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An Efficient Quantum Scheme for Private Set Intersection 
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Abstract. Private set intersection allows a client to privately compute set intersection with the 
collaboration of the server, which is one of the most fundamental and key problems within the 
multi-party collaborative computation of protecting the privacy of the parties. In this paper, we 
first present a cheat-sensitive quantum scheme for private set intersection. Compared with 
classical schemes, our scheme has lower communication complexity, which is independent of the 
size of the server’s set. Therefore, it is very suitable for big data services in Cloud or large-scale 
client-server networks. 

Keywords: Secure Multiparty Quantum Computation; Private Set Intersection; Cheat-sensitive. 

1. Introduction

Private set intersection (PSI) is a primitive of secure multi-party computation that enables two parties – a client 
and a server – to compute the intersection of their respective sets without disclosing anything about their inputs. The 
client will learn the intersection of the two sets and the server will learn nothing [1]. PSI is also known as Private 
Matching (PM) [2]. 

There are many practical applications of PSI (or PM) for protecting the privacy of the parties, such as National 
Security and Law Enforcement [3], Genomic Sequences Query [4], Joint Market Investigation [5], Privacy-
Preserving Data Mining [6], Matching the Data Outsourced to Cloud Storage Services [7], Location-Based Sharing 
Services [8], and other online services [9].  

Because of its importance and wide applicability, many schemes for PSI and its variants have been proposed [1-
3,10-15]. Among these schemes, the most efficient PSI scheme requires 𝑂𝑂(𝑛𝑛 + 𝑚𝑚) costs in communication 
complexity, which increases linearly with both the client’s set size, 𝑛𝑛 , and the server’s set size, 𝑚𝑚 . Generally 
speaking, the size of the server’s set is larger than that of the client’s set. In order to reduce the communication 
complexity further, Wu et al. [2] presented an efficient PM scheme for very large 𝑚𝑚, which requires 𝑂𝑂(𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙2𝑚𝑚) 
costs in communication complexity.  

As we know, quantum cryptography has the advantage of higher security than classical cryptography. However, to 
the best of our knowledge, there is no any quantum scheme for PSI. In this paper, we first proposed a novel quantum 
scheme for PSI. The proposed scheme only requires 𝑂𝑂(𝑛𝑛) communication complexity, completely irrespective of 
the server set size, 𝑚𝑚. Therefore, it is especially suitable for large-scale client-server networks or Cloud service 
models.   

2. Proposed Scheme 

We informally give a definition of Private Set Intersection first and then present our quantum scheme for Private 
Set Intersection. 

Definition 1. Private Set Intersection (PSI) - There are two parties, a client and a server. The client inputs a 
private set 𝐶𝐶 and the server inputs a private set 𝑆𝑆. After running a PSI procedure, the client outputs the intersection 
of their respective sets, i.e., 𝐶𝐶 ∩ 𝑆𝑆, but the server gets nothing except the client’s set size. In addition, PSI should 
meet the following requirements. 

Correctness. The client finally outputs the exact (possibly empty) intersection of their respective sets. 
Client Privacy. The server gets no information about the client’s set elements, except his/her set size. 
Server Privacy. The client learns no information about the subset 𝑆𝑆 − 𝐶𝐶 ∩ 𝑆𝑆 (that is, the subset of elements on the 

server that are NOT in the intersection of their respective sets), except knowing the subset 𝐶𝐶 ∩ 𝑆𝑆. 
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Suppose the client’s private set 𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑛𝑛} and the server’s private set 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2,⋯𝑠𝑠𝑚𝑚}, and all elements 
of the sets 𝐶𝐶 and 𝑆𝑆 lie in ℤ𝑁𝑁∗ , where ℤ𝑁𝑁∗ = {1,2, … ,𝑁𝑁 − 1} and 𝑁𝑁 is a natural number, which is far larger than 𝑛𝑛 and 
𝑚𝑚  (i.e., 𝑁𝑁 ≫ 𝑛𝑛,𝑚𝑚). In the following scheme, we only consider the honest-but-curious parties, who follow the 
protocol (honesty), but record everything they see and try to extract a secret (curiosity). The proposed scheme 
consists of 4 steps, which are described in detail as follows: 

Step 1. The client prepares 𝑛𝑛 encoded states, |𝜓𝜓𝑖𝑖⟩=
|0⟩+|𝑐𝑐𝑖𝑖⟩
√2

 for 𝑖𝑖 = 1 to 𝑛𝑛, where 𝑐𝑐𝑖𝑖 is his/her 𝑖𝑖th private element in 
𝐶𝐶  (i.e., 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 ). Furthermore, the client sends all encoded states to the server by an authenticated quantum 
channel [16,17,26,27]. 
Step 2. After receiving all encoded states sent from the client, the server applies a quantum operator 𝐺𝐺 on each 
received state, and then sends them back to the client, where 𝐺𝐺 = −𝑈𝑈0𝑈𝑈𝑆𝑆. Here, 𝑈𝑈0 and 𝑈𝑈𝑆𝑆 are unitary operators 
[18], defined as follows: 

𝑈𝑈0|𝑥𝑥⟩  =  �   |𝑥𝑥⟩    𝑖𝑖𝑖𝑖  𝑥𝑥 ≠ 0
−|0⟩    𝑖𝑖𝑖𝑖  𝑥𝑥 = 0 ,                                                                      (1) 

𝑈𝑈𝑆𝑆|𝑥𝑥⟩  =  �−
|𝑥𝑥⟩    𝑖𝑖𝑖𝑖  𝑥𝑥 ∈ 𝑆𝑆

   |𝑥𝑥⟩    𝑖𝑖𝑖𝑖  𝑥𝑥 ∉ 𝑆𝑆 ,                                                                      (2) 

where |𝑥𝑥⟩  is any basis state in 𝑁𝑁 -dimensional Hilbert space. That is, 𝑈𝑈0  maps |0⟩  to −|0⟩  and leaves the 

remaining |𝑥𝑥⟩ alone, and 𝑈𝑈𝑆𝑆 maps |𝑥𝑥⟩ to −|𝑥𝑥⟩ if 𝑥𝑥 ∈ 𝑆𝑆 and |𝑥𝑥⟩ otherwise. Then we get 

                                                                      |𝜙𝜙𝑖𝑖⟩ = 𝐺𝐺|𝜓𝜓𝑖𝑖⟩ 

                                                                              = 𝐺𝐺|0⟩+|𝑐𝑐𝑖𝑖⟩
√2

 

                                                                              = −𝑈𝑈0𝑈𝑈𝑆𝑆
|0⟩+|𝑐𝑐𝑖𝑖⟩
√2

 

= −𝑈𝑈0𝑈𝑈𝑆𝑆|0⟩+𝑈𝑈0𝑈𝑈𝑆𝑆|𝑐𝑐𝑖𝑖⟩
√2

  

= �
−
𝑈𝑈0|0⟩−𝑈𝑈0|𝑐𝑐𝑖𝑖⟩

√2
    𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖∈𝑆𝑆

−𝑈𝑈0
|0⟩+𝑈𝑈0|𝑐𝑐𝑖𝑖⟩
√2

    𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖∉𝑆𝑆
  

= �

|0⟩+|𝑐𝑐𝑖𝑖⟩
√2

    𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖∈𝑆𝑆
|0⟩−|𝑐𝑐𝑖𝑖⟩
√2

    𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖∉𝑆𝑆
.                                                                       (3) 

Step 3. For each state returned from the server, the client performs an honest test. That is, he/she check whether 
the superposition in the corresponding encoded state is preserved as follows: |0⟩+|𝑐𝑐𝑖𝑖⟩

√2
  or  |0⟩−|𝑐𝑐𝑖𝑖⟩

√2
. Since the two 

possible states are obviously orthogonal and further the client knows the value of 𝑐𝑐𝑖𝑖, therefore he/she is able to 
completely distinguish them by a von Neumann measurement. If the client finds a cheat of the server (that is, the 
measured result is not |0⟩+|𝑐𝑐𝑖𝑖⟩

√2
  or  |0⟩−|𝑐𝑐𝑖𝑖⟩

√2
), he/she will terminate this protocol; otherwise continue to the next step. 

Step 4. The client gets the phase information 𝑝𝑝(𝑖𝑖) of each returned state by distinguishing it between |0⟩+|𝑐𝑐𝑖𝑖⟩
√2

 and 
|0⟩−|𝑐𝑐𝑖𝑖⟩
√2

, i.e., 𝑝𝑝(𝑖𝑖) = 1 if it is in the state |0⟩+|𝑐𝑐𝑖𝑖⟩
√2

, and 𝑝𝑝(𝑖𝑖) = −1 otherwise. Furthermore, if 𝑝𝑝(𝑖𝑖) = 1, then 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 ∩

𝑆𝑆; otherwise 𝑐𝑐𝑖𝑖 ∉ 𝐶𝐶 ∩ 𝑆𝑆. Finally, the client outputs all elements that the phase information is equal to one (i.e., 
{𝑐𝑐𝑖𝑖|𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 ∧ 𝑝𝑝(𝑖𝑖) = 1 for 𝑖𝑖 = 1 to 𝑛𝑛}). However, the server gets nothing except the size of the set 𝐶𝐶 of the client. 

3. Analysis 

Correctness. The scheme proposed above clearly and rightly works when the client and the server honestly 
execute the protocol. If 𝑐𝑐𝑖𝑖 ∈ 𝑆𝑆, it can easily see that 𝑝𝑝(𝑖𝑖) = 1 by Eq.(3). Therefore, the client rightly outputs the 
intersection of their respective sets by 𝑛𝑛 von Neumann measurements. That is, the proposed PSI scheme is correct. 

Client Privacy mainly depends on the server’s impossibility of discriminating the encoded quantum state sent 
from the client, thank to two basic laws of quantum theory: No-Cloning Theorem which forbids the creation of 
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identical copies of an arbitrary unknown quantum state, and Heisenberg Uncertainty Principle which implies that it 
is impossible to measure the state of any system without disturbing that system. 

In order to extract the secret information about 𝑐𝑐𝑖𝑖 from the encoded state |𝜓𝜓𝑖𝑖⟩=
|0⟩+|𝑐𝑐𝑖𝑖⟩
√2

, the server must measure the 
state |𝜓𝜓𝑖𝑖⟩. However, he cannot perform the equivalent measurement which the client does, because he does not 
know 𝑐𝑐𝑖𝑖. Therefore, if the server measures the encoded state, he will certainly disturb it. In the following section, we 
will analyze two measure-based attacks by a dishonest server in detail.  

First, if the server directly measures the encoded state  |0⟩+|𝑐𝑐𝑖𝑖⟩
√2

 by a simple projective measurement (intercept), the 

measured result can be either |0⟩  or |𝑐𝑐𝑖𝑖⟩  with the probabilities 12  and 1
2
, respectively. If he gets |𝑐𝑐𝑖𝑖⟩ , he can 

successfully pass the honest test by re-preparing and returning a new quantum system in the state |𝜓𝜓𝑖𝑖⟩ = |0⟩+|𝑐𝑐𝑖𝑖⟩
√2

 

(resend). However, if he gets |0⟩, he cannot pass the honest test. In short, this intercept-resend attack will be 
discovered in the honest test with the probability of 12. That is, our scheme is cheat sensitive [19,20,21]. In order to 

further resist this intercept-resend attack, in principle the client can replace the encoded state |𝜓𝜓𝑖𝑖⟩ = |0⟩+|𝑐𝑐𝑖𝑖⟩
√2

 with 

states of the form 𝑒𝑒
𝒾𝒾𝒾𝒾|0⟩+|𝑐𝑐𝑖𝑖⟩

√2
 [19], where the phase 𝜃𝜃 is a parameter randomly and privately selected by the client. 

Since the server does not know the value of 𝜃𝜃, it will be clearly impossible for him to reprepare the correct reply 
state after his measurement. 

Second, we further discuss a more complicated entangle-measure attack by a dishonest server that he/she is able to 
prepare an ancillary system and entangle the ancillary system with the quantum system carried the encoded states by 
his local unitary operations, and afterwards he can measure the ancillary system to get the partial information about 
the client’s private inputs. For simplicity, we only consider the client’s quantum system in the general state of |0⟩+|𝑘𝑘⟩

√2
, 

where 𝑘𝑘 is a private element of the client’s set 𝐶𝐶. Suppose that the initial state of the ancillary system is |0⟩𝑆𝑆 and the 
server’s dishonest action when he receives the client’s encoded states can be described by a unitary operator 𝑈𝑈�𝑐𝑐𝑐𝑐, 
which acts on the client’s quantum system 𝑐𝑐 and the server’s ancillary system 𝑠𝑠. We can describe it as follows: 

𝑈𝑈�𝑐𝑐𝑐𝑐|0⟩𝑐𝑐|0⟩𝑠𝑠 = �𝜂𝜂0|0⟩𝑐𝑐|𝜙𝜙0⟩𝑠𝑠 + �1 − 𝜂𝜂0|𝑉𝑉0⟩𝑐𝑐𝑐𝑐,                                                (4) 

𝑈𝑈�𝑐𝑐𝑐𝑐|𝑘𝑘⟩𝑐𝑐|0⟩𝑠𝑠 = �𝜂𝜂𝑘𝑘|𝑘𝑘⟩𝑐𝑐|𝜙𝜙𝑘𝑘⟩𝑠𝑠 + �1 − 𝜂𝜂𝑘𝑘|𝑉𝑉𝑘𝑘⟩𝑐𝑐𝑐𝑐,                                                (5) 

    𝑈𝑈�𝑐𝑐𝑐𝑐 �|0⟩+|𝑘𝑘⟩
√2

�
𝑐𝑐

|0⟩𝑠𝑠 = �𝜂𝜂+𝑘𝑘�|0⟩+|𝑘𝑘⟩
√2

�
𝑐𝑐

|𝜙𝜙+𝑘𝑘⟩𝑠𝑠 + �1 − 𝜂𝜂+𝑘𝑘|𝑉𝑉+𝑘𝑘⟩𝑐𝑐𝑐𝑐,                                    (6) 

where |𝑉𝑉0⟩𝑐𝑐𝑐𝑐, |𝑉𝑉𝑘𝑘⟩𝑐𝑐𝑐𝑐 and |𝑉𝑉+𝑘𝑘⟩𝑐𝑐𝑐𝑐 are a vector orthogonal to |0⟩𝑐𝑐|𝜙𝜙0⟩𝑠𝑠, |𝑘𝑘⟩𝑐𝑐|𝜙𝜙𝑘𝑘⟩𝑠𝑠 and | + 𝑘𝑘⟩𝑐𝑐|𝜙𝜙+𝑘𝑘⟩𝑠𝑠 (|+𝑘𝑘⟩ = |0⟩+|𝑘𝑘⟩
√2

), 

respectively, i.e., 
𝑐𝑐⟨0|𝑠𝑠⟨𝜙𝜙0|𝑉𝑉0⟩𝑐𝑐𝑐𝑐 = 0,                                                                            (7) 

𝑐𝑐⟨𝑘𝑘|𝑠𝑠⟨𝜙𝜙𝑘𝑘|𝑉𝑉𝑘𝑘⟩𝑐𝑐𝑐𝑐 = 0,                                                                           (8) 

𝑐𝑐⟨+𝑘𝑘|𝑠𝑠⟨𝜙𝜙+𝑘𝑘|𝑉𝑉+𝑘𝑘⟩𝑐𝑐𝑐𝑐 = 0.                                                                    (9) 

In order to completely pass the honest test (that is, the returned system 𝑐𝑐 must be |0⟩+|𝑘𝑘⟩
√2

 without consideration of the 
phase transformation), we can easily deduce that the following condition holds in Eq. (6): 

      𝜂𝜂+𝑘𝑘 = 1.                                                                                (10) 

That is,  
𝑈𝑈�𝑐𝑐𝑐𝑐 �|0⟩+|𝑘𝑘⟩

√2
�
𝑐𝑐

|0⟩𝑠𝑠 = �|0⟩+|𝑘𝑘⟩
√2

�
𝑐𝑐

|𝜙𝜙+𝑘𝑘⟩𝑠𝑠.                                                             (11) 

In addition, obviously the returned states cannot contain other vectors except the vectors of |0⟩𝑐𝑐 and |𝑘𝑘⟩𝑐𝑐. Thus, in 
order to fully pass the honest test, Eqs. (4) and (5) must be restrained as the following expressions, accordingly: 

𝑈𝑈�𝑐𝑐𝑐𝑐|0⟩𝑐𝑐|0⟩𝑠𝑠 = �𝜂𝜂0|0⟩𝑐𝑐|𝜙𝜙0⟩𝑠𝑠 + �1 − 𝜂𝜂0|𝑘𝑘⟩𝑐𝑐|𝜙𝜙𝑘𝑘⟩𝑠𝑠,                                      (12) 
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𝑈𝑈�𝑐𝑐𝑐𝑐|𝑘𝑘⟩𝑐𝑐|0⟩𝑠𝑠 = �𝜂𝜂𝑘𝑘|𝑘𝑘⟩𝑐𝑐|𝜙𝜙𝑘𝑘⟩𝑠𝑠 + �1 − 𝜂𝜂𝑘𝑘|0⟩𝑐𝑐|𝜙𝜙0⟩𝑠𝑠.                                      (13) 

Given from Eq. (11), when 𝑘𝑘 = 0, it further gets, 

 𝑈𝑈�𝑐𝑐𝑐𝑐|0⟩𝑐𝑐|0⟩𝑠𝑠 = |0⟩𝑐𝑐|𝜙𝜙0⟩𝑠𝑠.                                                                  (14) 

It implies, 
𝜂𝜂0 = 1.                                                                               (15) 

Then, we get  

𝑈𝑈�𝑐𝑐𝑐𝑐|𝑘𝑘⟩𝑐𝑐|0⟩𝑠𝑠 = 𝑈𝑈�𝑐𝑐𝑐𝑐 �√2(|𝑘𝑘⟩+|0⟩−|0⟩
√2

)�
𝑐𝑐

|0⟩𝑠𝑠  

                                                                         = 𝑈𝑈�𝑐𝑐𝑐𝑐�√2|+𝑘𝑘⟩ − |0⟩�
𝑐𝑐
|0⟩𝑠𝑠 

                                                                          = √2𝑈𝑈�𝑐𝑐𝑐𝑐|+𝑘𝑘⟩𝑐𝑐|0⟩𝑠𝑠 − 𝑈𝑈�𝑐𝑐𝑐𝑐|0⟩𝑐𝑐|0⟩𝑠𝑠   

                                                                          = √2|+𝑘𝑘⟩𝑐𝑐|𝜙𝜙+𝑘𝑘⟩𝑠𝑠 − |0⟩𝑐𝑐|𝜙𝜙0⟩𝑠𝑠    (by Eq.(11)) 

                                                                          = √2(|0⟩+|𝑘𝑘⟩
√2

)𝑐𝑐|𝜙𝜙+𝑘𝑘⟩𝑠𝑠 − |0⟩𝑐𝑐|𝜙𝜙0⟩𝑠𝑠 

  = |0⟩𝑐𝑐|𝜙𝜙+𝑘𝑘⟩𝑠𝑠 + |𝑘𝑘⟩𝑐𝑐|𝜙𝜙+𝑘𝑘⟩𝑠𝑠 − |0⟩𝑐𝑐|𝜙𝜙0⟩𝑠𝑠.                                         (16) 

If we compute the scalar product between Eqs. (13) and (16), then we will obtain the identity 

                                                        1 = �1 − 𝜂𝜂𝑘𝑘 ⟨𝜙𝜙0𝑠𝑠 |𝜙𝜙+𝑘𝑘⟩𝑠𝑠 + �𝜂𝜂𝑘𝑘 ⟨𝜙𝜙𝑘𝑘𝑠𝑠 |𝜙𝜙+𝑘𝑘⟩𝑠𝑠 

                                                                 −�1 − 𝜂𝜂𝑘𝑘 ⟨𝜙𝜙0𝑠𝑠 |𝜙𝜙0⟩𝑠𝑠 

                                                           = �1 − 𝜂𝜂𝑘𝑘 ⟨𝜙𝜙0𝑠𝑠 |𝜙𝜙+𝑘𝑘⟩𝑠𝑠 + �𝜂𝜂𝑘𝑘 ⟨𝜙𝜙𝑘𝑘𝑠𝑠 |𝜙𝜙+𝑘𝑘⟩𝑠𝑠 

                −�1 − 𝜂𝜂𝑘𝑘.                                                                                             (17) 

Since ⟨𝜙𝜙0𝑠𝑠 |𝜙𝜙+𝑘𝑘⟩𝑠𝑠 ≤ 1 and ⟨𝜙𝜙𝑘𝑘𝑠𝑠 |𝜙𝜙+𝑘𝑘⟩𝑠𝑠 ≤ 1, so we get 

1 ≤ �1 − 𝜂𝜂𝑘𝑘 + �𝜂𝜂𝑘𝑘 − �1 − 𝜂𝜂𝑘𝑘.                                                                (18) 

That is,  
1 ≤ �𝜂𝜂𝑘𝑘,                                                                                     (19) 

which implies 
𝜂𝜂𝑘𝑘 = 1.                                                                                        (20) 

Thus, we can obtain the following expanded expression 

                                                     𝑈𝑈�𝑐𝑐𝑐𝑐 �|0⟩+|𝑘𝑘⟩
√2

�
𝑐𝑐

|0⟩𝑠𝑠 = 𝑈𝑈�𝑐𝑐𝑐𝑐|0⟩𝑐𝑐|0⟩𝑠𝑠+𝑈𝑈�𝑐𝑐𝑠𝑠|𝑘𝑘⟩𝑐𝑐|0⟩𝑠𝑠
√2

 

= |0⟩𝑐𝑐|𝜙𝜙0⟩𝑠𝑠+|𝑘𝑘⟩𝑐𝑐|𝜙𝜙𝑘𝑘⟩𝑠𝑠
√2

.                                                                      (21) 

Similarly, if we compute the scalar product between Eqs. (11) and (21), then we will obtain  

    1 = 1
2 ⟨𝜙𝜙0𝑠𝑠 |𝜙𝜙+𝑘𝑘⟩𝑠𝑠 + 1

2 ⟨𝜙𝜙𝑘𝑘𝑠𝑠 |𝜙𝜙+𝑘𝑘⟩𝑠𝑠.                                                                   (22) 

By Eq. (22), it gives 
⟨𝜙𝜙0𝑠𝑠 |𝜙𝜙+𝑘𝑘⟩𝑠𝑠 = 1,                                                                              (23) 

⟨𝜙𝜙𝑘𝑘𝑠𝑠 |𝜙𝜙+𝑘𝑘⟩𝑠𝑠 = 1.                                                                             (24) 

From Eqs. (23) and (24), it shows that if the server wants to be sure that he passes the honest test, then the final 
states of the ancillary system 𝑠𝑠 for any choice of 𝑘𝑘 will coincide with |𝜙𝜙0⟩𝑠𝑠, that is, the states of the ancillary system 
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𝑠𝑠 are independent of the secret  𝑘𝑘. Therefore, even though the server performs an entangle-measure attack, he cannot 
yet obtain any secret information about the secret 𝑘𝑘 from the encoded state |0⟩+|𝑘𝑘⟩

√2
. 

Server Privacy. If the client honestly executes the protocol, he/she cannot obtain any secret information about the 
server’s private set, except knowing 𝐶𝐶 ∩ 𝑆𝑆. If the client is dishonest, it is possible for him/her to perform a cheating 
strategy as follows: he/she sends a false state |𝑗𝑗⟩+|𝑘𝑘⟩

√2
 to the server, instead of the true state |0⟩+|𝑘𝑘⟩

√2
. Accordingly, the 

returned state from the server must be in either |𝑗𝑗⟩+|𝑘𝑘⟩
√2

 or |𝑗𝑗⟩−|𝑘𝑘⟩
√2

. However, from the states of |𝑗𝑗⟩+|𝑘𝑘⟩
√2

 or |𝑗𝑗⟩−|𝑘𝑘⟩
√2

, the client 
cannot get the right phase information 𝑝𝑝(𝑗𝑗) or 𝑝𝑝(𝑘𝑘), while he/she can infer that  𝑝𝑝(𝑗𝑗) = 𝑝𝑝(𝑘𝑘) or 𝑝𝑝(𝑗𝑗) ≠ 𝑝𝑝(𝑘𝑘), but 
not deduce whether 𝑗𝑗 or 𝑘𝑘 belongs to the server’s private set.  

We have analyzed the security of proposed protocols in ideal settings. However, in practical settings, there may be 
some faults (e.g., noise and error) in the quantum channel and measurement. In order to ensure its security in 
practical settings, we can use the fault tolerant technologies, such as decoherence-free states and error-correcting 
code, which were introduced in References [22,23]. In addition, please note that we only consider the honest-but-
curious parties in our protocols, which is similar to the semi-honesty model in the classical settings. In classical 
settings, any secure protocol in semi-honesty model can be correspondingly translated into a secure protocol in 
malicious model. However, it still needs to further study how to translate a protocol from semi-honesty model to 
malicious model in quantum settings. It is also our future work (especially, the definition of malicious model in 
quantum settings).  

In addition, the authenticated quantum channel can ensure the security of quantum communications. Like most 
existing secure multiparty quantum computations, our scheme needs there is an authenticated quantum channel. This 
is the only assumption we need to have for the scheme to work. In principle, we may use a quantum authentication 
scheme (QAS) [24] based on Clifford operators introduced in [25] to implement it. We may also use quantum 
encryptions combined with classical authenticated keys [26,27]. In addition, we may still ensure the authentication 
by sharing the entangled quantum resources in advance or using the detecting (or decoy) particle technologies. 

Finally, we analyze the communication costs of the proposed scheme. We can easily see that the client sends and 
receives 𝑛𝑛 encoded states, respectively. So the communication complexity is 𝑂𝑂(𝑛𝑛), irrespective of the size of the 
server’s set. Compared to the classical PSI schemes with 𝑂𝑂(𝑛𝑛 + 𝑚𝑚)  communication complexity, our proposed 
scheme has a very significant reduction in the communication complexity due to 𝑂𝑂(𝑛𝑛) communication complexity. 

4. Conclusion 

In this paper, we first presented a quantum method to solve PSI problem. In the proposed PSI scheme, the client 
first prepares 𝑛𝑛 encoded states, and then sends them to the server. After applying 𝑛𝑛 quantum operators, the server 
sends these encoded states back to the client. Finally the client performs 𝑛𝑛 von Neumann measurements to privately 
choose out all elements of the intersection of their respective sets. During this process, two parties only require to 
exchange 𝑛𝑛 quantum states. Obviously, both computation and communication complexities of the proposed scheme 
are 𝑂𝑂(𝑛𝑛), which are independent of the server’s set size 𝑚𝑚. Therefore, it is very suitable for big data services in 
Cloud or large-scale client-server networks 
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