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Abstract. We show a simple and efficient construction o f  a pseudo- 
random generator based on the intractability of an NP-complete problem 
from the area of error-correcting codes. The generalor is provcd as secure 
as a hard instance of the syndrome decoding problem. Each application of 
the scheme generates a linear amount of hit,s in  only quadratic computing 
t#ilIN?. 

1 Introduction 

A pseudo-random generator is an algorithm producing strings of bits that look 
random. The concept of ” r a n d o d y  looking” has been formalized by Blum and 
Micali [4] within the framework of complexity theory. Yao “2’21 has shown that the 
existence of a one-way permutation is sufficient, t,o const#ruct a pseudo-random 
generator. Subsequently, a long series of deep articles led to the conclusion that 
the existence of a one-way function is equivalerit to the hypothesis that  a pseudo- 
random generator exists [15, 10, 1.11. IIowever, the theoretical const,riictioris pro- 
posed in these articles are often impra.ctica1. 

Several schemes have been proposed which ha.ve a ”proven securit8y”, i .e. 
based on the difficultly of well known probleiiis like factorization [ 2 l ,  3,  1: 181 or 

logarithm [4, 16, la]. Bul lhese propositions sufl’er from a relatively 
slow computing ratc (i.c. they need much compiitatiou per generaLed bit). For 
example, outputting a single bit for the HHS generator takes quadratic t,ime, 
and cubic time for t,he K.SA based generators. This can be slightly enhanced t,o 
a. loya(n) output. 

‘I‘herehe, it is inberesting to study IICW schemes based on difficult problems 
riot related to  number theory. In an early work [Y], Goldreich, Krawczyk a.nd Luby 
established that the existence of a pseudo-random geiiera.tor coiild be based on 
hard problems lrom the theory of error-correcting codes. Unfortunately, t,heir 
coristruction was a bit, intricate. In t,he same vein, Iriipagliaezo and Naor [13] 
devised an elegant, const,riictioa of a pseudo-random generator based or1 t’he 
subset-sum problem. [Jnfortunately, many researchers think that the underlying 
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problem is coniputationnally rather weak. We present a new scheme bawd on 
the syndrome decoding problem, which is believed to be hard on most instances. 
Our scheme is extremely simple and achieves quadratic time with respect to the 
security parameters for producing a lincar amount of raridom bit,s. 

1.1 The Syndrome Decoding problem 

In the field of error correcting codes, one of tlhe basic open problems is to find 
efficient algorit,hms for the decoding of random linear codes. Codes with a con- 
stant information ra.t,e arid correcting a constant fraction of bits are particularly 
interesting. 

A (72 ,  k, d) binary linear code is a subspace of { O ,  1)‘’ of size 2k where every 
~ioii zero word has weight a.t least d.  It,’s inforinntion rate is k / n  and itt can 
correct, up t,o LyJ errors. It, ca.11 be defined by its parit,y check matrix which is 
a 7 2 - b y - ( n  - k )  binary matrix wit,h the propertfly t,liat, for each vector of the code, 
t,he product (mod 2)  of the rriatarix by the vector is zero; t81iis product can nctiially 
be cornputred for a,ny v d o r  a,nd is called the syndrome. If the vector is riot in 
the code, the syndrome is the sum of the columns of the matrix corresponding 
to positions where one bit8s are located and is lion zero. 

Random linear codes are defincd by  a random parity check matrix. For such 
codes, no efficient algorithrn is known for finding the closest code word to a. 
vector, given it,s syndrome. It, is also difficult to find a word of given weight from 
his syndrome’s value [2]. This is called t,he syndronic decoding problem. 

1 hesc problems are NP-complet,e. For fiirt,her information, we refer to the 
books by McWilliams and Sloane [17] for error correcting codes, and by Garey 
and .Johnson [7] for NP-complete problems. The syndrome decoding problem is 
NP-hard; see Bcrlekamp, McEliece and van Tilborg [a] for a proof. It can be 
s h t e d  as follows [7]:  

Instance: An r n  x 72 binary matrix 4 = ( a c j ) ,  n binary non-null vector y = 

Question: Is  there a binary vector n: = (zl, ,z,) with no more than 11) 1 ’S 

(mod 2 )  ‘! 

! \  

, y m ) ,  and a positive integer to. 

siich t81iat8, for 1 5 j 5 rn, Cyz, zi . a?? G yj  

Cornmmt: The variant in which we ask for an z with exactly U I  1’s is NP- 
complete, even for y = (O,O, , , . , O ) .  T f  w r  drop the word exactly, the question 
becomes open. 

NP-liardnrss ensuws t.hat there i s  no polynomial-t,imc algorithm for solving 
the problem i n  t,he worst casc; however mxiy NP-complete problems can be 
eficiently solved in the average casc. So we have to study the hardness of‘ a 
random instance. This leads t,o practical issues that have been ext>ensively studied 
by various people, as reviewed by Chabaud [ti, 191. Algorithms known to solve the 
syndrome decoding problem are all proba,bilistic, so that  we will speak about the 
probability of finding a word. They all have a computing complexity that grows 
exponentially in t,he size of n. They also give st,rong evidence that ,  in the case of 
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raridorri codes, the problem is the hardest for weights in the neighbourghood of 
the Gilbert8-Warsharnov bound correspondirig l o  the clirrierisioris of the code. The 
Gilbert-Warshamov bound X of a (n ,  k ,  d )  binary code is defined by the relation 
1 - k/71 = IIz(X) where H % ( z )  = --z log2 R: - ( I  - a:)  loga(I - x). 

H z ( X )  
1 

0.8 

0.6 

0.4 
0.2 

0 
0 0.2 0.4 0.6 0.8 1 X 

What, comes out, of t,lie analysis i s  t,liat, it, i s  relatively easy to find words 
of very low weight and given syndrome, but that  the probabilily of finding one 
increases exponentially with the weight of the word (these algorithms are all 
probabilist,ic) . However, t,he number of' words having a given syndrome also grows 
exponentially with the weight; the point where there is an average of one word 
per syndrome value is the C: ilberl-Warshamow bound. Finally, given a rnndorri 
vector with weight below the bound, t,he probability for it of having a pre-image 
is exponentially small in t,he weight. 

We reach the following experimental conclusion: t8he difficultmy of finding a. 
word is a function of its weight tjliatJ is growing iintil the C:ilbert-Warsha,mov 
bound, and is t,hen decreasing. So we can define a. hard instance of syndrome 
decoding as an instance where the weight of t,he vectors is close to t4he Gilbert- 
Warshamov bound. 

1.2 

In the sequel, we will only consider subsets D,, such that,  for suitable fiinc- 
tions k ( n )  arid l ( n ) .  D,, is included i r i  { O ,  l}"") and is the one-one image of 
(0 ,  by a polyiiomia,l-tirne function. This is a. particular ca.se of what is 
called polynoinially-samplable [8]. 

We now define what we ~ i i e a ~ i  by hard (this is essentially a simplified version 
of Goldreich [S]): 

Definition 1 A collectiorz offi~rzctiorzs { f t l  : DT2, t) (0 ,  1}'((")) i s  called xt.r.on- 
gly one-timy zf the followzng t.wo coizditzoi~~ hold: 

Formal version of the intractability assuiriptiori 

thme crists (1 polynomial-tirnc cilgor-ithrn F tlznt, on  i n p u t  x E D,, always 

~ for euery pi.obabrlrstic polyrioririol-trrire alyorithrii i t ,  c w r y  c > 0 and a11 
0 7 / t f I U t . 9  f n  ( . I : ) .  

strficiicicritly large 7% '.s, 
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where X,, 15 a random vurzabk unzformely dzstrlbutcd over D,, . 

We now consider a very general collection of functions related to the syn- 
drome decoding problem. 

Definition 2 Let p be an 10, I[; I t 1  ui and w’ bc two znteger functzoiis such that 
w ( 7 z )  5 d ( n )  < 71 The SD(p, ill, w‘) collectzoiz zs thc sct of functzons {fn} such 
Lhat 

f r L  : D,  + (0 ,  l}Lpni  ( n + l )  

D,, = { ( M ,  z), M E [/In] x71, c E (0, l} ,~ / t0(?1)  5 121 5 t d ( 1 1 ) )  

( M , 2 )  H (A/!> h.1. .) 

As we have seen in the previous sectiori, instances of the problem where 
~ ( n , )  and d ( n )  are very small or close to n / 2  are not hard, so that we want to 
restrict, t>hc colleclion t>o the instances wherc the weight of z is near the Gilbert- 
Warshamov bound. Clearly, it is riot I<nown if such a. collection is one-way, but 
we have seen that despite exknsive research, no cfficient inversion algorithm 
has been found. So we make the assumptioil that  t,he collection is one-way for 
weights slightly below the Gilbcrt,-Warshamov hound. 

Intractability assumption 1 Let p be zn ]0 ,1[ ;  Ict X be defined by p = I I z ( X )  
and  X < 1/2.  Then, f o r  czny posztzoc real 6 ,  zf we set w(n) = L&n] und ~ ’ ( 7 1 )  = 
[ X n ] ,  tAt SD(p, u ) ,  d) collcclzon zs strongly ont-way. 

Notme: D,, lms to lie polyriomially-samIplable. We will discuss this point, la.t,er 

Of pa,rt,irula.r iiiterest, to us is the case where t.he weight of z is fixed arid 
is a. constarit fraction of 7 1 ,  i.e. w(71) = i d (n )  = [SnJ for some 6 in  30, I [ .  ‘I’he 
corresponding intractabilit,y assumplion reads as follows: 

on. 

Intractability assumption 2 Lct p b t  ui 10, 1 [ Thcn, for  a l l 6  111 10, l / 2 [  such 
that IIa(S) < p, tlzc SD(p, S, 6) rollcctzon offunctzons zs strongly one-way. 

We now writ.e SD(p, 6) to refer t,o our second assumption with fixed param- 
et,ers p and 6. We will occasionnally omit t,he pararrieters thus writing SD in 
place of SD(p, S ) .  The corresponding ruuct,ion will be denoted by f,”)6 or simply 
fn and 1ia.s doinain D:,>’ = {(MI x), M E LpnJ x n ,  D: E (0 ,  l } ” / ~ ~ ~  = 6)) 

Cryptographic applications of the syndrome clccodirig problem have appeared 
in an identification scheme devised by the second named author [ZO]. 

Nole that  if  H 2 ( X )  = p and 6 < $, the intractabilit,y of SD(p,6) is a part,ic- 
ular case of the dificulty of decoding below half the minimum distance. Thus 
our assumption is stronger than the  usiial dccodirig assumptions (see [9]). The 
construction that appears in section 2 can equally be based on the hardness of 
decoding bu t ,  when we come t ,o  pra.ctica1 issues, codes of’ a larger dimension will 
be needed. ‘l’his is why we chose t,o work with our  SD assumpt,ion. 
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2 
decoding problem 

A pseudo-random generator based on the  syndrome 

2.1 Construction of the generator 

Our goal is to construct an efficient pseudo-random generator based on a hard 
problem, so tlha.t8 t,hc gcncrat,or inhcrit,s t,hc hardnrss of the problcrn . We have 
defined a hard instance of tjhe syndrome decoding problem and a collection of 
functions SD(p, 6) one-way under the second int,ractability assumption. 

I,et, 11s first, not,e that, f;'6 expands its input: t,he size of the input set is 

21pnl.n (A) , tlhe size of' t,he image set i s  2LPnl '' . 2 l p " l ;  since H2(6) < p ,  there 

exists a, positjive real c such t,hat, ( 1  + c)  log, (ir2) = lpn] .  'I'hat mearis that for 

a sufficiently large 71, f:,' expands its input by some linear amount of bits. We 
note also that j',f)' can be computed in time O ( n 2 ) ,  since it i s  exactly the binary 
product, of a LpnI x 11. matrix with a [ p i ]  column vector. 

We construct, the generator G,,a in the following way: 

Followirig a standard coiistruction, we also consider an iterat,ive generator 
g p , ~  t,hat>, on input ( M ,  T ) ,  out#puts as ma.ny l-)it,s as we like. To perform this 
it-era.tion, we need a.n efficient, algorithni t,lra.t, conipiites a vector of size 11 and 

weight, 6 from a log, (?!) bit number. For tlic t,iine being, we consider such an  

algorithm A as gra.nted and we will describe one in the next section. We get, the 
following: 

1. cor11pute y = M ' x 

2 .  scparat,e y in two bit strings yl  and y,, yl being the first 1 log, (:n)l bit,s 

of' :y and y, thc rcniaining Ibits. 
3 .  output ya 
4. set x t A ( y l )  and goto 1. 

2.2 An algorithm for generating all words of given weight 

The first and second int,ra.ctabilit,y assiimpt,ions require a polynorriial-time algo- 
rithm that samples the set of vectors of giveii weight,. Such an algorit,hm i s  also 
needed in our schernc for the pscuclo-ranclom generat,or, but furt>liermore, it has 
to bc comput,ablc in quadratsic t,ime t,o preserve the efficiency of the generator. 
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We will use aii algorithm inspired by Guillot, [ I  11. This algorithiii is said qua- 

dratic,  hkes  as input, a word of exactly log, (::)) kits and oulputs a word of 

length 12 and weight LdnJ.  
IIowever, in liis paper, Guillot uses a. heuristic a,pproximation to justify the 

compuling h n c  O ( n 2 ) .  He assumes t,hat8 multiplication a.iitl division of a. large 
iiuinber (of size T I )  by a small number (of size log, 71.) are 1inea.r because the sinall 
iiuriiber has typically the size of a computer word. 'This arguirierit is not enough 
for a more foriiial approach. 

In the Turing niacliiiie model, the algorit,hm is "almost," quadratic siiicc it 
has a of corriplexitjy O(n210gn) .  However the qiia.dratic bime bound holds in 
the model corresponding tmo random rnacliiries with logaritlirriic cost. See Ihe 
appeiidix for a proof. 

We iiow present the algorithm for generating words of given weight. I t  is 
based or1 an efficient way of out,putting a word of length n a.nd weight w given 
its index in the lexicographic ordcririg (see [ 111). 

We write the lexicographic eniimcration algorithm in t,he followiiig way: 

Input: i, 11, ?11 

1. c t (;,) 
2. while 71 > 0 do 

(.) c" t ( - .  !yL 
(11) if i 5 c" 

- output 0 
- C t C '  

~ outpnt 1 
- i c i - c '  
- c t c . ?  

(c) else 

(d) 71 t n - 1 

From the lemma, wc iiotc t81iat, the initlid co~iipiit,nt~iori of (i) takes quadralic 

t8ime. The  two casts iii the whilc loop respect,ively take care of words where a 
zero (resp. a one) coiiics first: entering t,he loop with t,he initial values of t8he 

variables, we firid (" ,; ') words st,art,ing with O> the remaining with 1. Thc 

same, happens in subsequent iterations, inut8at8is rriutandis 

2.3 Security of the scheme 

Goldreich arid Leviii [ 101 have showii t,lia.t, t,lir iiiiier product3 is a. 1ia.rd bit, for 
any one-way function. R.ecall t,ha.t, if 2 ,  'r' E ( 0 ,  I } n ,  t,hc iiirier product T (<) z is 
the pa.rity of the numbcr of posii.ions whcre the bits of s a.nd of T arc bot8h 1 
(ri = s; = 1). The hardness rcsult reads as follows: 
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Theorem 1 [lo] Let f D ,  c ( 0 ,  l}'(") i (0 ,  1}'(''~ he n one-way firnrtzon. 
For eciery polynornzal-trine nlgol-zthm A ,  C I I C ' I  y yolynomzal p and all but Jinately 
m a n y  n's, 

'uitiere ttie probability as taken over u n i f ~ r i n ~ y  c~ioscn  x E D, nrici  T E (0, l}l(n). 

An a.lgorit,hin is a pseudo-random generator if its output distribution is 
polynorriial-time indistinguishable from a t,ruly random distribution. Two dis- 
tribut,ions S and 1' are indist~ingiiis1ia.ble in polynomial-time if, for every prob- 
abilistic polynomial-time algorithm D arid every polynomial p ,  IProb(D(x) = 
1) - P r o h ( D ( y )  = 1 ) 1  < 1 where probabilities are taken over X and 1'. We 
will prove t,hat t,lie generator (Tp,cy is pseudo-random under iiifra.ct,ahiIity assuriip- 
tion 2.  

7J(71) 

Theorem 2 IJ t he  SD(p,  6 )  collectton in O I W - ~ ~ I ~ J ,  then G,>a is pseudo-random. 

Reriiark: By st,aiidard argiiments, t8he same resul t ,  cxt,ends to the itcrat>ive gen- 
crator g p , 6 .  

PI.UU]. This proof is inspired from Impagliazzo and Naor [13]. Lct G,>s be the 
gencrator with riiatrix M E 2LP7 ' ,1  x 7 L  and weight, 1 u  = [hi?,] as defined iri 2.1. 
If G,,a i s  not pseudo-random, we ca.n build a distiriguisher tlial accepts (i.e. 
outputs 1) with a different, probability R st,ring generated by GP,6 a.nd R random 
string. We can then use this distinguislier to predict the inner product of r and s 
wit,h an advant>age b&tc>r then & f rom given values of I' arid G,,a(s). IJsiiig 
tlic Goldreich-Levin thwrerr i ,  we have a. contradiction to the one-wayriess of the 
corresponding f,",' furictiori. 

When we t8liink of' r and s as defiriirig subsets of the rnahix colurrins (the i-t81i 
coliinin of t>he mat>rix i s  in  thc subset defined by (resp. s) if the i-t8h bit of T 

(resp. -7) is I ) ,  we see tlmt 1' Er s is the parity of' thc intersection. The idea is to 
use the dist,ingiiisher t80 predict, this parity. 

The distiriguislier is fed with a matrix Ad and a binary word t of size [ p n ] .  
Without loss of gencralit8y, we caii assume that,, for iiifinitely inany indices, tflie 
distingiiislier 

~ outputs I with probability at  least f + if t is tIie product of the rriatrix 

~~ out-puts 1 wit,h probability almost exactly f if 1 is clioseri uniformly in 
with a word of weight w ;  

{ 0, 1) kTLl . 

Let M iri [ p n J  x n be a matrix, where ci is the i-tli cohinin of M :  M = 
( ~ i ) l s i l ~ .  Given r = ( ~ 1 , .  . . ~ r T 1 )  E { O ,  1)" arid x E { O ,  l j l ~ 9 a ~  both chosen at 
random, we const,rurt, n new mat8rix ill: = ( ~ : ) l < i < ~  such t,hat,: - 

-- if?-i = 1, the i-th column of A4: in the bitwise xor of ci arid x (i.e. c: = c ~ @ c ) ;  
~~ if ~i = 0,  the i-th column of h4.i is c I .  
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We let. u denote a possible output of the pseudo-random generator, i.e A4 . s = u 
for some s. Let, k = IT f l  S I  be thc number of locations where the bit,s of T and -7 
are both 1, and t be the parity of k .  As noted above, this is equivalent. to saying 
that t is the inner product of T and s. I,et, t . 2 = 2, if t = 1 a.nd 0 1 P " J  otherwise. 
We observe t,hat t,he result of h1l.s is u @ c . x ,  as established by the following 
computation: 

.s = $c:Es r; 

= (@c,Es 6? (@c,Er"s  4 
= U @ t . C  

On input, (hi: ~ u @ f I x ) ,  the dislinguisher secs exactly the same di~t~ribiition 
as on input ( M ,  u). But, theri, the distinguisher outputs 1 on input (Ad:, u @ c ' c )  
with probability a t  least, f + 1. 011 the other h a d ,  if we replace t by F ,  t)hen, 
due to the randomness of x ,  the distinguisher is fed wit,h uniformly distributed 
inputs. The dis~inguishcr outputs 1 with probability 1 / 2 .  This leads us to the 
following consruction: 

Input: M E (0, l } L P n J x n ,  u E { O ,  I } l p n l ,  P' E (0 ,  

P(Tl.1 

- choose a raiidom x E (0, l}iP"1 and a random Q E ( 0 , l )  (0 is our guess 

- feed the dislinguisher with ( M J ,  u @ 0 . x) 
- if the distinguisher answcrs 1, outpiit 8, else output B . 

about the inner producl) 

Theorem 3 Our algo~nlhm p ~ e d i c t s  thr snnw pi-orluct with probability at  lcast 
1 1 
a+zp( . ) .  

Proof. If we have guessed t ,  our predict,or is correct, if t,he t,hc di~t~ingilisher 
oulputs 1 .  We have seen t,liat t,his is the case with probability at least !j + &. 

If we have not, giiesscd t correctly, i,he predictor sees the inpiit, as a totally 
random distribution. It t,hen o u t p u k  1 with probability almost i. Siricc both 
cases liappen with probability , t,he overa.11 probability of the algorithm to 

U predict, t8he inner product, is at Ica.st 4 + 1. 
L P ( r k )  

3 Performances 

'rile computation of t,he product of the iiiat,rix by an vector is done solely by 
using 1ogica.l operations like AND, XOR, and PARITY, which leads to wry  fast 
implement,ations. The rriat,rix can bc eit#her extensively described bit per bit, or 
defined as the out,put8 of a pseudo-random generator so that, t,he matrix descrip- 
tion remains small in size. 'This can be done very simply by using a corigruential 
gent.rat,or with different seeds for each line. 

The main botlleneclc in the algorithrri conies from t,he sampling algorithm 
that cornputes a binary vector of given length arid weight,. We ha.vc t,o use mul- 
t,iplicatioris and divisions, and Ihat is cost,ly in comparison with the previous op- 
erations. However, such conipiitations can be greatly spccded up by doing some 
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LSnJ 
gain 

precomputations, like a table of' the binomials t,hat will be iised. That  leavcs 11s 
with only substractions and comparisons, yelding a very fast cornputation. 

Recent, att,acl<s on cryptosystems based on error-correcting codes [5] have 
shown that a (512,256) random linear code can be dccodcd up to half its mini- 
muiii distance 58. That means that words of weight up to 50 can be found given 
their syndrome. So we can choose a weight, between 50 and 57 with the assurance 
of a. very good security. )I, For a value of p fixed to The gain of' t,he genera.t,or is pn - [log2 ( 

LiSn,] 
1/2,  we have t,he following resiilts: 

56 55 50 78 71 110 100 
5 8 23 1 1  32 12 43 

1 n 151215121512/7281728~1024~1024/ 

A s  seen in the table, n = 512 arid [ iSr i ]  = 55 yields one byte per iteration, 
which looks very attractive. 

The scheme a.s clcscribed in sect>ioii 2 can be irriproved by precomputing the 
binomial coefficient,s. Hy thus constructirig a table of binomials, we get rid of 
costly rriultiplications and divisions. The resiilting scheme makes only use of 
comparisons, substra.ctions of ia-bit, niimbers and rriultiplications of a binary ma- 
t,rix with an n-bit, vect,or. Note that those operations are very fast since they 
require only logical or fast instructions. The nicinory cost, of a table of the bino- 
mial coefficients for the (512,256,55) scheiric is t,he following: we need 512 x 55 
entries of size 256 bit,s, which makes a lutal  of 880 kByt,cs of memory. This is 
clea.rly not an issue for todays corriput,ers. 

On a SUN SparclO station, our implementatlion using a precomputed birio- 
iiiial table achieves an output rate of 3500 bits per second. RSA with a 512 bit 
modulus and small exponent is raked at about 0.005 sec per encryption using the 
chinese remainders. If we output log2(.) = 9 bits per application of the scheme, 
tlic oulpul rale is about 1800 bits per second. 

4 Conclusion 

We have showri a construction for a pseudo-random generator with proven secu- 
rity. This gcncrator is very efficient and simple, and its implementation is fairly 
straightforward. We hope that this work will encourage research of alternative 
solutions to riurnber theory. 
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A Appendix 

Lemma 1 'l'hc product of ciri n-bzt intcyer by a n  loga n-b i t  zntegpr zs coiriputablc 
zn lzrieur t z m e  The s a m e  property holds for the dzvzsion. 

Hemark: as will be seen from the proof, t81iis actually holds in a model cor- 
responding to random xcess machines with logarithmic cost. It is unclear that  
the result carries over in t,he 'I'uuring mnchirie lnodel. 

Proof. Let 2 he a 71-bit integer, y a lagzn-hit integer, and cy a positive real 
siiialler than 1/2.  

We writ,e R: and y in hasc 2' = 2 ~ n ' o g ~ p 7  1 :  

i = O  j = O  

Then R: . y = C . x i  

So t>lie multiplication requires x = o(*) : 

y.j . 2'(2+J). 
2 J 

- multiplica.tions of two t-bit integers; 
- shiftirigs of t-bit integers (the mulliplication by Z' ( i t . f ) ) ;  

addit,ions of two t-bit integers. 

Addit>ion and shift,ing are done i n  t,ime linear in ttic length of the input, which 
is, in our case, in  O(log, n ) .  

It3 remains l o  prove that niiiltiplicatiori of t,wo logan-bit integers can be done 
within tjlie same complexity bound. First, we construct once for all a table of 
all the possiblc pruducls xi . y j ,  Since xi arid y j  are in { O ,  .., Z t } ,  the size of 
the t,able is at iiiost, 2 a ' o g z  ' I  x 2 a ' o g z  ".  Using t,hc quadratic-time multiplication, 
the table can be computed in time ( 2 n ' o g , n  ) ( ~ ~ l o g ~ n ) ~ ;  and since cy < $, this 
construclion is done iri time O ( ~ I ) .  Table lookup is performed in O(Culog, 7~ + 
ci log, n + LY log, 11.) Y O(log, n ) ,  so the complexity of our multiplication is also 

Finally, t>hc niultiplicat8iori of an n,-hit, irikger by a.11 log, n-bit, integer requires 
the construction of a table doiic in O ( n )  and O(  e) operat,ions which are done 

0 

O(loga n,). 

in O(loga n ) ,  so t1ia.t the wliolc scheme has a complexity o f ' O ( n ) . .  
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