a log, > bit number. For the time being, we consider such an

Input: (M, z) € D°

1. compute y = M -«

2. scparatc y in two bit strings v, and vz, ¥ being the first \'log2 (5’;)-\ bits

of y and ys the remaining bits.
3. output y.
4. set @ «— A(yr) and goto 1.

2.2 An algorithm for generating all words of given weight

The first and second intractability assumptions require a polynomial-time algo-
rithm that samples the sel of vectors of given weight. Such an algorithm is also
needed in our scheme for the pscudo-random generator, but furthermore, it has
to be computable in quadratic time to preserve the efficiency of the generator.

250

We will use an algorithm inspired by Guillot [11]. This algorithm is said qua-
dratic, takes as input a word of exactly log, <n> bits and oulputs a word of
w

length n and weight |[dn].

However, in his paper, Guillot uses a heuristic approximation to justify the
computing time O(n?). He assumes that multiplication and division of a large
number (of size n) by a small number (of size log, n) are linear because the small
number has typically the size of a computer word. This arguinent is not enough
for a more formal approach.

In the Turing machine model, the algorithm is ”almost” quadratic since it
has a of complexity O(n®logn). However the quadratic time bound holds in
the model corresponding to random machines with logarithmic cost. See the
appendix for a proof.

We now present the algorithm for gencrating words of given weight. It is
based on an efficient way of outputting a word of length n and weight w given
its index in the Jexicographic ordering (see [11]).

We write the lexicographic enumeration algorithm in the following way:

Input: i,n,w

n
L. ¢+
w

2. whilen > 0 do
(a) ¢ 4=c- B2
(b) if e < ¢

— output (
—ced
(c) clse
— output |
— i i—
—ctc- ¥
(d) nen-1

From the lemma, we note that the initial computation of { ") takes quadratic
w

time. The two casecs in the while loop respectively take care of words where a
zero (resp. a one) comes first: entering the loop with the initial values of the

variables; we find (n B]> words starting with 0, the remaining with 1. The
w

same happens in subsequent iterations, mutatis mutandis.

2.3 Security of the scheme

Goldreich and Levin [10] have shown that the inner product is a hard bit for
any one-way function. Recall that, if x,r € {0, 1}, the inner product » & « is
the parity of the number of positions where the bits of £ and of r arc both 1
(r; = 2; = 1). The hardness result reads as follows:

251

Theorem 1 [10] Let f : D, c {0, 1} — {0,1}*0") be a one-way function.
For cvery polynomial-time algorithm A, cvery polynomial p and all bul finitely
many n’s,

Pr(A(f(z),7)=ro2) <

B =

L
p(n)
where the probability is taken over uniformly chosen x € D, and v € {0, 1}*(").

An algorithm is a pscudo-random generator il its output distribution is
polynomial-time indistinguishable from a truly random distribution. Two dis-
tributions X and Y are indistinguishable in polynomial-time if, for every prob-
abilistic polynomial-time algorithin D and every polynomial p, |Prob{D{(z) =
1) = Prob(D(y) = 1)| < rﬁ where probabilities are taken over X and Y. We
will prove that the generator (7, 5 is pseudo-random under intractability assuinp-
tion 2.

Theorem 2 [f the SD{(p,d) collection is one-way, then G, s s pseudo-random.

Remark: By standard arguments, the same result extends to the iterative gen-
crator g, s.

Proof. This proof is inspired from Impagliazzo and Naor [13]. Let G5 be the
generator with matrix M € 21X7 and weight w = |dn] as defined in 2.1.
If G, is not pscudo-random, we can build a distinguisher that accepts (i.e.
oulputs 1) with a different probability a string generated by G, s and a random
string. We can then use this distinguisher to predict the inner product of 7 and s
with an advantage better then m from given values of r aud G, 5(s). Using
the Goldreich-Levin theorem, we have a contradiction to the one-wayness of the
corresponding f#° function.

When we think of » and s as defining subsels of the matrix columns (the -th
column of the matrix is in the subset defined by r (resp. s) if the #-th bit of r
(resp. s) is 1), we see that » @ s is the parity of the intersection. The idea is to
use the distinguisher to predict this parity.

The distinguisher is fed with a matrix M and a binary word ¢ of size {pn].
Without loss of generality, we can assume that, for infinitely many indices, the
distinguisher

— outputs 1 with probability at least %—i— ﬂln_) il ¢ 1s the product of the matrix
with a word of weight w;
— outputs 1 with probability almost exactly 1 if ¢ is chosen uniformly in

{0, 1}tend, ‘

Let M in |pn| % n be a matrix, where ¢; is the i-th column of M: M =
(ci)ici<n- Given 7 = (r,...,1,) € {0,1}™ and « € {0,1}l*"} both chosen at
random, we construct a new matrix M} = ((’,;)19(“ such that:

— if r; = 1, the é-th column of M} is the bitwise xor of ¢; and @ (i.e. ¢} = ¢;®x);
— if r; = 0, the i-th column of M is ¢;.

252

We lel u denote a possible output of the pseudo-random generator, i.c M -5 = u
for some s. Let k = |r N s| be the number of locations where the bits of » and s
are both 1, and ¢ be the parity of k. As noted above, this is equivalent to saying
that ¢ is the inner product of r and s. Let €2 =z, if e = 1 and 01?”} otherwise.
We observe that the result of M) .s is u & € -z, as established by the following
computation:

r . /
A/[J} 8= @c:Es i

= (@c,&s Ci) @ (@C,Err‘ls 33)
=ude-r
On imput {M?, u® e-z), the distinguisher sccs exactly the same distribution
as on input (M, u). But theu, the distinguisher outputs 1 on input (M}, u@®c-z)
with probability at least % + Wlnj' On the other hand, il we replace ¢ by €, then,
due to the randomness of @, the distinguisher is fed with uniformly distributed

inputs. The distinguisher outputs 1 with probability 1/2. This leads us to the
following consruction:

Input: M € {0,1}lm* e {0, 1} e {0, 1}7

— choose a random x € {0, 1}""] and a random # € {0,1} (0 is our guess
about the inner product)

— feed the distinguisher with (M7, v ® ¢ - z)

— if the distinguisher answers 1, output 0, elsc output 6 .

Theorem 3 Our algorithm predicts the inner product with probability at least

1 1
14

2p(n) :

Proof. If we have guessed ¢, our predictor is correct if the the distinguisher
outputs [. We have seen that this is the case with probability at least % + 5(1;1—)—

If we have not gnessed ¢ correctly, the predictor sees the input as a totally
random distribulion. It then outputs 1 with probability almost % Since both
cases happen with probability %, the overall probability of the algorithm to

predict the inner product i1s at least % + 21)%”).]

3 Performances

The computation of the product of the matrix by an vector is done solely by
using logical operations like AND, XOR and PARITY, which leads to very fast
implementations. The matrix can be either extensively described bit per bit, or
defined as the output of a pseudo-random generalor so that the matrix descrip-
tion remains small in size. This can be done very simply by using a congruential
generator with different seeds [or each line.

The main bottleneck in the algorithm comes from the sampling algorithm
that computes a binary vector of given length and weight. We have to use mul-
tiplications and divisions, and that is costly in comparison with the previous op-
erations. However, such computations can be greatly speeded up by doing some

253

precomputations, like a table of the binomials that will be used. That leaves us
with only substractions and comparisons, yelding a very fast computation.

Recent attacks on cryptosystems based on error-correcting codes [5] have
shown that a (512, 256) random linear code can be decoded up to half its mini-
mum distance 58. That means that words of weight up to 30 can be found given
their syndrome. So we can choosc a weight between 50 and 57 with the assurance
of a very good security.

The gain of the generator is pn — {log2 <[dn J) . For a value of p fixed to
n

1/2, we have the following results:

n |512|512(512|728(728{1024(1024
ldn|| 56155 |50 |78 [71|110] 100
gain| b | 8 |23111]32| 12 | 43

As seen in the table, n = 512 and |dn| = 55 yields one byte per iteration,
which looks very attractive.

The scheme as described in section 2 can be improved by precomputing the
binomial coefficients. By thus constructing a table of binomials, we get rid of
costly multiplications and divisions. The resulting scheme makes only use of
comparisons, substractions of n-bit numbers and multiplications of a binary ma-
trix with an n-bit vector. Note that those operations are very fast since they
require only logical or fast instructions. The memory cost of a table of the bino-
mial coefficients for the (512,256, 55) scheme is the following: we need 512 x 55
entries of size 256 bits, which makes a total of 880 kBytes of memory. This is
clearly not an issue for todays computers.

On a SUN Sparcl0 station, our implementation using a precomputed bino-
mial table achicves an output rate of 3500 bits per second. RSA with a 512 bit
modulus and small cxponent is rated at about 0.005 sec per encryption using the
chinese remainders. If we output logq(n) = 9 bits per application of the scheme,
the output rate is about 1800 bits per second.

4 Conclusion

We have shown a construction for a pseudo-random generalor with proven secu-
rity. This gencrator is very efficient and simple, and its implementation 1s fairly
straightforward. We hope that this work will encourage research of alternative
solutions to number theory.

Acknowledgements

We thank Oded Goldreich and Mike Luby for discussions on the subject of this
paper. Also, after this paper has been accepted for EUROCRYPT, we were
informed that Ramarathnan Venkalesen had considered a similar construction.
His work will appear elsewhere.

254

A Appendix

Lemma 1 The product of an n-bit integer by an log, n-bil integer is computable
in linear time. The same property holds for the diviston.

Remark: as will be seen from the proof, this actually holds in a model cor-
responding to random access machines with logarithmic cost. It is unclear that
the result carries over in the Turing machine model.

Proof. Let x be a n-bil integer, y a log, n-bit integer, and « a positive real
smaller than 1/2.
We write z and y in basc 2t = gloleg.n].

logy n
t

= 1777.2“'1 yzzyj2t7

1=0 3=0

Then x-y=3; ;®iy;- 9tli+i)

~f

So the multiplication requires %] x (lﬂgfl—' ~ Olga)
— multiplications of two #-bit integers;
— shiftings of #-bit integers (the multiplication by 2¢0+7));
additions of two ¢-bit nlegers.

Addition and shifting are done in tirme linear in the length of the input, which
is, in our case, in O(log, n).

It remains Lo prove that multiplication of two logon-bit integers can be done
within the same complexity bound. First, we construct once for all a table of
all the possible products z; - y;. Since 2; and y; are in {0,.., 2"}, the size of
the table is at most 2%/9827 2212827 Using the quadratic-time multiplication,
the table can be computed in time (2%1°6:")?(«log, n)?; and since a < 3, this
construction is done in time O(n). Table look-up is performed in O{alog, n +
alogy n + alogyn) ~ O(log, n), so the complexity of our multiplication is also
O(log, n).

Finally, the multiplication of an n-bit integer by an log., n-bit integer requires
the construction of a table done in O(r) and O oz) Operations which are done
in O(log, n), so that the whole scheme has a complexity of O(n).. O

References

1. Alexi, W., Chor, B., Goldreich, O., Schnorr, . P.: Rsa and rabin functions: certain
parts are as hard as the whole. SIAM J. Computing 17 (1988) 194-209.

2. Berlekamp, L. R., McEliece, R. J., van 'l'ilborg, H. C. A.;. On the inherent in-
tractability of certain coding problems. In IEEE Trans. Information Theory {1978)
IEEE pp. 384-386.

3. Blum, L., Blum, M., Shub, M.: A simple unpredictible pseudo-random number
generator. STAM J. Computing 15 (1986) 364-383.

10.

11.

. Hastad, J., Schrift, A. W., Shamir, A.: The discrete logarithm modulo a composite

13.

14.

15.

16.

18,

19.

20.

22.

255

Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Computing 13 {1984) 850-863.

. Canteaut, A., Chabaud, F.:. A general improvement of the previous attacks on

MckElece’s cryptosystem. Unpublished.

. Chabaud, F... On the security of some cryptosystems based on error-correcting

codes. In Advances in Cryptology: Proc. of EUROCRYPT 94 (1994) LNCS
Springer- Verlag.

Garey, M. R., Johnson, D. S.:. Computers and intractability: a guide to the theory
of NP-completencss. W. H. Freeman and Co 1979,

. Goldreich, O.:. Foundations of cryptography (Fragments of a book). Weizmann

Institut of Science 1995.

Goldreich, O., Krawczyk, H., Luby, M.:. On the cxistence of pscudo-random gen-
erators. In Proc. 29th Symp. on Foundations of Computing Science (1988) IEEE
pp. 12-24.

Goldreich, O., Levin, L. A.:.. Hard core predicate for any one-way function. In
Proc. 21st Symp. on Theory of Computing {1989) ACM press pp. 25-32.

Guillot, P.:. Algorithmes pour le codage A poids constant. Unpublished.

hides o(n) bits. J. of Computing and Systems Science 47 (1993) 376-404.
Impaggliazzo, R., Naor, M.:. Eflicient cryptographic schemes provably as secure
as subset sum. In Proc. 30th Symp. on Foundations of Computing Science {1989)
IEEE pp. 236-241.

Impagliazzo, R., Levin, L. A., Luby, M.:. Pseudo-random generation {rom any one-
way functions. In Proc. 21st Symp. on Theory of Computing (1989) ACM press
pp. 12-24.

Levin, L. A.:. One-way functions and pseudo-random generators. In Proc. 21st
Symp. on Theory of Computing (1985) ACM pp. 363-365.

Long, D. L., Wigderson, A.: The discrete log hides o(logn) bits. SIAM J. Com-
puting 17 (1988) 363-372.

. McWilliams, F. J., Sloane, N. J. A.:. The theory of error-correcting codes. North-

Holland 1977.

Micali, S., Schnorr, C. P.:. Iifficient, perfect random number generators. In Ad-
vances in Cryptology, Proc. of CRYPTO’88 (1988) vol. 576 of LNCS Springer
Verlag.

Stern, J.:. A method for finding codewords of small weight. In Lecture Notes
in Computer Science, Coding Theory and Applications vol. 388. Springer 1989
pp. 106-113.

Stern, J.:. A new identification scheme based on syndrome decoding. In Ad-
vances in Cryptology, Proc. of CRYPTO93 (1993) vol. 773 of LNCS Springer-
Verlag pp. 13-21.

. Vazirani, U. V., Vazirani, V. V... Efficient and secure pseudo-random sequences

from slightly-random sources. In Proc. 25th Symp. on Foundations of Computing
Science (1984) IEEE pp. 458-463.

Yao, A. C.:. Theory and application of trapdoor functions. In Proc. 25th Symp.
on Foundations of Computing Science (1982) IEEE pp. 80-91.

	An Efficient Pseudo-Random Generator Provablyas Secure as Syndrome Decoding
	1 Introduction
	1.1 The Syndrome Decoding problem
	1.2 Formal version of the intractability assumption

	2decoding problemA pseudo-random generator based on the syndrome
	2.1 Construction of the generator
	2.2 An algorithm for generating all words of given weight
	2.3 Security of the scheme

	3 Performances
	4 Conclusion
	Acknowledgements
	A Appendix
	References

