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We introduce a novel hybrid algorithm to sim-
ulate the real-time evolution of quantum sys-
tems using parameterized quantum circuits.
The method, named "projected - Variational
Quantum Dynamics" (p-VQD) realizes an iter-
ative, global projection of the exact time evo-
lution onto the parameterized manifold. In
the small time step limit, this is equivalent to
the McLachlan’s variational principle. Our ap-
proach is efficient in the sense that it exhibits
an optimal linear scaling with the total number
of variational parameters. Furthermore, it is
global in the sense that it uses the variational
principle to optimize all parameters at once.
The global nature of our approach then signif-
icantly extends the scope of existing efficient
variational methods, that instead typically rely
on the iterative optimisation of a restricted
subset of variational parameters. Through nu-
merical experiments, we also show that our
approach is particularly advantageous over ex-
isting global optimisation algorithms based on
the time-dependent variational principle that,
due to a demanding quadratic scaling with pa-
rameter numbers, are unsuitable for large pa-
rameterized quantum circuits.

1 Introduction

In recent years, our ability to manipulate and mea-
sure quantum systems has improved tremendously.
Among all experimental platforms, the number of
addressable qubits has increased remarkably: both
Google [1] and IBM [2] have reported superconducting
circuits chips with ≈ 50 qubits and according to their
public timelines they expect to build 1000-qubit de-
vices within the next 2 years. Despite this impressive
development, universal quantum-computing remains
still far in the future. Algorithms such as Shor’s [3],
Quantum-Fourier Transform [4] or general Quantum
Simulators [5, 6, 7] require a number of operations
(gates) at least polynomial in the qubit number. How-
ever, in the absence of large-scale quantum error cor-
rection, the number of gates that can be applied is at
present strongly limited by hardware noise and deco-
herence.

To circumvent the problem, current generations
of quantum algorithms rely on a hybrid classical-
quantum approach [8, 9, 10, 11, 12, 13]. A typical
example is given by the classical optimisation of a
quantum circuit encoding the solution of a given prob-
lem. Quantum circuits can be used as the model of
a machine-learning problem [14, 15], such as a quan-
tum classifiers [16, 17], quantum kernel machines [18,
19, 20], quantum Boltzmann machines [21] or con-
volutional networks [22] to name a few. Quantum
circuits can also be used to directly approximate the
state of an interacting quantum system [23, 24, 25]. In
particular, several of the proposed hybrid algorithms
extend the use of the variational method to quan-
tum computing: a trial quantum state (ansatz state)
with a tractable number of parameters and mild cir-
cuit depth is considered, then these parameters are
optimized in order to approximate a target state as
accurately as possible.

For quantum simulation, several variational, resource
friendly alternatives to Trotterization [26, 27, 28, 29]
have been proposed [9, 30, 31, 32, 33]. Among those,
an interesting approach introduced in 2017 [9] is the
The Time-Dependent Variational Algorithm (TDVA).
This method, based on a reformulation of the Dirac-
Frenkel and McLachlan variational principle [34, 35,
36], encodes the state into a variational circuit and
iteratively updates the parameters by solving a Euler-
Lagrange equation of motion. The approach is con-
ceptually close to the study of quantum dynamics us-
ing classically parameterized many-body wave func-
tions [37, 38, 39, 40]. At variance with the classical
many-body counterparts, the computational cost of
the TDVA approach is dominated by the stochastic
estimation of the Quantum Geometric Tensor [41, 42]
and its inversion, resulting in an expensive quadratic
cost in the total number of variational parameters. To
alleviate this issue, new variational methods based on
partial, local optimisations of the variational param-
eters have been recently proposed [43, 44, 45].

In this paper we propose a hybrid quantum algorithm
for approximating the real time evolution of an inter-
acting quantum system, called projected-Variational
Quantum Dynamics (p-VQD). This algorithm is both
global – it optimizes all parameters at once – and
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efficient – it scales linearly with the number of pa-
rameters. Moreover, it does not require auxiliary (an-
cilla) qubits and the depth of the circuit is constant
throughout all the simulation. The structure of this
paper is as follows: in Section 2 we present the algo-
rithm in order to simulate real time evolution of quan-
tum systems, while in Section 3 we benchmark our al-
gorithm on a Transverse Field Ising model, assessing
the accuracy of the method on an ideal quantum sim-
ulator performing single and multi shot executions.
We conclude, in Section 4, with some considerations
on the proposed algorithm.

2 Method

We address the simulation of a quantum system with
Hamiltonian Ĥ. For clarity of exposition we will as-
sume that Ĥ is time independent, but it is not a re-
quirement of the algorithm. The time evolution oper-

ator for a small time-step δt ∈ R is e−iĤδt. Let |ψw(t)〉
be the parameterized ansatz state approximating the
exact quantum state of the system |Ψ(t)〉 at time t,
where w(t) ∈ R

p is the vector of its p−parameters.
We assume |ψw(t)〉 is a unit vector and define the

evolved state |φ(t + δt)〉 = e−iĤδt|ψw(t)〉. From now
on, we will indicate w(t) as w to simplify the notation,
implying that the parameters we are referring to are
the one assigned to the ansatz at time t, except when
explicitly indicated. Also, we will shorten |φ(t + δt)〉
to |φ(δt)〉.

In order to variationally approximate the time evolu-
tion of the system, we aim to maximize the overlap
between the evolved parameterized state |φ(δt)〉 and
the state |ψw+dw〉, where dw ∈ R

p is a vector of pa-
rameter variations. We want to find dw such that

arg max
dw∈Rp

|〈φ(δt)|ψw+dw〉|2 . (1)

This intermediate overlap optimization is routinely
used in classical simulations of the dynamics of quan-
tum systems, and its application to quantum circuits
has been recently suggested in the context of quantum
tensor networks [46, 45] and symmetry-preserving
variational wavefunction [47]. Similarly to [48], we
derive the condition indicated in Eq. (1) defining the
projected real-time evolution, as can be seen in Ap-
pendix A. The optimal update dw⋆ therefore mini-
mizes the step-infidelity

L(dw, δt) =
1 − |〈φ(δt)|ψw+dw〉|2

δt2
, (2)

where the 1
δt2 factor has been added to make L inde-

pendent from the time step size in the limit of δt → 0.
More details about the introduction of this factor can

be found in Appendix B. Given that the wave-function
is encoded as the circuit C(w), substituting into the
loss function in Eq. (2) the definition |ψw〉 = C(w)|0〉
we obtain

L(dw, δt) =
1 − |〈0|C†(w)eiĤδtC(w + dw)|0〉|2

δt2
, (3)

where the second term on the right-hand side is an
expectation value which can be sampled on a quantum
computer. Another method that can be considered to
measure the overlap between |ψw+dw〉 and |φ(δt)〉 is
the SWAP test [49, 50], although it requires ancillary
qubits and long range gates. For these reasons, we will
not consider this method in the following discussion.

The time evolution operator e−iĤδt is encoded in the
form of a Trotter-Suzuki decomposition [26, 27].

The optimal dw⋆ are determined by iteratively de-
scending along the steepest direction given by the
gradient ∂

∂dwi
L(dw, δt), starting from an initial guess

dw0. In general, the gradient of a quantum expecta-
tion value involving parameterized quantum circuits
can be determined using finite differences [51] or si-
multaneous perturbation techniques [52]. However,
those techniques rely on an approximation of the real
gradient. To improve the accuracy, we consider cir-
cuits of the general form

C(w) = VpUp(wp)Vp−1 . . . V1U1(w1) (4)

where the gates Vk do not depend on any parameter
and the parameterized gates Uj(wj) are of the form

Uj(wj) = e− i
2

wjGj = cos(wj/2)I − i sin(wj/2)Gj ,
(5)

with G2
j = I. We remark that in general Gj can be

any tensor product of Pauli operators. In this case,
the gradient can be computed exactly in a hardware-
friendly way using the parameter shift rule [51, 53,
54, 55, 56, 57], obtaining

∂

∂dwi

L(dw, δt) =

=
L(dw + sei, δt) − L(dw − sei, δt)

2 sin (s)
, (6)

where ei is the versor in the i-th direction and s ∈
R. We remark that our p-VQD algorithm does not
require an ancilla qubit to perform measurements.

The optimisation of dw is then performed according
to a standard gradient descent scheme

dwnew = dwold − η∇dwL(dwold, δt), (7)

with learning rate η ∈ R
+. A single optimisation

step requires O(p) measurements. The optimisation
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Figure 1: Sketch of the p-VQD algorithm. We follow the real time evolution of the ansatz state ψw(t) in the Hilbert space
by optimizing the parameter variation dw at every time step. The optimisation is performed through the gradient of the
step-infidelity function L(dw, δt), computed using a quantum computer.

continues until the loss function goes below the de-
sired threshold ν. Finally, once dw⋆ is determined,
the parameters at time t+ δt are obtained by

w(t+ δt) = w(t) + dw⋆(t) (8)

We highlight that the circuit width and depth are the
same from the beginning to the end of the simulation.
A sketch of the algorithm is shown in Fig 1, while
an accurate study of the total hardware cost can be
found in Section 3.

2.1 Relationship with other methods

In order to understand the connection of our approach
with existing methods proposed in the quantum com-
puting setting, it is conceptually interesting to explic-
itly take the limit of a vanishing time step. In this
limit, the parameter updates obtained with p-VQD is
dw = ẇδt and ẇ is the solution of the equation

∑

j

Re
[

Gkj

]

ẇj = Im

[

〈∂kψw|H|ψw〉

]

+

+ i〈ψw|H|ψw〉〈∂kψw|ψw〉 (9)

where Gkj is the Quantum Geometric Tensor (QGT)

Gkj(w) =

〈

∂ψw

∂wk

,
∂ψw

∂wj

〉

−

〈

∂ψw

∂wk

, ψw

〉〈

ψw,
∂ψw

∂wj

〉

.

(10)
This expression for dw coincides with that given by
the McLachlan’s variational principle [36, 30] (consid-
ering also a time-dependent global phase on the ansatz
state). Both McLachlan’s and the time-dependent
variational principle suffice to simulate real time dy-
namics of closed systems. Moreover, it is possible to
prove that the two approaches are equivalent under
certain assumptions [30]. However, on the practical

point of view, there are some differences between them
due to numerical instabilities that we will analyse fur-
ther in Sec. 3. Considering the expression for the
QGT given in Eq. (10), the TDVA relies on the evalu-
ation of its imaginary part, which is skew-symmetric,
making its inversion unstable when the off-diagonal
elements are close to 0. The McLachlan’s variational
principle, on the contrary, requires the real part, as
can be seen in Eq. (9). For this reason, it is sug-
gested that McLachlan’s is the most consistent vari-
ational principle for quantum simulation [30]. A de-
tailed derivation of Eq. (9) can be found in Appendix
C.

Another method conceptually similar to pVQD is the
Restarted Quantum Dynamics (RQD), independently
proposed in a recent preprint [47]. This technique also
solves an optimisation problem to obtain the time-
evolved state. However, the RQD is based on the
minimisation of the infidelity squared by varying the
parameters of the ansatz state, which can lead to dif-
ferent optimisation dynamics.

2.2 Barren plateaus

It has recently been shown that the optimisation of
shallow circuits can also be affected by so-called bar-
ren plateaus if the cost function is global [58]. This
covers the case of operators in the form of

O = aI + cO1 ⊗O2 ⊗ · · · ⊗Oi, (11)

when Oi is a non-trivial projector (O2
i = Oi 6= I)

acting on subsystem Si. The operator OG = I−|0〉〈0|
that we use to estimate the cost function in Eq. 2
belongs to this class, meaning that our cost function
is global.

Barren plateaus are usually recognized by measuring
the variance of the components of the gradient [58,
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59, 60, 61, 62]. However, it is possible to show that
both the fidelity between two states and the variance
of its gradient have a non-vanishing lower bound (in
the limit of a large number of qubits) if the two states
differ by an infinitesimal transformation [60]. There-
fore, p-VQD avoids such plateaus entirely because at
every time step we optimise the infidelity between the
current state

∣

∣ψw(t)

〉

and the infinitesimally evolved

state U(δt)
∣

∣ψw(t)

〉

.

A more general approach to avoid barren plateaus
consists in replacing the global cost function by one
that is local but has the same minimum [58]. The
global operator OG (in our case, encoding the infi-
delity) can be replaced by its local counterpart

OL = I −
1

N

N
∑

j=1

|0j〉〈0j | ⊗ Ij̄ (12)

where Ij̄ is the identity operator on all qubits except
for j . Since 〈OL〉w = 0 ⇔ 〈OG〉w = 0, in the limit of
small δt the generated dynamics will also be equiva-
lent to the McLachlan’s variational principle. In Sec.
3 we discuss some numerical results comparing the
two approaches.

3 Results

To demonstrate a practical application of the p-VQD
algorithm, we consider the Transverse Field Ising
Model on an open chain,

H = J

N−1
∑

i=0

σz
i σ

z
i+1 + h

N
∑

i=0

σx
i . (13)

The first term accounts for interaction between spins
while the latter represents a local and uniform mag-
netic field along the transverse direction x. For our
simulations, we considered J = 1

4 , h = 1 and, except
when explicitly indicated, N = 3 spins. We com-
pare the time-evolution obtained through the p-VQD
against the more-estabilished TDV-Algorithm. We
analyse the ideal case of a simulation in which we have
access to the state vector produced by the quantum
circuit (state-vector simulation) and the case in which
to gain information about the quantum state we have
to repeatedly measure the qubits (multi-shot simula-
tion). The two simulations coincide in the limit of
infinite samples. However, when the number of sam-
ples is finite, statistical fluctuations produce a noise
on the results which we will refer to as shot noise.
For both state-vector and multi-shot simulations we
use IBM’s open-source library for quantum comput-
ing, Qiskit [63].

We consider a circuit ansatz of the form

C(w) =

d
∏

l=1

cl(wl) (14)

=

d
∏

l=1

[ N
∏

i=1

R(i)
α (wi,l)

][ N−1
∏

j=1

e−iwj,lσz
j σz

j+1

]

,

(15)

where R
(i)
α (wi,l) = e−iwi,lσα

i is a single qubit rotation
around the α = {x, y} axis. Every block cl(wl) has
a layer of single qubits rotations followed by a layer
of entangling two-qubits gates. The total number of
blocks, or depth, is d. When α = x , a block cl is
equivalent to the Trotter-Suzuki approximation of the

unitary operator e−iĤδt. A more general parametriza-
tion is obtained by alternating rotations around the x
and y axis (α = x iff l is odd, α = y otherwise). The
representation power and the number of variational
parameters can be increased by making the ansatz
deeper. For the chosen system, the two ansätze per-
form similarly when shot noise is neglected. However,
alternating blocks of x and y rotations proved to be
more stable in presence of shot noise. In the following
we will be studying the latter unless otherwise noted.

As a first comparison, we consider the integrated in-
fidelity ∆F (T ) achieved by both algorithms with re-
spect to the exact simulation of the system over an
entire time evolution from t = 0 to t = T . This quan-
tity can be expressed as

∆F (T ) =

∫ T

0

(

1 − |〈Ψ(t)|ψw(t)〉|
2
)

dt . (16)

We have performed several simulations both with p-
VQD and the TDVA for different shots per circuit
evaluation (total number of samples) and report the
mean performance in Fig. 2.

At a fixed number of samples, the integrated infidelity
∆F for the p-VQD is up to an order of magnitude
below the TDVA one for the same number of time
step. In Appendix C it is shown that with small time
steps and in the limit of infinite samples (ideal mea-
sures) the parameter variation found by p-VQD coin-
cide with the solution of the Euler-Lagrange equation
generated by the McLachlan’s variational principle.
The matrices of the Euler-Lagrange equations often
show high condition number [64], in particular those
generated by the time-dependent variational princi-
ple [30]. These ill-conditioned matrices are likely to
produce large variations on the results when subject
to small variations of the coefficients, as those pro-
duced by shot noise. We remark that shot noise is
unavoidable for quantum computers, even for fault-
tolerant devices. Improving iteratively the solution of
the Euler-Lagrange equation leads to the estimate of
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Figure 2: Mean error on fidelity accumulated over an entire
time evolution for the two different methods. The plot shows,
as a function of the total samples required, the fidelity error
accumulated by the algorithm over an entire time evolution.
The total time of evolution is Te = 3, the number of time
steps is nsteps = 60, the number of spins is N = 3 and the
ansatz chosen is the custom one with d = 3 for both p-VQD
and TDVA. For each number of samples the experiment has
been iterated niter = 10 times and the data shown represent
mean and standard deviation of those values.

the parameters’ variation, but does not require ma-
trix inversion. As a result, we obtain a more stable
algorithm against shot noise.

In Fig. 3 we compare the expectation values of the to-
tal magnetization along the x̂ and ẑ axis for the states
evolved according to the two algorithms. The results
are reported for a different number of measurements
per circuit.

The magnetization along the x̂ axis proved to be the
most difficult to capture for both the algorithms, sug-
gesting that the problem could be the ansatz choice.
We note that both the algorithms converge to the
exact simulation values as the number of shots in-
creases. In general, p-VQD shows comparable results
with TDVA using one order of magnitude fewer shots.

To further analyse the performance of our algo-
rithm, we studied the behaviour of the step-infidelity
L(dw, δt). In Fig. 4 we show the number of optimi-
sation steps required as a function of time and the
consequent decrease of the cost function.

We remark that choosing the previous dw⋆ as an ini-
tial guess often leads to convergence in only one it-
eration. More details about the convergence of the
step-infidelity in a single time step can be found in
Appendix D.

We characterise the hardware cost of p-VQD when
the number of variational parameters increases. Since
the number of measures required by p-VQD scales lin-
early (O(p)) with the number of variational parame-
ters, it has a lower asymptotic cost with respect to
TDVA, which is quadratic. We can provide an accu-
rate estimation of the hardware cost of p-VQD as an
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Exact
TDVA: 8000 shots
TDVA: 80000 shots

p-VQD: 800 shots
p-VQD: 8000 shots
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t
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0.0

0.5

1.0

z

Figure 3: Total magnetization measured on simulated time
evolution. The plot shows the expectation values of Pauli
operators for systems simulated with p-VQD and TDVA at
different shot number. The magnetization is evaluated on
a chain of N = 3 spins and we used the custom ansatz
with d = 3 for both the algorithms. We indicated the num-
ber of shots for circuit evaluation instead of total samples:
800, 8000 and 80000 shots are equivalent to ∼ 106, 107, 108

total samples for the p-VQD and ∼ 107, 108, 109 for the
TDVA, respectively.

upper-bound to the total number of samples needed
per simulation. We indicate with ns and nt the num-
ber of shots and time steps, respectively. In the spirit
of the iterative methods, we suppose that the proce-
dure will find a solution dw∗ in at most M steps. In
this case, we have that the total number of hardware
measurements is

Nsamples ≤ 2Mntnsp (17)

Some terms in Eq 17 are not free parameters: the
number of shots ns depends on the accuracy required,
while the number M of optimisation steps depends
also on the ansatz and on the Hamiltonian of the sys-
tem considered. More details about the role of ns can
be found in the Appendix E. To characterise the de-
pendence of M upon the number of parameters p we
performed different simulations increasing the depth
of our ansatz and reported the results in Fig 5. From
the figure we deduce that M ∼ O(1), therefore it
does not scale up by increasing the number of param-
eters in the ansatz circuit. Under these circumstances,
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Figure 4: Number of optimisation steps required (top) to
decrease accuracy error per step (bottom). The algorithm
optimizes the parameters shift dw until the step-infidelity
L(dw, δte) is below the threshold at 10−5. The time step
chosen is δte = 0.05. The analysis is performed on a state-
vector simulation of a system of N = 3 spins, using the
custom ansatz with depth d = 3.

the total dependence of the computational cost of the
algorithm upon the number of parameters is indeed
O(p).

All the simulations have been done fixing a number
of shots nshots per circuit evaluation. For p-VQD,
we made multiple simulations and then reported the
mean values of our results. For TDVA the number
of circuit evaluation is fixed and can be estimated a
priori. This comparison does not consider the fideli-
ties of the results obtained with the exact simulation,
we know from what we showed in Fig. 2 that p-VQD
has a lower error when the total number of samples is
comparable with TDVA. We note that the number of
samples required scales approximately linearly with
the number of parameters, with fluctuations due to
different optimisation steps required. The lower the
step-infidelity required, the higher will be the number
of shots and possibly of the optimisation steps, re-
sulting in greater fluctuations on the total number of
samples. In this case, we remark that more advanced
methods like the use of an adaptive learning rate η
can be used to improve convergence performance of
p-VQD.

Finally, we compare numerically the performance of
a global and a local cost function. As discussed in
Sec. 2, both OG (Eq. 2) and OL ( Eq. 12) can be
used. In Fig. 6 we show the minimisation of both
cost functions for different time steps and increasing
number of spins N ∈ [3, 11], obtained using the exact
state-vector simulator.
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3×108

4×108

S
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p-VQD (step error 10 4)
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Figure 5: Measurements required as a function of circuit
parameters. The plot shows the total number of circuits
created and measured using p-VQD and TDVA. The number
of required measurements by the TDVA is fixed, while in
the p-VQD it depends on the optimisation of the parameter
variation. We fixed the number of spins at N = 3 and
increased the depth of the custom ansatz from d = 2 to
d = 8; the parameters varied accordingly. We considered
nshots = 8000 per circuit evaluation for both methods and
performed multiple simulations for p-VQD, showing mean
values and standard deviations of the results. Different error
on the accuracy per step are showed for p-VQD.
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Figure 6: Optimisation steps required per time step when
increasing the qubits number. The plot compares the use
of the global and the local cost function in the optimisation
process of two different time steps. The analysis is performed
using the state-vector simulator and an accuracy per step
of 10−5. The ansatz has α = x at every layer and d =
3. The number of parameters varies accordingly. The two
cost functions show similar performances in the number of
iterations required.

All the curves are obtained by setting the initial con-
dition dw0 = 0. We highlight that our numerical find-
ings point to an efficient scaling with the system size.
We remark that the first optimisation steps of OG de-
pend very weakly on the number of qubits. However,
we also note that in general barren plateaus during op-
timisation may not show up until even larger systems
are considered [58, 62]. For this reason, one should
benchmark which cost function behaves best for their
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specific system and size.

4 Discussion

In this work, we presented a new algorithm for the
efficient variational simulation of the real-time evo-
lution of quantum systems. We have shown that it
is asymptotically more hardware efficient than the
time-dependent variational algorithm (TDVA), while
retaining an higher accuracy. Considering the pro-
jected time evolution, we avoid numerical instabili-
ties due to the matrix inversion combined with sta-
tistical fluctuations due to finite shot measurements.
We have numerically investigated the absence of bar-
ren plateaus, paving the way towards the simulation
of larger quantum systems. One possible applica-
tion of our approach is to study the dynamical prop-
erties of two-dimensional interacting systems, a no-
toriously difficult problem in classical computational
physics. Similarly to all other variational algorithms,
the choice of the right parametrization is fundamen-
tal for the algorithm to succeed. In this sense, having
an efficient quantum algorithm to perform variational
time evolution is essential to compare to classical re-
sults obtained with variational states either based on
tensor networks [65, 66, 67], or neural networks [68,
69]. A possible improvement to further enhance the
efficiency of our approach concerns the estimation of
the gradient. At present, a drawback of our method
is that the circuit constructed on the quantum device
is approximatively twice as deep as the ansatz used
to represent the system. However, by suitably con-
trolling the number of two-qubits gates in the chosen
ansatz, representing the major source of circuit error,
we believe that p-VQD can already be used to simu-
late small quantum systems on available devices.

Data availability

The code used to run the simulations in this article
has been written in Python using Qiskit [63]. It is
open source and can be found on GitHub [70].
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A The projected real time evolution

We aim to simulate the evolution of a quantum system by acting on the parameters of the variational ansatz
that approximates the real state of the system. The parameter variation has to satisfy Eq. (1). We are going
to see how this condition can be derived defining the projected real-time evolution. Consider the projector
Pw = |ψw〉〈ψw| and define the squared distance between the evolved parameterized state and its projection on
the subspace spanned by |ψw+dw〉

|||φ(δt)〉 − Pw+dw|φ(δt)〉||2 . (18)

To find the best approximation for the evolved state, we want to minimize this distance finding the optimal dw.
Imposing this condition we obtain

arg min
dw∈Rp

|||φ(δt)〉 − Pw+dw|φ(δt)〉||2 = arg min
dw∈Rp

(

〈φ(δt)| − 〈φ(δt)|Pw+dw

)(

|φ(δt)〉 − Pw+dw|φ(δt)〉

)

= arg min
dw∈Rp

[

1 − 2〈φ(δt)|Pw+dw|φ(δt)〉 + 〈φ(δt)|P 2
w+dw|φ(δt)〉

]

= arg min
dw∈Rp

[

1 − 〈φ(δt)|Pw+dw|φ(δt)〉

]

= arg max
dw∈Rp

|〈φ(δt)|ψw+dw〉|2

(19)

where we used the idempotence property of the projector P 2
w+dw = Pw+dw. With the final equivalence we see

that this condition is equivalent to Eq. (1).

B Relationship of step-infidelity with time step and parameter variation

In this Appendix we explain the introduction of the factor 1
δt2 in Eq. (2). Consider the overlap contained in

the step-infidelity definition in Eq. (2) and Taylor expand it in δt and dw. First, expand to the second order

the time evolution operator e−iHδt ∼ I − iHδt− H2

2 (δt)2 to get
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〈ψw+dw|(I − iHδt−
H2

2
(δt)2)|ψw〉〈ψw|(I + iHδt−

H2

2
δt2)|ψw+dw〉 =

= |〈ψw+dw|ψw〉|2 − iδt〈ψw+dw|H|ψw〉〈ψw|ψw+dw〉 + iδt〈ψw+dw|ψw〉〈ψw|H|ψw+dw〉 + (δt)2|〈ψw+dw|H|ψw〉|2−

−
δt2

2
〈ψw+dw|H2|ψw〉〈ψw|ψw+dw〉 −

δt2

2
〈ψw+dw|ψw〉〈ψw|H2|ψw+dw〉 (20)

Now we expand to first order in dw, obtaining |ψw+dw〉 = |ψw〉 +
∑

j dwj |∂jψw〉. The first order contribution
in δt vanishes, but also the first order contribution in dw, then we have

∑

j

dwj [〈∂jψw|ψw〉 − 〈∂jψw|ψw〉] = 0 ∀dwj (21)

The final result reads

|〈ψw+dw|e−iHδt|ψw〉|2 ∼ 1 + δt2
[

∑

j

dwj

δt
[2i〈H〉w〈∂jψw|ψw〉 − 2Im[〈ψw|H|∂jψw〉]]−

− Varw(H) +
∑

j,k

dwj

δt

dwk

δt
〈∂jψw|ψw〉〈ψw|∂kψw〉

]

. (22)

As δt → 0, also dwj → 0 ∀j and their ratio remains constant. Therefore, the addition of 1
δt2 factor in Eq. (2)

makes it independent of the time step size in the limit of δt → 0.

C Equivalence between the p-VQD and the McLachlan’s variational principle

In this Appendix, we show that in the limit of small time step the parameter variation that fulfils the request
in Eq. (1) is the same obtained by applying the McLachlan’s variational principle [36, 30].

We start Taylor expanding the overlap to the second order: using the substitution

|ψw+dw〉 = |ψw〉 +
∑

k

dwk|∂kψw〉 +
1

2

∑

k,j

dwkdwj |∂k∂jψw〉 + o(dw3) (23)

we obtain

|〈φ(δt)|ψw+dw〉|2 = |〈φ(δt)|ψw〉|2 +
∑

k

[

〈φ(δt)|ψw〉〈∂kψw|φ(δt)〉 + 〈φ(δt)|∂kψw〉〈ψw|φ(δt)〉

]

dwk+

+
∑

k,j

[

〈φ(δt)|∂kψw〉〈∂jψw|φ(δt)〉 +
1

2
〈φ(δt)|∂k∂jψw〉〈ψw|φ(δt)〉 + 〈φ(δt)|ψw〉〈∂k∂jψw|φ(δt)〉

]

dwkdwj +o(dw3)

(24)

where we used |φ(δt)〉 = e−iHδt|ψw〉 as in the main text.

Then, we expand the time evolution operator to the first order e−iHδt = I−iHδt+o(δt) and partially differentiate
both sides of the normalization condition ||ψw||2 = 1 with respect to parameters wi and wj to obtain the two
important properties

〈ψw|∂kψw〉 = −〈∂kψw|ψw〉 (25)

〈ψw|∂k∂jψw〉 + 〈∂k∂jψw|ψw〉 = −〈∂kψw|∂jψw〉 − 〈∂jψw|∂kψw〉 . (26)
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Substituting in Eq. (24) we have

|〈φ(δt)|ψw+dw〉|2 = |〈φ(δt)|ψw〉|2+

+ i
∑

k

[

〈ψw|H|ψw〉〈∂kψw|ψw〉 − 〈ψw|H|ψw〉〈ψw|∂kψw〉 + 〈∂kψw|H|ψw〉 − 〈ψw|H|∂kψw〉

]

dwkδt+

+
1

2

∑

k,j

[

2〈ψw|∂kψw〉〈∂jψw|ψw〉 − 〈∂kψw|∂jψw〉 − 〈∂jψw|∂kψw〉

]

dwkdwj (27)

where we neglected the third order contribution in dw and δt. We notice that the second order term in dwkdwj

is the real part of the Quantum Geometric Tensor (QGT) , as expressed in Eq. (10). Finally, in the p-VQD
algorithm we aim to find the dw that maximizes the overlap in Eq.(1) , thus we impose the first order optimality
condition

∂

∂dwk

|〈φ(δt)|ψw+dw〉|2 = 0 ∀k (28)

that in the limit δt → 0 gives the equation

∑

j

Re
[

Gkj

]

ẇj = Im

[

〈∂kψw|H|ψw〉

]

+ i〈ψw|H|ψw〉〈∂kψw|ψw〉 (29)

where we indicated with G the QGT, as in the main text. This is the same evolution equation for parameters
w that is obtained when the McLachlan’s variational principle is used to simulate real time dynamics of closed
systems with pure quantum states. For an extensive review of the variational principles for time evolution of
pure and mixed states, see [30].

D Optimisation routine for a single time-step

In this Appendix, we further analyse the optimisation routine of our algorithm. This optimisation is performed
on the parameter variation dw for every time step. In this case we focus on a state-vector simulation of the
Transverse Field Ising Model on an open chain (see main text), considering only a single time step (without
loss of generality, the third time step of the simulation).

0 1 2 3 4 5
Optimization step

10
7

10
6

10
5

10
4

10
3

L(
dw

,
t)

Random dw0(t)
dw0(t) = dw (t t)

Figure 7: Infidelity as a function of the optimisation step. The optimisation procedure requires only a few optimisation steps to
greatly decrease the step-infidelity. Moreover, we compare the random choice of an initial dw0 of order O(δt) to the educated
guess dw0 = dw⋆(t− δt).

As Fig. 7 shows, at every optimisation steps the step-infidelity is reduced of nearly a order of magnitude. The
initial choice dw0 = dw⋆(t− δt) is shown to reduce the number of steps required.
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E Relationship between step infidelity and number of shots

In this Appendix, we investigate the relationship between the step infidelity to reach in a p-VQD step and
the number of shots ns required. Given that the fidelity is equivalent to the probability of measuring a string
of 0s, with ns shots the minimum non-zero infidelity we can resolve is 1

ns
. However, we stress that since we

are optimising the infidelity by measuring the gradient, it is possible to converge to a state with a smaller
step infidelity than this bound, depending on the variance of the gradient and on the optimisation algorithm
employed.

To analyse the effects of the shots on the infidelity optimisation we considered a single time step of the algorithm
and optimised the ansatz parameters using a gradient sampled with ns shots, while measuring the infidelity
exactly using the state-vector. For each number of shots ns, we optimised the step infidelity and measured
its convergence value. Due to the presence of shot noise, we repeated the optimisation multiple times and
plotted the mean and the standard deviation of those calculations in Fig. 8. We performed the experiment
using two different optimizers, Stochastic Gradient Descent and Adam, to study how this choice affects the
infidelity minimisation. We also fit the points to a function f = knγ

s with k and γ free parameters,to estimate
the exponent γ. The expected n−1

s dependence is shown as a visual guide for clarity.
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|

(
t)|

w
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dw

|2

Adam fit coeff: -0.58
SGD fit, coeff: -0.95
n 1
s

Adam
SGD

Figure 8: Asymptotic infidelity reachable using shots to sample the gradient. This plots illustrates the infidelity between the
target and the ansatz state as the number of shots to sample the gradient increases. The values reported are the mean and the
standard deviations of multiple runs made both with the Stochastic Gradient Descent and Adam as optimizers. The dashed
lines are obtained fitting the function f = knγ

s . The grey dashdotted line indicates the expected behaviour n−1

s . In this
simulation we considered N = 3, d = 3 and M = 150.

We can see that, when a small number of shots is considered, the Adam optimizer is able to minimise the
infidelity up to two order of magnitude below the minimum resolvable with shots. When the number of shots
increases, the performances of the two optimisers become comparable.
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