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Abstract

Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that

all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the

k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean

metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve

system that satisfies several practical axioms, and thus our study covers many concrete order-k

Voronoi diagrams. We propose a randomized incremental construction algorithm that runs in

O(k(n − k) log2 n + n log3 n) steps, where O(k(n − k)) is the number of faces in the worst case.

Due to those axioms, this result applies to disjoint line segments in the Lp norm, convex polygons

of constant size, points in the Karlsruhe metric, and so on. In fact, this kind of run time with

a polylog factor to the number of faces was only achieved for point sites in the L1 or Euclidean

metric before.
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1 Introduction

Given a set S of n sites in the plane, the order-k abstract Voronoi diagram Vk(S) of S

partitions the plane into Voronoi regions such that all points within a region VRk(H, S)

share the same set H of k nearest sites in S where the underlying proximity is defined by

an abstract bisecting curve system. Order-k Voronoi diagrams solve the k nearest neighbor

problem. However, the distance measure in the real world is in general not the Euclidean

but depends on the type of geometric sites and the underlying environment. To deal with

diverse proximities, Klein [16] introduced the notion of abstract Voronoi diagrams to model

the proximity by an abstract bisecting curve system J . For two sites p, q ∈ S, he considered

a simple curve J(p, q) as a bisector that splits the plane into two domains D(p, q) and D(q, p).

D(p, q) represents the set of points closer to p than to q. Under these circumstances, the

order-k Voronoi region VRk(H, S) is defined as:

VRk(H, S) =
⋂

p∈H,q∈S\H

D(p, q).

∗ This work was supported by Deutsche Forschungsgemeinschaft (DFG Kl 655/19) in a DACH project.

© Cecilia Bohler, Rolf Klein, and Chih-Hung Liu;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams

If a bisecting curve system satisfies certain axioms, combinatorial properties and algorithms

are directly applicable to the resulting Voronoi diagrams [3, 5, 16, 17, 18, 21].

We consider the following six axioms: for each subset S′ of S of size at least 3,

(A1) Each first-order Voronoi region in V1(S′) is pathwise connected.

(A2) Each point in the plane belongs to the closure of some first-order Voronoi region.

(A3) No first-order Voronoi region in V1(S′) is empty.

(A4) Each curve J(p, q), where p 6= q, is unbounded. After stereographic projection to the

sphere, it can be completed to be a closed Jordan curve through the north pole.

(A5) Any two curves J(p, q) and J(s, t) have only finitely many intersection points, and

these intersections are transversal. At most three bisecting curves J(p, ·) associated with

the same site p can pass through the same point.

(A6) The number of vertical tangencies of a curve J(p, q) is O(1), and for any two curves

J(p, q) and J(s, t), their vertical tangencies are distinct.

Despite Axiom (A1), VRk(H, S), where k > 1, may consist of disjoint faces, i.e., connected

components. The six axioms cover many concrete Voronoi diagrams, so the abstract Voronoi

diagram is a prototype of many concrete ones. It is known that axioms (A1) and (A2) need

only be verified for subsets S′ of size 3, and (A3), for size 4 subsets [17, 3]. The properties

postulated in (A5) are to avoid technical difficulties; for order-1 abstract Voronoi diagrams it

has been shown in [16, 17] how to proceed without these assumptions, and we are confident

that the results in this paper can be generalized, too.

Lee [19] first proved that the order-k Voronoi diagram has O(k(n − k)) faces for point

sites in the Euclidean metric. Only recently, Papadopoulou and Zavershynskyi [23] showed

that the number of faces for disjoint line segments remains O(k(n − k)), and this bound

remains valid for intersecting segments if k ≥ n/2. Soon later, Bohler et al. [3] proved that

the number of faces in the order-k abstract Voronoi diagram is at most 2k(n − k), which is a

tight bound in the abstract setting. Gemsa et al. [14] and Liu and Lee [20] studied point

sites in the city and geodesic metrics, respectively, neither of which lies under the envelope

of the above axioms. Construction algorithms have been well-studied for point sites in the

Euclidean metric. Deterministic algorithms by Lee [19] and by Chazelle and Edelsbrunner [10]

achieve O(k2n log n) and O(n2 + k(n − k) log2 n) time, respectively. Clarkson [12] proposed

a randomized divide-and-conquer algorithm with O(kn1+ǫ) time. Moreover, Aurenhammer

and Schwarzkopf [2] and Boissonnat et al. [6] studied on-line algorithms. Most efficient

algorithms rely on a geometric transformation that maps each point site to a hyperplane in

three dimensions which is tangent to a unit paraboloid z = x2 + y2 at the vertical projection

of the point site. In this situation, computing the order-k Voronoi diagram is reduced to

computing the so called k-level of the arrangement formed by the transformed hyperplanes.

In recent years, some algorithms for settings different from point sites in the Euclidean

metric were invented. For point sites in the L1 metric, Liu et al. [20] derived an output-

sensitive algorithm with O(m log n) time, where m = O(min{k(n − k), (n − k)2}); for line

segments, Papadopoulou and Zavershynskyi [23] obtained O(k2n log n) time. Bohler et al. [5]

developed a randomized divide-and-conquer algorithm for the abstract version, and obtained

O(kn1+ǫ) time, which works for many concrete cases including disjoint line segments. Their

algorithm interprets Clarkson’s general idea [12] and replaces geometric operations with

combinatorial ones.

Agarwal et al. [1] proposed a randomized incremental algorithm to compute the k-level

which intermediately maintains cells that possibly intersect the final k-level, and their al-

gorithm yields O(k(n − k) log n) construction time for order-k Voronoi diagrams. Chan [7]

proposed a framework to compute the k-level, and adopted Agarwal et al’s algorithm as a
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black-box to obtain O(nk log k + n log n) time. Ramos [24] later improved the construction

time to O(n log n + nkO(log∗ k)), and his algorithm is a mixture of divide-and-conquer and

incremental scheme with Chan’s framework on the top. Very recently, Chan and Tsaka-

lidis [8] derandomized Chan’s framework and achieved O(nk log k) (or O(nk log k log log k))

deterministic time.

It is an interesting question if a construction time with a polylogarithmic factor to the

output size can be achieved for settings different from point sites in L1 or L2. In other words,

is it possible to extend classical k-level algorithms [1, 7, 24] to abstract Voronoi diagrams?

Such an extension would be quite different from Bohler et al.’s [5] extension of Clarkson [12],

because Clarkson’s algorithm principally adopts two planar sub-algorithms although he

explained the general idea in three dimensions. In contrast, those k-level algorithms fully

perform in three dimensions, exploiting the geometry of planes tangent to the paraboloid,

and it seems quite challenging to convert them to non-point sites and non-Euclidean metrics,

or even to the abstract version, based only on combinatorial properties of curves.

In this paper we give a first positive answer, proposing an O(k(n − k) log2 n + n log3 n)-

time randomized incremental algorithm for order-k abstract Voronoi diagrams. Due to

the six axioms, this result applies to a wide range of concrete order-k Voronoi diagrams

including point sites in any algebraic convex distance metric or the Karlsruhe metric, disjoint

line segments and disjoint convex polygons of constant size in the Lp norms, or under the

Hausdorff metric (assuming for now sites to be in general position; see the comment on axiom

(A5) from above). Such near-optimal run time is achieved for the first time for examples

different from point sites in the Euclidean and L1 metrics.

Our algorithm is strongly inspired by the k-level algorithm of Agarwal et al. [1]. We also

proceed incrementally and maintain all faces of the higher-order Voronoi regions that are

“active”. This notion can be translated to abstract Voronoi diagrams in the following way.

For a subset R of S and for each face F of VRj(Q, R) we maintain its intersections with the

farthest Voronoi diagram FV(Q), and with the nearest Voronoi diagram V (R \ Q).

Each resulting sub-face F ∩ FVR(q, Q) is decomposed into trapezoids. Such a trapezoid

△ is called active if, for some representative point y ∈ △, the level of q at y does not exceed

k plus the number of conflicts of △. Here, the level of q equals the number of s ∈ S such that

y ∈ D(s, q) holds, plus 1. The conflicts of △ are sites s ∈ S whose bisector J(s, q) intersects

△ (or one of its defining edges, which may exceed the trapezoid).

Similarly, a trapezoid in a sub-face F ∩ VR(p, R \ Q) is called active if the level of p, at

some point, is larger than k minus the number of conflicts. Face F is called active if both

intersections contain an active trapezoid.

The analysis in [1] relies on two simple facts: a hyperplane that crosses a segment must

separate its two endpoints, and a new hyperplane separates a cell into two adjacent cells. The

former implies that both the conflict size of a simplex (the number of hyperplanes intersecting

it) and the level difference between two points in a cell (the number of hyperplanes separating

them) are upper bounded by a constant times the diameter of the cell (the maximal number

of hyperplanes intersecting a line segment in it); the latter implies that the diameter of

one generated cell is at least half that of the original cell. However, this geometric analysis

could not be directly applicable to the abstract setting because a bisector that intersects a

vertical segment or a Voronoi edge does not necessarily separate its two endpoints, and a

new site can separate a face into a non-constant number of new faces and they are even not

necessarily pairwise adjacent. The second reason also illustrates an important phenomenon

in the abstract setting that an order-k region may be disconnected for k > 1.

Therefore, we are using a different approach that may be interesting in its own right.

SoCG 2016
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What one would really like to maintain, in the incremental construction, are those faces

F ⊆ VRj(Q, R) that contain a non-empty face of some region VRk(H, S), such that Q = H∩R

holds. We call these faces F essential. It is easy to verify that all essential faces are active.

We were able to show some sort of converse: with high probability, all faces our algorithm

constructs, including all active faces and those who are found to be inactive and discarded,

are essential with respect to some order k′ in a certain interval around k.

In [1], a new hyperplane partitions a cell of the arrangement into two cells. The geometry

of the lowest-vertex triangulation can be used to decide the activity of the two new cells in

time proportional to the total number of new or destroyed simplices. In the abstract setting,

a face may be split into many faces, and in each of them old trapezoids may survive. Since

we cannot afford to re-check them, in order to decide the activity of the new faces, we employ,

for each active face, a nested data structure storing sub-faces and their edges. This approach

only works because the intersections F ∩ FV(Q) and F ∩ V (R \ Q) can be shown to be trees;

for the second structure, this fact was not previously known. The tree structure allows the

sub-faces of F in these intersections to be stored in cyclic order, which behave well under

insertion of a new site. However, using the data structure approach incurs an extra log n

factor in our run time bound.

When inserting a new site s, for each face F of VRj(Q, R), we compute the sets

F ∩ FVR(s, Q ∪ {s}) ⊆ VRj(Q, R ∪ {s})

F ∩ VR(s, R ∪ {s} \ Q) ⊆ VRj+1(Q ∪ {s}, R ∪ {s}).

Each of these intersections can consist of several connected components, giving rise to several

faces of the new Voronoi regions on the right hand side. But the way F may split up is

controlled by an unexpected structural property, as we will see below. This property also

shows how disconnected Voronoi regions emerge.

To conclude, our algorithm can be seen as a combinatorial interpretation of Agarwal

et al’s algorithm [1], with a different analysis and with geometric properties replaced by

combinatorial facts about bisecting curves. The algorithm applies to a wide range of order-k

Voronoi diagrams, at the cost of an extra O(log n) factor. To some extent, our work decodes

the powerful geometric transformation between points in the plane and hyperplanes in

three dimensions, and indicates that the happy marriage between arrangements and random

sampling techniques can be extended to more general proximities than point sites in the

Euclidean metric.

2 Preliminaries

The common boundary between two faces in Vk(S) is called a Voronoi edge, and the common

vertex among more than two faces in Vk(S) is called a Voronoi vertex. The order-k Voronoi

diagram Vk(S) equals the union of the boundaries of all order-k regions or, equivalently, the

union of the intersections of the closures of any two order-k Voronoi regions.

Due to Axiom (5), a Voronoi vertex v among VRk(H1, S), VRk(H2, S), and VRk(H3, S)

can be categorised into two types: v is called new if |H1 ∩ H2 ∩ H3| = k − 1, and v is called

old if |H1 ∩ H2 ∩ H3| = k − 2 [3].

Due to Axioms (A1) and (A5), any two bisecting curves J(p, q) and J(p, r) intersect at

most twice [16]. Moreover, the following lemma holds [18].

◮ Lemma 1. For any three sites p, q, r ∈ S one has D(p, q) ∩ D(q, r) ⊆ D(p, r).
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This transitivity property ensures that, for each point x not situated on any bisecting

curve, the relation p <x q ⇐⇒ x ∈ D(p, q) is a total ordering on any subset of S. For R ⊆ S

we define

lp(x, R) := 1 + |{t ∈ R \ {p} | x ∈ D(t, p)}|

to be the level of p at point x with respect to R, abbreviated lp(x) if R = S. For every

Voronoi vertex v of Vk(S), if v is the intersection between J(p, q), J(p, t), and J(q, t), we

have lq(v) = lp(v) = lt(v) = k − 2 or k − 1 depending on whether v is old or new.

We define Γ to be a large closed Jordan curve such that no pair of bisectors cross on or

outside Γ, and each bisector crosses Γ exactly twice and these intersections are transversal. If

we add Γ to Vk(S) and cut off all parts contained in the outer domain, we obtain a connected

graph without unbounded edges, so we can view all faces in Vk(S) to be bounded.

In our algorithm, the following basic operations are assumed to take O(1) time:

1. For an arbitrary point x, determine if x belongs to D(p, q), J(p, q) or D(q, p).

2. For a point x on J(p, q), along one direction of J(p, q), determine the next intersection

with J(s, t) or a straight line, or determine the next point where the curve reverses

direction.

3. For two points x, y on J(p, q), determine which point comes first in a given direction.

Notations. For simplicity, the first order region of a site p in R will be denoted by VR(p, R),

and the first order diagram by V (R). Similarly, if R is of size r, the Voronoi diagram of

order r − 1 is the farthest diagram, FV(R), and the farthest region of a site q is FVR(q, R).

For a subset R of S, we define VF(R) as the collection of all faces in Vj(R) for 1 ≤ j ≤

|R| − 1. For an open set A ⊆ R2, we use ∂A and clA to denote its boundary and closure,

respectively.

3 Main concepts

Let (s1, s2, . . . , sn) be a random sequence of S, and let Ri be the first i sites in the sequence,

i.e., Ri = {s1, s2, . . . , si}. We incrementally insert a site in the sequence and finally obtain

Vk(S). However, since E[
∑n

i=k+1 |Vk(Ri)|] = Ω(nk2) [2] but |Vk(S)| = O(k(n − k)) [3], it is

too expensive to compute all Vk(Ri) for k + 1 ≤ i ≤ n.

We now describe an alternate approach inspired by [1].

3.1 Dominance

To compute the faces of the non-empty regions of Vk(S) we are maintaining certain faces of

lower-order diagrams.

◮ Definition 2. A face F1 of VRj1
(Q1, R1) dominates a face F2 of VRj2

(Q2, R2), where

R1 ⊆ R2 and j1 ≤ j2, if F1 ⊇ F2 and Q1 = R1 ∩ Q2. A face is called essential if it dominates

a face of Vk(S).

We observe that Q1 = R1 ∩ Q2 implies (R1 \ Q1) ∩ Q2 = ∅. Moreover, Q1 ⊆ Q2 and R1 ⊆ R2

imply VRj1
(Q1, R1) ⊇ VRj2

(Q2, R2), so that F1 ⊇ F2 already follows from F1 ∩ F2 6= ∅ since

faces are path-connected. Clearly, the dominance relation is transitive.

Essential faces can be characterized in the following way.

◮ Lemma 3. A face F of VRj(Q, R) dominates a face of Vk(S) if and only if there exists a

point x ∈ F where x ∈ FVR(q, Q) and x ∈ VR(p, R \ Q) such that lq(x) ≤ k < lp(x).

SoCG 2016
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Figure 1 Left: F̌ = (V (R\Q)∩F )∪∂F . Middle: F̌▽. Right: d(△) = r1 and D(△)={r1, r2, q1, q2}.

Proof. Necessity: Let C be the face of Vk(S) dominated by F and let C belong to VRk(H, S).

Consider a point x ∈ C that does not lie on any bisector. Since H are the k nearest sites of

x and Q ⊆ H, q is at most the kth nearest neighbor of x, and since (R \ Q) ∩ H = ∅, p is at

least the (k + 1)st nearest neighbor of x, implying lq(x) ≤ k < lp(x).

Sufficiency: Let C be the face of Vk(S) that contains x and let C belong to VRk(H, S).

Since lq(x) ≤ k and q is the farthest neighbor of x in Q, Q ⊆ H, and since lp(x) > k and p

is the nearest neighbor of x in R \ Q, we have (R \ Q) ∩ H = ∅, implying Q = R ∩ H, so that

F dominates C. ◭

Lemma 3 suggests to partition a face F of VRj(Q, R) by FV(Q) and V (R\Q), respectively,

and we use F̂ and F̌ to denote these two subdivisions. Faces in F̂ and F̌ are called sub-faces.

The following lemma determines the structures of F̂ and F̌ , and implies that each sub-face

of F̂ or F̌ shares exactly one edge with the boundary of F , which is called an outer edge,

while the edges of the refined Voronoi diagrams are called inner edges. (See Fig. 1)

◮ Lemma 4. For a face F of VRj(Q, R), if j > 1, FV(Q) ∩ F is a tree, and if j < |R| − 1,

V (R \ Q) ∩ F is a tree. (If j = 1 (resp. j = |R| − 1), F̂ (resp. F̌ ) has exactly one sub-face.)

3.2 Trapezoidal Decompositions

As before, let F be a face of VRj(Q, R). For efficient computations, we partition (the

sub-faces in) F̂ and F̌ into vertical trapezoids, and denote the result by F̂▽ and F̌▽,

respectively. Abusing the notation slightly, we also use F̂ and F̌ to denote the corresponding

decompositions. F▽ is the set of trapezoids in F̂▽ and F̌▽. For example, the middle drawing

of Fig. 1 illustrates F̌▽.

We assume that each trapezoid is adjacent to at most two trapezoids on either side. This

assumption can be attained by inserting zero-width trapezoids whenever necessary [9].

◮ Lemma 5. F▽ has O(|F |) trapezoids, where |F | is the number of edges bounding F .

Now, we describe what information on single trapezoids we are interested in. For all

trapezoids △ in F̂▽ of a sub-face F ∩ FVR(q, Q), we call q the owner of △, denoted by d(△).

Similarly, for all trapezoids △ in F̌▽ that decompose a sub-face F ∩ V R(p, R \ Q), we call

d(△) := p the owner of △.

By D(△) we denote the set of sites defining △. Precisely, △ is defined by at most two

edges (top and bottom) and two vertical segments (left and right). Note that an edge here

means an edge of F̂ or F̌ , and it could exceed the boundary of △. For example, as shown

in the right of Fig. 1, the top and bottom edges of △ are e1 and e2. All the edges and the

segments are associated with d(△)-bisectors, and |D(△)| ≤ 9. See Fig. 1 for an illustration.

Moreover, for a trapezoid △, we say a site t ∈ S \ D(△) is in conflict with △ if J(t, d(△))

intersects △ or one of the two edges that define △. In other words, △ does not exist

in VF▽(R ∪ {t}), or one of its defining edges has been changed. It is clear that no site
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t ∈ R \ D(△) can have a conflict with △. We let J(△) be the set of sites t in conflict with

△, and w(△) be |J(△)|. We call J(△) and w(△) the conflict list and conflict size of △,

respectively. In addition, we say a site t ∈ S \ R conflicts with F ∈ VF(R) if t conflicts with

a trapezoid of F▽.

In the sequel, we will select an arbitrary point y△ ∈ △ for each trapezoid △ ∈ F▽, and

compute the level of its owner, ld(△)(y△).

3.3 Active faces

Since it is hard to determine the existence of x in Lemma 3, instead of processing the essential

faces, we define “active” faces in the following way.

◮ Definition 6. Consider a face F of VRj(Q, R). For a trapezoid △ of F̂▽, △ is called active

if ld(△)(y△) − w(△) ≤ k; for a trapezoid △ of F̌▽, △ is called active if ld(△)(y△) + w(△) > k.

Finally, F is called active if both F̂▽ and F̌▽ contain an active trapezoid.

◮ Lemma 7. An essential face must be active. Active faces in VF(S) are faces in Vk(S).

4 Algorithm

Let AF(R) be the set of active faces in VF(R), the set of all faces of all higher order regions

over site set R, and let AFi be AF(Ri), for short. We first compute AF10 directly, and then

from i = 10 to i = n − 1, we iteratively compute AFi+1 from AFi, leading to the faces of

Vk(S) (Lemma 7). Finally, since adjacencies between faces are not recorded in AFi, we gather

all vertices of Vk(S) from faces of Vk(S), and link all those vertices in O(k(n − k) log n) time

[5] to obtain Vk(S).

During the incremental construction we maintain the following structures:

The decompositions F▽ for all faces F ∈ AF(R); for every trapezoid in F▽, its at most

four adjacent trapezoids, and its at most two defining edges; for every edge of F̂ and F̌ ,

all adjacent trapezoids on its two sides.

The conflict lists: for every trapezoid △ ∈ AF(R)▽, the conflict list J(△), and for every

site s ∈ S \ R, the set of all trapezoids of △ ∈ AF(R)▽ in conflict with s.

Levels: for every trapezoid △ ∈ AF(R)▽, a chosen point y△ ∈ △ and ld(△)(y△).

Decompositions of nearest- and farthest-site Voronoi diagrams: V (R)▽ and FV(R)▽.

Data structures: a data structure for every face F ∈ AF(R), allowing the localization of

trapezoids in F and a quick test of the active status of F ; these data structures will be

discussed in Section 4.4.

Once a new site s ∈ S \ R has been randomly chosen for insertion, we find the trapezoids

in conflict with s and, by means of the data structures, the faces they belong to.

4.1 Influence of a new site on an old face

Throughout the rest of this section, let F denote a face of VRj(Q, R) in conflict with s. We

compute the sets

F− := F ∩ FVR(s, Q ∪ {s})

F+ := F ∩ VR(s, R ∪ {s} \ Q)

by tracing their boundaries in F , denoted by J− and J+, through F̂▽ and F̌▽, respectively.

SoCG 2016
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Figure 2 J− partitions F into F− and F3, J+ partitions F into F+ and F1, and F2 = F+ ∩ F−.

In this section we study which new faces arise from F and how to obtain their decompo-

sitions into farthest- and nearest-site Voronoi diagrams. In the subsequent sections, tracing

of J− and J+ at the trapezoid level and updating trapezoids, including conflict lists and

activity status, will be addressed.

The next lemma can be derived by evaluating local orderings.

◮ Lemma 8. Each face of F− is a face of VRj(Q, R ∪ {s}), and each face of F+ is a face of

VRj+1(Q ∪ {s}, R ∪ {s}).

Note that F− and F+ can be disconnected and overlap; see Fig. 2. Yet, these sets and

their boundaries have surprising structural properties, as the following lemmas show.

◮ Lemma 9. F− ∪ F+ = F . J− and J+ do not intersect each other inside F .

Proof. For the first statement, assume the contrary that there exists a point x ∈ F such that

x /∈ F− and x /∈ F+. Since x /∈ F−, there exists a site q ∈ Q such that x ∈ D(s, q). Since

x /∈ F+, there exists a site p ∈ R \ Q such that x ∈ D(p, s). By the transitivity (Lemma 1),

x ∈ D(p, q). However, since x ∈ F , x ∈ D(q, p), leading to a contradiction.

For the second statement, if J− and J+ intersect inside F , F− ∪ F+ ( F , contradicting

the first statement. ◭

◮ Lemma 10. Neither J− nor J+ contains a closed cycle in F

Proof. If J− contains a closed cycle, then FV(Q∪{s}) contains a bounded face, contradicting

Lemma 4. Assume that J+ contains a closed cycle in F , and let K be the region enclosed.

Since J+ is the boundary of VR(s, R ∪ {s} \ Q), K must be VR(s, R ∪ {s} \ Q); otherwise,

there must exist a site t ∈ R\Q such that VR(t, R∪{s}\Q) is enclosed by VR(s, R∪{s}\Q),

implying that J(s, t) is closed, i.e., a contradiction. In this situation, J+ is exactly a closed

curve. Since F− ∪ F+ = F (Lemma 9), J− does not contain any closed cycle, and J+ is a

closed curve, F− is exactly F , and contains VR(s, R ∪ {s} \ Q). By Lemma 8, F− is a face of

VRj(Q, R ∪ {s}), and by Lemma 4, each face of F− ∩ V (R ∪ {s} \ Q) touches the boundary

of F . However, since J+ is a closed curve in F and does not intersect ∂F , VR(s, R ∪ {s} \ Q)

forms a bounded region in F− ∩ V (R ∪ {s} \ Q), contradicting Lemma 4. ◭

◮ Lemma 11. J− intersects ∂F at a point x if and only if J+ intersects ∂F at x. Hence,

J− intersects F if and only if J+ intersects F .

Proof. For the first statement, we show necessity as follows. Let e be the Voronoi edge of F

which contains x and assume that e is between VRj(Q, R) and VRj(Q ∪ {p} \ {q}, R), where

q ∈ Q and p ∈ R \ Q, i.e., e ⊂ J(p, q). In this situation, q is the farthest site of x in Q, and
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p is the nearest site of x in R \ Q. Since x ∈ FVR(q, Q) and J− passes through x, J(q, s)

passes through x. Since J(q, s) and J(p, q) intersect at x, J(p, s) passes through x. Since

x ∈ VR(p, R \ Q) and J(p, s) passes through x, J+ passes through x.

The proof of sufficiency is symmetric to the necessity proof. The second statement directly

follows from the first statement and Lemma 10. ◭

For short, we let F1 := F \ F+ and F3 := F \ F−. By the above, the set F2 := F− ∩ F+

may consist of several faces, each of which is bounded by one segment of J− and one of

J+. Each face of F2 touches ∂F in exactly two points where J− and J+ meet; see Fig. 2.

The following observation helps in constructing the farthest-site and nearest-site Voronoi

diagrams inside the new faces.

◮ Observation. For points x1 ∈ F1, x2 ∈ F2, and x3 ∈ F3, the levels of the new site s at x1,

x2, and x3 with respect to R ∪ {s} are at least j + 2, exactly j + 1 and at most j, respectively.

For each face C of F−, we obtain FV(Q) ∩ C by clipping FV(Q) ∩ F with the segments

of J− bounding C. To obtain V (R ∪ {s} \ Q) ∩ C we observe that inside F1 site s cannot be

the nearest; here we can keep V (R \ Q), clipped by J+. To be added is a face of F2 bounded

by J+ and J− which equals the nearest Voronoi region of s in V (R ∪ {s} \ Q) inside C.

Similarly, let C ′ be a face of F+. Inside F3, site s cannot be the farthest in Q ∪ {s}; here

we can still use FV(Q) ∩ F , clipped by J−. To obtain FV(Q ∪ {s}) ∩ C ′ we add the same face

of F2 as above, which also equals the farthest region of s in FV(Q ∪ {s}) inside C ′. Moreover,

we clip V (R \ Q) ∩ F by J+ ∩ C ′ to obtain V (R ∪ {s} \ (Q ∪ {s}) ∩ C ′; see Figures 2 and 3.

To sum up, once we have J− and J+, we can generate new faces from F and update

their farthest-site and nearest-site Voronoi diagrams. Since this process will not generate

VR1({s}, R ∪ {s}) and VRr(R, R ∪ {s}) = FVR(s, R ∪ {s}), we maintain V (R) and FV(R)

separately during the incremental construction, as well as their trapezoidal decompositions,

conflict lists, and active statuses. The total expected time for this extra task is in O(n log n);

see [21, 18, 4].

◮ Remark. Generating F− from F is equivalent to removing F3 from F . Since each face

C of F− is a face of VRj(Q, R ∪ {s}), one may wonder which faces are adjacent to C in

Vj(R ∪ {s}). These faces belong to F ′
+, for some faces F ′ in Vj−1(R), and are obtained in

the same way F+ is obtained from F .

4.2 Tracing bisecting curves

The boundary J− of F− in F (J− = ∂F− ∩ F ) can be traced through F̂▽ using local

information stored at trapezoids, starting from a trapezoid in conflict with s one of whose

edges is external, i. e., belongs to ∂F . Namely, if site q is the owner d(△) of a trapezoid △

then J− = J(q, s) holds inside △. This stays true as J− moves into a neighboring trapezoid

through a vertical edge of △. If J− leaves △ through its top or bottom edge e, two cases

are possible. If e ⊂ J(q, q′) is an inner edge, J− now becomes part of J(q′, s). In case of an

outer edge on the boundary of F , tracing this segment of J− halts.

Since two s-bisectors intersect at most twice, J− intersects the top and the bottom edges

of △ at most four times, and since a bisector has a constant number of vertical tangencies,

J− intersects the left and right segments of △ at most O(1) times. Therefore, the size of

J− ∩ △ is O(1), and only O(1) time will be spent on computing J− ∩ △. Thus, the time to

trace J− is upper bounded by the number of trapezoids in F̂▽ that are in conflict with s,

times a constant.

The same holds for tracing J+ through F̌▽.
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Figure 3 Computation of F▽

− and F▽

+ from F▽. Two copies of F2 are needed.
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Figure 4 Separating a trapezoid and merging trapezoids.

4.3 Updating Trapezoidal Decompositions

As Fig. 3 illustrates, in F− and F3 existing trapezoids will be altered by J− and J+, whereas

in F2 a new trapezoid decomposition has to be built from scratch. While the geometric

changes to the trapezoids are quite straightforward to implement, we also have to update

conflict lists and activity statuses.

4.3.1 Trapezoids in F
−

and F3

Reconstructing F̂−
▽

and F̂3
▽

, together with their conflict lists, is similar to the standard

incremental construction for vertical trapezoidal decompositions (see Mulmuley’s book [22]).

It involves separating existing trapezoids by J− and merging trapezoids sharing the same

edges, and takes time proportional to the total conflict size of destroyed trapezoids; see Fig. 4.

Also, testing the new trapezoids for activity is quite straightforward. Thus we only remark

on a subtle fact here: a trapezoid △′ generated from an inactive trapezoid △ may be active

although △′ is smaller than △. This is because the top or bottom edge changes such that a

site t that does not conflict with △ may conflict with △′. As shown in Fig. 5, J(q′, t) and

J(q′, t) intersect the top edge e′ of △′ but not the top edge e of △.

4.3.2 Trapezoids in F2

We separate each edge of F2 into x-monotone curves, and apply Chazelle’s algorithm [9] to

compute the vertical trapezoidal decomposition for each face of F2. His algorithm works for

x-monotone curves, and takes time proportional to the number of created trapezoids.

To construct the conflict lists, we note that each face of F2 is bounded by a curve of

J− and a curve of J+, due to the results in Subsection 4.1, and each trapezoid in F▽

2 is

dominated by s. Consider a face C of F2. Since there is no closed bisector, if a trapezoid in
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△
△

′

C

C2

C1

e

e′

J−J(q, t′)J(q, t′)

J(q, t)J(q, t)

Figure 5 C is a sub-face of F ∩ FVR(q, Q), and t and t′ conflict with △′ but not △.

△

△
′

s
q

s
t

t
q

△

△
′

s

q

t

q

s

t

s

t′

y△

y△′

F2

Figure 6 Left: Tracing conflicts for t where d(△) = q and d(△′) = s. Right: Walking from y to

y′ one must pass through J(q, s), J(t′, s) and J(s, t), so ls(y′) = lq(y) + 2 − 1.

C▽ is conflicted by a site t ∈ S \ (R ∪ {s}), J(s, t) must intersect the boundary of C, and

thus t must also be in conflict with a trapezoid outside C and adjacent to the boundary of

C. Therefore, we can compute conflict lists for trapezoids in C▽ from the outside of C (see

the left drawing of Fig. 6).

To check the active statuses, for each face C of F2, we select a pair of trapezoids, △ and

△′, outside and inside C, respectively, such that they share an edge along the boundary of

C. Recall that d(△′) = s. Since ld(△)(y△) is known, we arbitrarily choose a point y′
△ ∈ △′,

and compute ls(y△′) by testing for each site t ∈ J(△) ∪ J(△′) if J(t, s) separates y△ and

y△′ (see the right drawing of Fig. 6). Note that J(s, d(△)) separates y△ and y△′ , and

D(t, s) ∩ D(s, d(△)) ⊆ D(t, d(△)) holds by Lemma 1. Then, we traverse from △′ to other

trapezoids in C▽, choose a point for each of them, and compute the corresponding level

similarly. All these operations take time proportional to the total conflict size of those

traversed trapezoids. Since all involved trapezoids are newly created and tested at most 4

times, the total time is proportional to the total conflict size of newly created trapezoids.

To sum up, the time to update trapezoids is proportional to the number of destroyed and

newly created trapezoids and their total conflict size. Actually, the time for F̂−
▽

, F̂3
▽

, F̌+
▽

and F̌1
▽

is charged to destroyed trapezoids, and the time for F▽

2 is charged to trapezoids

newly created.

4.4 Updating Active Status of Faces

After generating new faces from a face F , we need to remove F , test new faces for being

active, and remove the inactive ones, together with their trapezoids. The problem is that a

new face may be active because it contains an old active trapezoid △ that was not in conflict

with s, so that we could not afford to visit △.

We suggest the following solution. By Lemma 4, sub-faces of F in F̂ or F̌ form a cyclic

sequence along the boundary of F , where each sub-face appears once. Let us call a sub-face

active if it contains an active trapezoid. We group consecutive inactive sub-faces into a single

element and store a cyclic list of such elements and active sub-faces. Then, F̂ contains an

SoCG 2016
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Figure 7 Left: Edges of F̂ (dash: inner, solid: outer). Right: a 3-layer data structure for F̂ .

active sub-face if and only if this list contains more than one entry, or if its only entry is an

active sub-face.

Each internal edge appears in two copies, one for the trapezoids on either side. Such

a half-edge is called active if one of its adjacent trapezoids is active. For each sub-face C

we group together inactive half-edges along ∂C, and obtain another cyclic sequence of such

elements and active half-edges. Again, we can decide in O(1) time if the sub-face C is active.

These lists are stored in a 3-level data structure, as shown in Fig. 7, one for each active face.

If implemented as an enhanced red-black tree [25], operations insert, delete, concatenation,

split, and find-set run in O(log m) amortized time (or faster), where m counts the total

number of operations. When considering site set R, m can be upper bounded by rO(1), so

that each operation takes amortized time in O(log r). This data structure allows to determine

the activity of a face in constant time. How to maintain it under insertion of a new site

s will be stated in a complete version later. We remark that the time to update the data

structures is log r times the number of destroyed and newly created trapezoids.

5 Analysis

The time to insert a new site is proportional to the total conflict size of destroyed and newly

created trapezoids plus log n times their number. However, not all the created trapezoids

belong to an active face, so it is not sufficient to analyze active faces in AFr.

While all essential faces (i. e., those dominating an order-k face) are active, the converse

does not hold. But we are able to prove a slightly weaker fact.

◮ Definition 12. For a subset R of S of size r, let M(R) denote the collection of faces in

VF(R) each of which dominates a face of Vk′(S), where k − 6c n
r

log r ≤ k′ ≤ k + 6c n
r

log r.

We are proving that with high probability M(Rr+1) contains all faces created during the

insertion of site sr+1, both active ones and inactive ones that were discarded.

Since VF(Rr)▽ has O(r3) trapezoids, the time to insert the (r + 1)st site is trivially

O(nr3). Therefore, if the probability for M(R) to have the above property is high enough, say

1−O(r−5), the insertion time, provided that M(R) fails to have it, is O(nr3)∗O(r−5) = O( n
r2 ).

Since
∑n

r=10 O( n
r2 ) is only O(n), the analysis of the positive case will dominate the overall

expectation.

To this end, we define a kind of ǫ-nets for ǫ = c 1
r

log r as follows.

◮ Definition 13. For a subset R of S of size r and for a constant c ≥ 22, R is an ǫ-net if

1. For each trapezoid △ ∈ VF▽(R), w(△) ≤ c n
r

log r,

2. and for each face F ∈ VF(R) where F ⊆ VFj(Q, R) and for any two points x, x′ ∈ F

where x ∈ FVR(q, Q) ∩ VR(p, R \ Q) and x′ ∈ FVR(q′, Q) ∩ VR(p′, R \ Q),

max{|lq(x) − lq′(x′)|, |lp(x) − lp′(x′)|, lp(x) − lq(x)} ≤ c
n

r
log r.
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◮ Lemma 14. If Rr is an ǫ-net, then M(Rr+1) contains all the created faces due to the

insertion of sr+1.

Proof. Consider a face F of AF(Rr) in conflict with sr+1. It is sufficient to prove that all

faces generated from F due to the insertion of sr+1 belong to M(Rr+1). Let F belong to

VRj(Q, Rr). We will prove that each face C of F− belongs to M(Rr+1), and it is symmetric for

each face of F+. (Recall that F− = F ∩VRj(Q, Rr+1) and F+ = F ∩VRj+1(Q∪{sr+1}, Rr+1).)

Take a point x ∈ C where x ∈ VR(sr+1, Rr+1 \ Q) and x ∈ FVR(q, Q). Since C ⊆ F , we also

let x belong to VR(p, Rr \ Q). In other words, x ∈ D(sr+1, p), so lq(x) < lsr+1
(x) < lp(x).

Since F is active, there exists a trapezoid △ ∈ F̂▽ such that there exists a point y ∈ △ with

ld(△)(y) − w(△) ≤ k. Since Rr is an ǫ-net, w(△) ≤ c n
r

log r and lq(x) − ld(△)(y) ≤ c n
r

log r,

we have lq(x) ≤ k + 2c n
r

log r. Similarly, we can derive lp(x) ≥ k − 2c n
r

log r. Since

lp(x) − lq(x) ≤ c n
r

log r (by the definiton of an ǫ-net), we have

k − 3c
n

r
log r ≤ lq(x) < lp(x) ≤ k + 3c

n

r
log r.

Finally, since lq(x) < lsr+1
(x) < lp(x) and 2 n

r+1 log(r + 1) ≥ n
r

log r, we have

k − 6
n

r + 1
log(r + 1) ≤ lq(x) < lsr+1

(x) < lp(x) ≤ k + 6
n

r + 1
log(r + 1),

implying that C dominates a face of Vk′(S) where k−6c n
r+1 log(r+1) ≤ k′ ≤ k+6c n

r+1 log(r+

1) (see Lemma 3) and thus belongs to M(Rr+1). ◭

Using general ideas by Clarkson and Shor [13] and Haussler and Welzl [15], we analyze

the probability of an ǫ-net as follows.

◮ Lemma 15. With probability 1 − O( 1
r5 ), a random sample R of S of size r is an ǫ-net.

By Lemma 15, we can derive the expected size of |M(R)▽|. The number of trapezoids in

M(R)▽ is proportional to the number of vertices in M(R), so we analyze the latter. It is

sufficient to consider the case in which R is an ǫ-net since |M(R)| is trivially O(r3) and the

probability that R is not an ǫ-net is only O(r−5), leading to a product O(r−2). We mainly

prove that a vertex of M(R) is a vertex of Vm(S) where k −7c n
r

log r ≤ m ≤ k +7c n
r

log r +2.

If this claim holds, since Vm(S) has O(m(n − m)) vertices [3], the total complexity of

all candidates is proportional to the summation of m(n − m) for k − 7c n
r

log r ≤ m ≤

k + 7c n
r

log r + 2, leading to O( n
r

k(n − k) log r + n3

r2 log2 r). Since each vertex of VF(S) is a

vertex of VF(R) with probability O( r3

n3 ), this implies that the expected number of vertices

in M(R) is O( r2

n2 k(n − k) log r + r log2 r).

The intuitive idea for the claim is to consider a vertex v of a face F in M(R) and to let F

belong to VRj(Q, R) and v be an intersection between J(t, t′) and J(t, t′′). Since F is a face

of M(R), there exists a point x ∈ F such that x ∈ FVR(q, Q) and lq(x) ≤ k+6c n
r

log r. Since

R is an ǫ-net, lt(v) − lq(x) ≤ c n
r

log r, implying that lt(v) ≤ k + 7c n
r

log r. Symmetrically, we

have lt(v) ≥ k + 7c n
r

log r − 2. Since v is an order-(lt(v) + 2) vertex, we prove the claim and

conclude the following lemma.

◮ Lemma 16. E[|M(R)▽|] = O( r2

n2 k(n − k) log r + r log2 r).

Chazelle et al. [11] proposed an abstract framework for randomized incremental construc-

tion, and to adopt their result, we show that M(R) has some monotonicity property.

◮ Lemma 17. For all trapezoids △ ∈ M▽(Rr), if D(△) ⊆ Rr−1, then △ ∈ M▽(Rr−1).
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Proof. Let F be the face in M(Rr) that contains △, i.e., △ ∈ F▽, and let F be a face

of VRj(Q, R). Since J(△) ∩ Rr = ∅ and D(△) ⊆ Rr−1, △ must belong to some face in

VF(Rr−1), and we use F ′ to denote it. It is clear that F ′ ⊇ F . If sr ∈ Q, F ′ is a face of

VRj−1(Q\{sr}, Rr−1); otherwise, F ′ is a face of VRj(Q, Rr−1). In either case, F ′ dominates

F . Since F ∈ M▽(Rr), F dominates a face C of Vk′(S) where k−6c n
r

log r ≤ k′ ≤ k+6c n
r

log r,

and since F ′ dominates F , F ′ also dominates C. Since n
r−1 log(r − 1) > n

r
log r (for r > 2),

k − 6c n
r−1 log(r − 1) ≤ k′ ≤ k + 6c n

r−1 log(r − 1), and thus F ′ belongs to M(Rr−1), implying

that △ ∈ M▽(Rr−1). ◭

Finally, we analyze the expected construction time. The whole idea is that if Rr is an

ǫ-net, we charge the insertion time of sr+1 through M(Rr); otherwise, we use O(r3n) to

bound the insertion time. The latter has been shown to be O(n) over the entire construction.

Let T be
⋃n

r=10 M▽(Rr). Since each destroyed trapezoid must be created before and

M▽(Rr+1) contains all created trapezoids due to the insertion of sr+1 when Rr is an ǫ-net

(Lemma 14), the former case during the whole incremental construction is bounded by

O(
∑

△∈T log n + w(△)). By Lemma 17, we can adopt Chazelle et al.’s framework [11] to

prove that

E[|T |] =

n∑

r=10

O(1/r)E[|M(Rr)▽|] and E[
∑

△∈T

w(△)] =

n∑

r=10

O(n/r2)E[|M(Rr)▽|].

Since E[|M(Rr)▽|] = O( r2

n2 k(n − k) log r + r log2 r) (by Lemma 16),

E[
∑

△∈T

log n + w(△))] = log n · E[|T |] + E[
∑

△∈T

w(△)] = O(k(n − k) log2 n + n log3 n).

Since we can link all vertices of Vk(S) in O(k(n − k) log n) time [5], we conclude the following.

◮ Theorem 18. The expected time to compute Vk(S) is O(k(n − k) log2 n + n log3 n).
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