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Abstract—Content-Based Medical Image Retrieval (CBMIR)
is an important research field in the context of medical data
management. In this paper we propose a novel CBMIR system
for the automatic retrieval of radiographic images. Our approach
employs a Convolutional Neural Network (CNN) to obtain high-
level image representations that enable a coarse retrieval of
images that are in correspondence to a query image. The
retrieved set of images is refined via a non-parametric estimation
of putative classes for the query image, which are used to filter out
potential outliers in favour of more relevant images belonging to
those classes. The refined set of images is finally re-ranked using
Edge Histogram Descriptor, i.e. a low-level edge-based image
descriptor that allows to capture finer similarities between the
retrieved set of images and the query image. To improve the
computational efficiency of the system, we employ dimensionality
reduction via Principal Component Analysis (PCA). Experiments
were carried out to evaluate the effectiveness of the proposed
system on medical data from the “Image Retrieval in Medical
Applications” (IRMA) benchmark database. The obtained results
show the effectiveness of the proposed CBMIR system in the field
of medical image retrieval.

I. INTRODUCTION

Over the last few decades, medical imaging has become

an increasingly active research area, resulting in a rapid

development of new technologies and instrumentations, which

play a pivotal role in a large number of healthcare applications.

To support the physicians in their clinical diagnosis and

treatments, an increasing number of medical image modalities

are used. In large hospitals, several terabytes of digital medical

images are generated and stored every year in so-called

Picture Archiving and Communication Systems (PACS) [1],

for diagnosis of diseases, research and education [2]. For

precise diagnosis and treatment planning, medical profession-

als often have to browse through similar content images in

these archives. This introduces the need of novel, intelligent

techniques to efficiently search through large collections of

medical images [3], [4].

An open challenge for classification/retrieval of medical

images is the inter- versus intra-class variability problem [3].

Several Content-Based Medical Image Retrieval (CBMIR)

prototypes have been proposed to address these problems using

representative features for the images’ content [4], [1], [2]. In

general, the proposed systems can be categorized into two

different classes: task/modality dependent and independent

CBMIR systems. The CBMIR systems from the first category

are developed based on a specific organ, imaging modality or

diagnostic study [5], [6], [7]. These systems are ineffective

for other medical applications. As for the second category,

there have been few attempts to develop task/modality in-

dependent CBMIR systems: MedGIFT [8], KmED [9], and

Image Retrieval in Medical Applications (IRMA) [10], [11]

among many others.

Different CBMIR system that have been proposed employ

classifiers such as Support-Vector Machines (SVM), Random

Forests (RF), to coarsely classify the query image and restrict

the retrieved set to images belonging to the same class. This

reduces the overall cost of computation without impacting

much on the final accuracy [12], [3], [13], provided that

the classifier delivers fast predictions and the pre-classification

accuracy is good enough. A drawback of this approach is that

errors occurring at the pre-classification stage might severely

jeopardize the whole retrieval process.

In this paper, we propose a novel CBMIR system for

radiographic images that mitigates the drawbacks mentioned

above. Our approach is based on two-stages, each employing

a different type of feature descriptors to perform the retrieval

task. In the first stage, a set of images from the (possibly) large

collection of images is retrieved by comparing their high-level

feature signature that is computed by means of a pre-trained

Convolutional Neural Network (CNN). A relevance score is

then computed to rank the classes represented in the retrieved

set and identify candidate classes for the query image. This

relevance score is computed by taking into account the position

of the represented classes in the result set.

In the second stage, images belonging to the classes esti-

mated in the previous stage are retrieved from the database,

this time considering Edge Histogram Descriptor (EHD) as

image descriptor in order to capture similarities at a finer

granularity level. The proposed system is computationally

efficient and the image collection can be easily enlarged since

we do not rely on pre-trained classifiers, but we rather use

a simple K-NN procedure for classification. Accordingly, no

training procedure has to be run offline on the collection of

images and new images can be added to the collection with

limited effort. In order to improve the efficiency of the method,

Principal Component Analysis (PCA) has been used in order to

reduce the dimensionality of the feature space in both stages.

The rest of the paper is organized as follows: In Sec. II, we

describe the image descriptors adopted in our system, namely

CNN features for the first stage and EHD for the second one.



Sec. III describes the proposed approach to CBMIR. Sec. V

provides an experimental evaluation of the proposed algorithm

and, finally, we draw conclusions in Sec. VI.

II. IMAGE DESCRIPTORS

The performance of an image retrieval system inherently

depends on the effectiveness of the feature descriptor repre-

senting the content of the image. Global descriptors can be

used to coarsely determine the similarity of images, while

local cues can be exploited for a finer-grained comparison.

This is the principle that underlies our two-stage retrieval

approach and turns out to be particularly effective for the

retrieval of radiographic images. Besides the granularity of

the descriptor another important aspect to take into account is

the dimensionality of the representation, in particular if one

aims to build an efficient CBMIR system. Compact feature

representations can in general be constructed and evaluated

in a more efficient way, thus being more appealing for real-

world applications like radiographic image retrieval, where the

collections to be searched are large [2], [4].

In this work we make use of CNN-based features as

global image descriptors that will be employed in the first

stage to perform a coarse retrieval, whereas EHD is used

as local descriptor to obtain a finer-grained ranking of the

retrieved images in the second stage. CNNs denote a family of

feed-forward, neural networks that propagate the input signal

through several computational blocks/layers, which compute

convolutional features, apply non-linear activation functions,

and perform pooling operations to reduce the dimensionality of

the representation. CNNs have been shown to be very effective

in many computer vision tasks in particular by employing

very deep architectures [14]. The strength of CNNs derives

from learning representations for the data at different levels

of abstraction. For image data, the lower levels of abstraction

might describe the differently orientated edges in the image;

middle levels might describe parts of an object, while high

layers refer to larger object parts and even the object classes.

Few recent studies can be found in the medical field that

uses deep architecture methods [15], [16], [17]. Models trained

on the non-medical dataset Imagenet have been successfully

used for classification of medical images [15]. Using the same

intuition, we use the Berkeley Caffe reference model imagenet-

caffe-alex [18] as feature-extractor for radiographic images.

We use the output of the “fc7” layer, i.e. the fully-connected

layer before the output layer, as descriptor. The “fc7” layer

has 4096 units (yielding a 4096-dimensional descriptor) and

provides a high-level description of the image, which can be

used for the first-stage, coarse retrieval task.

In the second, finer-grained retrieval stage of the proposed

system, the X-ray images are summarized in terms of a

popular descriptor namely Edge Histogram Descriptor (EHD)

from the Moving Picture Experts Group-7 (MPEG-7). This

descriptor captures the distribution of edges and provides a

texture signature that is useful for image-to-image matching

even when the underlying texture is not homogeneous [19].

EHD represents the distribution of local edge in an image

by dividing the image into 4 × 4 sub-images and generates

a histogram from the edges contained in each of these sub-

images. Edges in the image are categorized into five types:

vertical, horizontal, 45◦ diagonal, 135◦ diagonal and non-

directional edges. Finally, a histogram with 16 × 5 bins is

constructed, yielding a 80-dimensional descriptor.

Since the dimensions of the feature vectors of the two differ-

ent stages (coarse retrieval stage: 4096 and fine retrieval stage:

80) are large, we applied PCA, to reduce the computational

complexity by removing less relevant dimensions. In the rest of

the paper, we refer the 4096-dimensional descriptor obtained

from the CNN as CNN-descriptor, while we refer the other

one as EHD-descriptor.

III. PROPOSED CBIR APPROACH

In this section we describe the proposed approach for

content-based retrieval of radiographic images, which is or-

ganized into two stages.

A. First stage

Consider a database consisting of n labeled images D =
{(I1, y1), . . . , (In, yn)}, where yj ∈ Y denotes the class labels

(from a finite set Y) of the jth image Ij , and let fCNN

j ∈ R
4096

be the CNN-descriptor of image Ij . Given a query image

denoted by I0, our retrieval system finds the most related

images in the dataset by employing the CNN-descriptor as

image representation and by using the Euclidean distance to

compute the (dis)similarity to the query image. Specifically,

let π = (π1, . . . , πm) be a m-permutation of n satisfying

d(fCNN

0
, fCNN

πi
) ≤ d(fCNN

0
, fCNN

πj
) for all 1 ≤ i ≤ j ≤ m (obtained

via sorting), where d(·, ·) denotes the Euclidean distance.

Intuitively, πj is the index of the image that is ranked at the

jth position and the relation ensures that images ranked closer

to position 1 have a larger similarity (i.e. smaller distance)

to the query image. Moreover, m represents the size of the

retrieved set of images (also referred to as scope size). From

another point of view, the images indexed by π, which form

the retrieved set, represent the m nearest neighbors in D of

the query image.

Let Y0 ⊆ Y be the subset of image classes that are

represented within the retrieved set of images for the given

query image I0. We compute for each y ∈ Y0 the class

relevance score Sπ
y with respect to π as the following function

of the ranking position of images belonging to class y:

Sπ
y =

m
∑

j=1

δyyπj

(

1−
j − 1

m

)

, (1)

where δyŷ is the Kronecker delta yielding 1 if y = ŷ and 0
otherwise, and yπj

is the class of the image ranked in the jth

position according to π.

The class relevance score described above is used to de-

termine a subset of classes in Y0 that will be considered

as relevant for the query image. Assume k = |Y0| and let

(y1, . . . , yk) be a permutation of the elements in Y0 satisfying

Sπ
yi

≥ Sπ
yj

for all 1 ≤ i ≤ j ≤ k, i.e. classes in yj ∈ Y0

having a better relevance score will have a lower index j. We



determine the relevant classes for the query image by finding

the largest index 1 ≤ j∗ ≤ k that satisfies
∑j∗

i=1
Sπ
i < α,

where α =
∑⌊m

2
⌋

i=0

(

1− i
m

)

is the hypothetical relevance score

of a class that covers the first ⌊m
2
⌋ positions in the ranking.

The relevant classes are finally given by Yr
0
=

⋃j∗

i=1
{yi} and

will be used in the final stage to refine the set of retrieved

image.

B. Second stage

The second stage of the retrieval process works on a subset

of the original dataset D, which comprises only images with

a class belonging to the set of relevant classes Yr
0

described

above. Let Ir be the indices of the images in D with a class

label in Yr
0

, i.e. Ir = {j : yj ∈ Yr
0
, 1 ≤ j ≤ n}. Moreover, in

this stage, we switch to the EHD-descriptor for the images in

order to capture finer-grained similarities to the query image.

Accordingly, we denote by fEHD

j the EHD descriptor of image

Ij , where j ∈ Ir ∪ {0}. Akin to the first stage, we find a

m-permutation π̂ = (π̂1, . . . , π̂m) of Ir satisfying the relation

d(fEHD

0
, fEHD

π̂i
) ≤ d(fEHD

0
, fEHD

π̂j
) for all 1 ≤ i ≤ j ≤ m.1 The

final ordered set of retrieved images is given by R = (Iπj
)mj=1

.

C. Dimensionality reduction

Instead of using the CNN- and EHD-descriptor in their

original size, we employ PCA as an unsupervised dimension-

ality reduction technique. This provides us with two linear

transformations T CNN and T EHD for the CNN- and EHD-

descriptors, respectively. We can then replace fCNN

j and fEHD

j

with their projected counterparts f̂CNN

j = T CNN(fCNN

j ) and

f̂EHD

j = T EHD(fEHD

j ), respectively.

IV. RELATED WORKS

We provide here a brief overview of related works. In [20],

the authors used 768 features for image representation and

a K-NN classifier for classification. Here, each image is

split in 16 equal sub-blocks and each sub-block is described

using 48 features. To describe the image texture the authors

have used Haralick’s coefficients extracted from the gray-

level co-occurrence matrix (16 features = 4 coefficients 4
directions), the box-counted fractal dimension (1 feature), and

the Gabor wavelets (24 features = 2 coefficients 3 scales

4 orientations). In addition they used features derived from

gray level statistical measures: different estimations of the

first order (mean, median and mode), second order (variance

and L2 norm), third and forth order (skewness and kurtosis)

moments. In [21], the authors have used Non-Subsampled

Contourlet Transform (NSCT) and Fuzzy C-Means (FCM)

clustering to construct image descriptors, and used Least

Square-Support Vector Machine (LS-SVM) and Earth Mover’s

Distance (EMD) to classify the images. Collins et al. have

designed the CBMIR system by using the SIFT-PCA features

and a L1-distance-based similarity measure [22]. Here, the

1we implicitly assume m ≥ |Ir|, but if this is not the case one could either
shrink the scope size in the second stage, or augment the resulting set with
the best ranked images in the first stage, with a class label not in Yr

0
.

authors have used SIFT features, yielding a 128-dimensional

histogram of local gradient directions for 8 orientations in 16
tiles. Additionally, they have included 4 extra parameters of the

2 spatial coordinates of the SIFT keypoint, the scale parameter,

and the dominant-orientation parameter. Each SIFT feature

vector is centered and normalized using Z-Score transform

before applying k-means clustering. In [23], the authors have

studied the performance of simple statistical features (mean,

standard deviation, skew, energy and entropy) with the ED

measure. Recently, Camlica et al.have proposed a CBMIR

system with Local Binary Pattern (LBP) and SVM [24].

In all these state-of-the-art approaches, only handcrafted

features have been used for image representation, whereas our

approach includes both handcrafted (EHD) and learned (CNN)

features and is able to significantly improve the results over

the competitors as we will show in the next section.

V. EXPERIMENTAL RESULTS

In this section we provide experimental quantitative and

qualitative evidence of the validity of the proposed CBMIR

system for radiographic images.

A. Setup

We evaluated our approach on the medical image collection

from the ImageCLEF2009 medical benchmark [3]. The X-ray

images are noisy with irregular brightness and contrast, and

sometimes contain dominant visual artifacts such as artificial

limbs and X-ray frame borders. The entire dataset contains

14, 410 images divided into 193 distinct categories, where the

number of images in each category varies largely (from 1
to 2314 images). We have restricted the analysis to the 31
categories having at least 50 images and we randomly selected

50 images for each category, yielding a dataset of 1550 images

organized into 31 classes. The images of this database suffer

from the inter-class versus intra-class variability problem.

Images from this dataset are organized into semantic categories

in a way to reflect the human perception of image similarity.

The performance on the dataset was evaluated by considering

10 random images from each class as the query image (in

total 310 queries) and by measuring the average precision

and recall,2 or the average accuracy (which coincides with

the average precision), depending on the experiment. The ex-

periments were conducted on a Dell Precision T7810 PC with

32GB RAM and the proposed approach has been implemented

using MATLAB R2016a. All experiments were run with scope

size m = 20, where not differently stated.

B. Quantitative analysis

In order to assess the effectiveness of the proposed combina-

tion of high-level CNN-based features for the coarse retrieval

of images in the first stage and low-level EHD-based features

for the finer-grained refinement in the second stage (we refer

this setting as CNN→EHD), we report the results also for the

following variants of our algorithm: only the first stage is run

2precision=
# of retrieved relevant images

scope size
, recall=

# of retrieved non-relevant images

# of relevant images in the database
.
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Fig. 1. Experimental results obtained in terms of accuracy on a benchmark
dataset by different variants of the proposed method (see Sec. V for details)
using different levels of dimensionality reduction. The dimensionality rate
indicates the share of dimensions that are preserved (i.e. 1 means that we
preserve the original dimensionality). The results are averaged over 10 random
queries per class.

with the EHD-descriptor (EHD), only the first stage is run

with the CNN-descriptor (CNN), only the first stage is run by

concatenating the EHD- and CNN-descriptors (EHD+CNN),

the first stage is run using the EHD-descriptor and the second

one using the CNN-descriptor (EHD→CNN).

A first experiment evaluates the effect of the dimension-

ality reduction procedure on the performance of the system

at different compression levels. Fig. 1 shows the accuracy

obtained with the different variants of our algorithm mentioned

in the previous paragraph, at different dimensionality rates

(0.8, 0.85, 0.9, 0.95 and 1). The dimensionality rate is 1
when no dimensionality reduction occurs and diminishes as the

reduction increases. The experiment shows that there is little

impact on the accuracy of the different tested approaches if we

apply the dimensionality reduction. In particular we can safely

have a 10% reduction of the dimensionality of the descriptors.

If we compare the single approaches we tested, we can see

that the method we propose (CNN→EHD), which uses CNN-

descriptors in the first stage and EHD-descriptors in the second

stage, is the most effective, because the image representations

that we obtain from the convolutional neural network better

discriminate the classes of images in the dataset, even though

no specific training has been conducted on the radiographic

images. This renders the class-based selection of images

in the second stage more effective. If we invert the role

of the EHD- and CNN- descriptors (i.e. EHD→CNN) we

experience a noticeable drop in the performance, because the

class discrimination in the first stage becomes less reliable.

We can also see that if we skip the second stage the drop

becomes significantly larger, which is expected since no class

information is used.

In Table. I we compare the results obtained by our method

with 10% dimensionality reduction against other state-of-

the-art approaches. We implemented in Matlab the methods

proposed in [20], [21], [22], [23], [24] and applied them to

the same dataset. As shown, the proposed method performs

significantly better than the competitors. This is probably due

to the use of high-level, data-driven CNN-descriptors in the

first stage, while the competitors rely mainly on hand-crafted

mid- or low-level features.

TABLE I
COMPARISON OF THE ACCURACY OF THE PROPOSED METHOD AGAINST

OTHER EXISTING CBMIR SYSTEMS ON A BENCHMARK DATABASE.

Mechanism Accuracy

Florea et al., 2006 [20] 73.21%

Chowdhury at al., 2012 [21] 76.00%

Collins et al., 2013 [22] 70.12%

Ayyachamy et al., 2013 [23] 60.16%

Camlica et al., 2015 [24] 82.01%

Proposed Approach 97.79%

In Fig. 2 we report the precision/recall plots of the different

variant’s of our method, where we vary the scope size (m =
10, 20, 30, 40). The results are consistent with the ones showed

on Fig. 1, i.e. the proposed approach is the most effective

also at different scope sizes. Note that the use of small scope

sizes leads to lower recall because it becomes more difficult to

retrieve all the relevant images when their number exceeds the

scope size. In particular, since we have 50 potential relevant

images the maximum recall that we can expect with a scope

size of e.g. 20 is 0.4.

C. Qualitative analysis

Some qualitative results are shown in Fig. 3. Specifically, we

report the outcome of 4 queries (denoted with letters a,b,c,d)

in both stages (identified by the number 1 and 2). For each

block of images, the isolated, top-left image is the query image

and the green/red boxes indicate relevant/irrelevant images,

respectively.

In Fig. 3(a1) we give the set of retrieved images after the

first stage of our algorithm from a query image belonging to

the “hip” category. As can be seen, 8 out of 20 images are

correctly retrieved and have an appearance that is similar to

the query image. Moreover, most of the truly relevant images

have a large relevance score, since they cover the first ranking

positions. Accordingly, one can filter out the misclassified

images at the second stage that do not belong to the relevant

classes in Yr
0

. Indeed, after applying the second stage of the

algorithm as discussed in the previous section the quality of

the retrieved set improves significantly, as shown in Fig. 3(a2).

There are nevertheless still two wrong retrieved images, whose

class was regarded as relevant after the first stage (i.e. their

class was in Yr
0

), having an EHD-descriptor similar to the

query image.
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Fig. 2. Precision/recall curves obtained by different variants of the proposed
approach (see Sec. V for details) on a benchmark dataset, by varying the scope
size (10, 20, 30, 40 left-to-right). The results are averaged over 10 random
queries per class.

Another retrieval example is given in Fig. 3(b1). Here, 11
out of 20 images are correctly retrieved from the query image

(top-left) after the first stage, while 9 images are from different

classes. Again, the second stage allows to filter out the outliers,

thus improving the quality of the retrieved set, and obtains

100% accuracy, as shown in Fig. 3(b2).

An additional example of successfull retrieval is given in

Fig. 3(c1,c2) with a query image from the “foot” category.

Here, 16 out of 20 images are from the right category, while

4 images are wrong, but again the second stage pushes the

final accuracy to 100%.

Finally, Fig. 3(d1,d2) show a case where our method fails.

Although the query image is from the category “hand”, the

“foot” category is deemed as the most relevant class in the first

stage, jeopardizing the final result in the second stage. Notice

that some images from the correct class that were retrieved in

the first stage (see Fig. 3(d1) have been lost in the subsequent

stage due to the wrong estimation of the class of the query

image (see Fig. 3(d2)).

VI. DISCUSSION

In this paper, we have proposed an efficient CBMIR system

for radiographic images based on a novel two-stage retrieval

approach. The aim of the first stage is to provide a coarse-

grained retrieval of the images mainly aimed at identifying a

set of putative classes to which the query image belongs to. For

this reason, we employ high-level CNN-based features. The

estimated set of relevant classes is used in the second stage

to filter our potential outliers and focus the retrieval only on

those images having a class label that was considered relevant

in the previous stage. In the second stage, the restricted set

of images is ranked based on low-level EHD features, which

allow for a finer-grained evaluation of the similarity to the

query image. The experiments we conducted have shown the

effectiveness of the proposed approach.

It is worth to point out that we extracted CNN features

from a network that has been pre-trained on a standard object

recognition dataset (ImageNet) instead of training an ad-hoc

network on radiological images. The reason for this decision

is that this step requires a very large amount of medical data

that is currently not available. A similar procedure was also

applied by Greenspan et al. [15], [25] with good results. This

inspired our approach that uses CNN-based features for image

representation.

Ongoing research includes the use of our system on different

types of medical images, such as endoscopic, colonoscopy and

ultrasound images. We are also interested in incorporating

a human interaction mechanism to make the system more

robust. Furthermore, we will test the system on databases of

images with annotated diagnostics for assessing its potential

for performing computer aided diagnosis.
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