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Abstract

This paper aims to present a new genetic approach that uses rank distance for solving two known NP-hard problems, and to
compare rank distance with other distance measures for strings. The two NP-hard problems we are trying to solve are
closest string and closest substring. For each problem we build a genetic algorithm and we describe the genetic operations
involved. Both genetic algorithms use a fitness function based on rank distance. We compare our algorithms with other
genetic algorithms that use different distance measures, such as Hamming distance or Levenshtein distance, on real DNA
sequences. Our experiments show that the genetic algorithms based on rank distance have the best results.

Citation: Dinu LP, Ionescu R (2012) An Efficient Rank Based Approach for Closest String and Closest Substring. PLoS ONE 7(6): e37576. doi:10.1371/
journal.pone.0037576

Editor: Chuhsing Kate Hsiao, National Taiwan University, Taiwan

Received December 10, 2011; Accepted April 24, 2012; Published June 4, 2012

Copyright: � 2012 Dinu, Ionescu. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was conducted without any funds. The authors supported this work from their salary as researchers at the University of Bucharest. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ldinu@fmi.unibuc.ro

. These authors contributed equally to this work.

Introduction

Motivation
In many important problems in computational biology a com-

mon task is to compare a new DNA sequence with sequences that

are already well studied and annotated. Sequences that are similar

would probably have the same function, or, if two sequences from

different organisms are similar, there may be a common ancestor

sequence [1]. Another important problem with practical motiva-

tions for biologists is related to the finding of motifs or common

patterns in a set of given DNA sequences. A typical case where the

last mentioned problem occurs is, for example, when one needs to

design genetic drugs with structure similar to a set of existing

sequences of RNA [2]. Other applications in computational

biology which involve this task are (from a rich literature): PCR

primer design [3], [2], genetic probe design [2], antisense drug

design [4], finding unbiased consensus of a protein family [5],

motif finding [6], [7] etc. In many situations all these applications

share a task that requires the design of a new DNA or protein

sequence that is very similar to (a substring of) each of the given

sequences.

In computational biology the problem that deals with this task is

known as the closest string problem (CSP): given a set S of strings

over an alphabet S, find the string which is the most similar to the

strings from S. The similarity measure varies according to the

application. The CSP was studied first time in the area of coding

theory, to determine the best encoding of a set of messages [8], and

the measure used to compare the strings was the Hamming

distance.

The standard method used in computational biology for

sequence comparison is by sequence alignment. Sequence

alignment is the procedure of comparing two sequences (pairwise

alignment) or more sequences (multiple alignment) by searching

for a series of individual characters or characters patterns that are

in the same order in the sequences. Algorithmically, the standard

pairwise alignment method is based on dynamic programming;

the method compares every pair of characters of the two sequences

and generates an alignment and a score, which is dependent on

the scoring scheme used, i.e. a scoring matrix for the different

base-pair combinations, match and mismatch scores, or a scheme

for insertion or deletion (gap) penalties.

Although dynamic programming for sequence alignment is

mathematically optimal, it is far too slow for comparing a large

number of bases, and too slow to be performed in a reasonable

time.

Also, since some of the search solutions are inaccurate from

a biological point of view, alternative approaches periodically are

explored in computational biology. This important problem,

known also as DNA sequence comparison, is ranked in the top of

two lists with major open problems in bioinformatics [9], [10].

The standard distances with respect to the alignment principle

are edit (Levenshtein) distance [11] or its ad-hoc variants. The

study of rearrangement genome [12] was investigated also under

Kendall tau distance (the minimum number of swaps needed to

transform a permutation into the other).

To measure the similarity between strings Dinu proposes a new

distance measure, termed rank distance (RD) [13], with applications

in biology [14], natural language processing [15], authorship

atribution [16]. Rank distance can be computed fast and benefits

from some features of the edit distance.

To measure the distance between two strings with RD we scan

(from left to right) both strings and for each letter from the first

string we count the number of elements between its position in the

first string and the position of its first occurrence in the second

string. Finally, we sum up all these scores and obtain the rank

distance. In other words, the rank distance measures the ‘‘gap’’
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between the positions of a letter in the two given strings, and then

sums up these values. Intuitively, the rank distance gives us the

total non-alignment score between two sequences.

Clearly, the rank distance gives a score zero only to letters which

are in the same position in both strings, as Hamming distance does

(we recall that Hamming distance is the number of positions where

two strings of the same length differ). On the other hand, an

important aspect is the reduced sensitivity of the rank distance with

respect to deletions and insertions. Reduced sensitivity is of

paramount importance, since it allows the ad hoc extension to arbitrary

strings, without affecting the low computational complexity. In

contrast, the extensions of Hamming distance are mathematically

optimal but computationally too heavy, and lead to the edit-distance,

which is the base of the standard alignment principle. Thus, the

rank distance sides with Hamming distance rather than Levensh-

tein distance as far as computational complexity is concerned:

a significant indicator is the fact that in the Hamming and rank

distance case the median string problem is tractable [17], while in

the edit distance case it is NP-hard.

RD is easy to implement, does not use the standard alignment

principle, and has an extremely good computational behavior.

Another advantage of RD is that it imposes minimal hardware

demands: it runs in optimal conditions on modest computers,

reducing the costs and increasing the number of possible users. For

example, the time needed to compare a DNA string of 45,000
nucleotides length with other 150 DNA strings (with similar

length), by using an laptop with 224 MB RAM and 1:4 GHz

processor is no more than six seconds.

Traditionally, the Closest String Problem (CSP) is related to

Hamming distance and it tries to find a minimal integer d (and

a corresponding string s of length n) such that the maximal

Hamming distance to any string in S is at most d. It all started
from a code theory application [18]. There are recent studies that

investigate CSP under Hamming distance with advanced pro-

gramming techniques such as integer linear programming (ILP)

[19].

In [18] it is shown that the decision problem associated with the

Covering Radius of arbitrary binary codes is NP-complete. The

Radius of a binary code C is the smallest integer r such that C is

contained in a radius-r ball of the Hamming metric space

Sf0,1gn,dT. Starting from the problems of equivalence between

computing the Radius and the Covering Radius problem [20], in

[18] it is shown that the 3SAT problem is polynomially reducible

to the Radius decision problem. There are a number of

approximation algorithms and heuristics (e.g. [2,7,21]).

When CSP emerged in bioinformatics, the problem was

investigated from many points of view. These investigations

implied the use of different distances. The most intensive studied

approach was the one based on edit distance. In [22], it is shown

that closest string and median string (via edit distance) are NP-

hard for alphabets of size at least 4 and for unbounded alphabets,

respectively.

In many practical situations the alphabet is of fixed constant size

(in computational biology, the DNA and protein alphabets are

respectively of size 4 and 20). For some applications, one needs to

encode the DNA or protein sequences on a binary alphabet that

expresses only a binary property of the molecule, e.g. hydrophoby

(for instance, this is the case in some protocols that identify similar

DNA sequences [23]). In [24–25] it is shown that closest string and

median string are NP-hard for finite and even binary alphabets.

The existence of fast exact algorithms, when the number of input

strings is fixed, is investigated in [24].

The study of genome rearrangement specific problems lead to

the development of new problems related to closest string via

various distances used in the investigations of this problems.

Recently, in [26] it is shown that the CSP via swap distance (or

Kendall distance) and CSP via element duplication distance (the

element duplication distance between w1 and w2 is the minimum

number of element duplications needed to transform a string w2

into a string w1) remain NP-hard too.

In [27] it is shown that the CSP and CSSP (closest substring

problem) via rank distance are NP-hard. In this paper we use an

approach based on genetic algorithms to propose an approxima-

tion of CSP and CSSP via rank distance.

Preliminaries
In this section we introduce notation and mathematical

preliminaries. We first introduce the rank distance and then we

define closest string and closest substring problems.

A ranking is an ordered list and is the result of applying an

ordering criterion to a set of objects. Formally,

Definition 1. Let U~f1,2,:::,#Ug be a finite set of objects,

named universe (we write #U for the cardinality of U). A ranking

over U is an ordered list: t~(x1wx2w:::wxd ), where xi[U for all

1ƒiƒd, xi=xj for all 1ƒi=jƒd, and w is a strict ordering

relation on the set fx1,x2,:::,xdg.
A ranking defines a partial function on U where for each object

i[U, t(i) represents the position of the object i in the ranking t.
Observe that the objects with high rank in t have the lowest

positions.

The rankings that contain all the objects of an universe U are

termed full rankings, while the others are partial rankings. We define

the order of an object x[U in a ranking s of length d, by

ord(s,x)~Ddz1{s(x)D. By convention, if x[U\s, we have

ord(s,x)~0.

Definition 2. Given two partial rankings s and t over the

same universe U, we define the rank distance between them as:

D(s,t)~
X

x[s|t

Dord(s,x){ord(t,x)D:

In [13] Dinu proves that D is a distance function. The rank

distance is an extension of the Spearman footrule distance [28],

defined below.

Definition 3. If s and t are two permutations of the same

length, then D(s,t) is named the Spearman footrule distance.

The rank distance is naturally extended to strings. The following

observation is immediate: if a string does not contain identical

symbols, it can be transformed directly into a ranking (the rank of

each symbol is its position in the string). Conversely, each ranking

can be viewed as a string, over an alphabet equal to the universe of

the objects in the ranking. The next definition formalizes the

transformation of strings that have identical symbols into rankings.

Definition 4. Let n be an integer and let w~a1 . . . an be

a finite word of length n over an alphabet S. We define the

extension to rankings of w, �ww~a1,i(1) . . . an,i(n), where

i(j)~Da1 . . . aj Daj for all j~1, . . . n (i.e. the number of occurrences

of aj in the string a1a2 . . . aj ).
Example 1. If w~aaababbbac then

�ww~a1a2a3b1a4b2b3b4a5c1:

Observe that given �ww we can obtain w by simply deleting all the

indexes. Note that the transformation of a string into a ranking can

be done in linear time (by memorizing for each symbol, in an
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array, how many times it appears in the string [14]). We extend

the rank distance to arbitrary strings as follows:

Definition 5. Given w1,w2[S�, we define

D(w1,w2)~D(�ww1,�ww2):.
Example 2. Consider the following two strings x~abcaa and

y~baacc. Then, �xx~a1b1c1a2a3 and �yy~b1a1a2c1c2. Thus, the
rank distance between x and y is the sum of the absolute

differences between the orders of the characters in �xx and �yy.

D(x,y)~D1{2DzD4{3DzD5{0DzD2{1DzD3{4DzD0{5D~14

The computation of the RD between two rankings can be done

in linear time in the cardinality of the universe. Our universe has

precisely Dw1DzDw2D objects and, thus, the RD between w1 and w2

can be computed in linear time.

Let xn be the space of all strings of size n over an alphabet S and

let p1, p2, . . . ,pk be k strings from xn. The center string problem is

to find the center of the sphere of minimum radius that includes all

the k strings. An alternative formulation of the problem is to find

a string from xn which minimizes the distance to all the input

strings. We study the closest string problem under a metric defined

by the rank distance. In our experiments, we compare rank

distance with other metrics defined by Hamming distance and

Levenshtein distance.

Problem 1 (Closest string via rank distance). Let

P~fp1,p2, . . . ,pkg be a set of k length n strings over an alphabet

S. The closest string problem via rank distance (CSRD) is to find

a minimal integer d (and a corresponding string t of length n) such
that the maximum rank distance from t to any string in P is at

most d. We say that t is the closest string to P and we name d the

radius. Formally, the goal is to compute:

min
x[xn

max
i~1::k

D(x,pi)

The CSSP is a generalization of CSP where the objective is to

find a string similar to substrings of the input.

Problem 2 (Closest substring via rank distance). Let

P~fp1,p2, . . . ,pkg be a set of k length n strings over an alphabet

S. The closest substring problem via rank distance is to find

a minimal integer d (and a corresponding string t of length ‘ƒn)
and a set P’~fp’1,p’2, . . . ,p’kg, where p’i is a substring pi for all
1ƒiƒk such that the maximum rank distance from t to any string
in P’ is at most d . We say that t is the closest substring to P and we

name d the radius. Formally, the goal is to compute:

min
x[x‘

max
i~1::k

min
p’i

D(x,p’i)

Results and Discussion

Experiments Design
We test the genetic algorithm using mitochondrial DNA

sequences extracted from several mammals available in the

EMBL database: human (Homo sapiens, V00662), common

chimpanzee (Pan troglodytes, D38116), gorilla (Gorilla gorilla,

D38114), donkey (Equus asinus, X97337), rat (Rattus norvegicus,

X14848), mouse (Mus musculus, V00711), fat dormouse (Myoxus

glis, AJ001562), and cow (Bos taurus, V00654). Mitochondrial

DNA (mtDNA) is the DNA located in organelles called

mitochondria. The DNA sequence of mtDNA has been

determined from a large number of organisms and individuals,

and the comparison of those DNA sequences represents

a mainstay of phylogenetics, in that it allows biologists to

elucidate the evolutionary relationships among species. In

mammals, each double-stranded circular mtDNA molecule

consists of 15,000–17,000 base pairs.

In our experiments each mammal is represented by a single

mtDNA sequence that comes from a single individual. We

mention that DNA from two individuals of the same species

differs by only 0,1%. This means, for example, that mtDNA from

two different humans differs by less than 20 base pairs. Because

this difference cannot affect our study, we conduct the experiments

using a single mtDNA sequence for each mammal.

For each of the two problems (CSP and CSSP) we design two

similar experiments. We have another artificial experiment for

CSSP, and another experiment for CSP with great interest for

biologist.

For the first experiment we use the human, chimpanzee and

donkey genomes. We want to find the closest string (or substring)

of nucleotides between the human and chimpanzee DNAs on one

hand, and between the human and donkey DNAs on the other

hand. The goal of this experiment is to compare the distances

obtained for the two strings (or substrings). Note that the donkey

belongs to the Perissodactylae branch, while the human and the

chimpanzee belong to the Primates branch. Since the human and

the chimpanzee are both primates, the human-chimpanzee

distance should be smaller than the human-donkey distance. In

other words, we expect the biological classification of mammals to

be reflected in the DNA.

For the second experiment we use the rat, house mouse, fat

dormouse and cow genomes. As in the former case, we want to

find the closest string (or substring) of nucleotides between the

rat and house mouse DNAs, between the rat and fat dormouse

DNAs, and between the rat and cow DNAs. The goal of this

experiment is to compare the distances obtained for the three

strings (or substrings). Note that the cow belongs to the

Cetartiodactylae branch, while the rat, the house mouse, and

the fat dormouse belong to the Rodentia branch. We expect the

rat-house mouse distance and the rat-fat dormouse distance to

be smaller than the rat-cow distance. We have chosen this

experiment because in [14], where a clustering of genomes from

22 mammals is performed, the rat appears to be clustered near

the cow and sheep rather than the house mouse and fat

dormouse. This was contradictory to what we know from the

biological classification of mammals. We wanted to see if our

experiment can bring any arguments to support the well known

fact from biology.

We also use an artificial test case for the closest substring

problem to point out our optimization of the genetic algorithm

presented in [29] where we used the same artificial test case. We

optimize our genetic algorithm to compute the rank distance

measure in a linear time. We also use a hash table to store

precomputed distances between DNA sequences.

Note that another study that shows experiments using

Hamming distance for CSP and CSSP is [19]. The authors

present an ILP solution to solve these problems and they conclude

that current ILP techniques are not really up to the task for the

CSSP, except for small instances. Here we present an alternative

approach (genetic algorithms) and we investigate it under different

metrics.

Each of our experiments are performed using three different

metrics: rank distance, Hamming distance and Levenshtein

distance. We want to compare the results for each distance

A Rank Based Approach for Closest String
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measure. We show graphs of the best candidate evolution for each

metric used.

After we determine the metric that has the best results, we will

perform another experiment (using only this metric) with great

interest for biologists. At present, no definitive agreement on either

the correct branching order or differential rates of evolution

among the higher primates exists, despite the research in this area.

Joining human with chimpanzee and the gorilla with the

orangutan is currently favoured, but the alternatives that group

humans with either gorillas or the orangutan rather than with

chimpanzees also have support [30]. In our latest experiment we

try to find out if our genetic algorithm solution can lead to one of

these phylogenetic trees.

With two experiments and three distance measures for the

closest string problem, we have six test cases with associated

graphs. For the closest substring there is an extra artificial

experiment, generating nine test cases and six graphs associated to

the real DNA experiments. In our latest experiment we use the

distance measure that has the best performance on the former test

cases. We investigate only the closest strings for DNA sequences of

variable lengths and we present three more graphs.

Experiments Organisation
For each experiment we give the input strings, then we present

the results obtained by using rank distance, Hamming distance

and Levenshtein distance, respectively. An input string is a DNA

sequence. The algorithm designed for CSRD needs at least two

DNAs (of same length) to produce an output DNA sequence. The

output DNA is the closest string to the input strings computed with

rank distance. Using Hamming or Levenshtein distance in the

selection process of the genetic algorithm is analogous. The

algorithm designed for CSSRD need two DNAs (not necessary of

same length) to produce the output DNA that represents the

closest substring.

Let us describe the genetic algorithm parameters and the

format of the input and output data. The population size

represents the number of chromosomes in a single generation.

The crossover probability represents the percent of chromo-

somes (from a single generation) that get involved in the

crossover operation. The mutation probability is similar to the

crossover probability only that the chromosomes are mutated.

The number of strings (DNA sequences) gives the number of

input strings. The size of each DNA sequence is the number of

nucleotides in every DNA sequence. We use different input

parameters for each problem that we are trying to solve. The
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Figure 1. The distance evolution of the best chromosome at each step for - TEST CASE 1. GREEN = human-chimpanzee distance, RED =
human-donkey distance.
doi:10.1371/journal.pone.0037576.g001

0 20 40 60 80 100
25

30

35

40

45

50

55

60

R
an
k 
D
is
ta
nc
e

Generation
0 20 40 60 80 100
7

7.5

8

8.5

9

9.5

10

H
am

m
in
g 
D
is
ta
nc
e

Generation
0 20 40 60 80 100
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Le
ve
ns
ht
ei
n 
D
is
ta
nce

Generation

Figure 2. The distance evolution of the best chromosome at each step for - TEST CASE 2. GREEN = human-chimpanzee distance, RED =
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input parameters used for one experiment are the same for

every investigated metric. We want to compare only the metrics

used, without changing the genetic algorithm parameters or the

genetic operations involved.

The average time represents the mean time for 10 runs on the

same input data using a computer with Intel Core i5 2:3 GHz

processor and 4 GB of RAM memory. The distance achieved for

each test case is the same or less for 6 out of 10 runs.

Human-Chimpanzee-Donkey Experiment
There are two different settings for this experiment correspond-

ing to CSP and CSSP, respectively. We present the test cases and

results separately for each setting.

CSP setting. In this setting we use the first 200 nucleotides

extracted from each of the human, chimpanzee and donkey DNA

sequences. By convention, single strands of DNA and RNA

sequences are written in 5’-to-3’ direction. When we talk about

"the first nucleotides" in a DNA sequence through this paper we

understand the nucleotides that are closest to the 5’ end. We want

to determine the human-chimpanzee and human-donkey closest

strings which also have 200 nucleotides.

1. RANK DISTANCE TEST CASE 1: Population size: 2500;

number of generations: 300; crossover probability: 0.36; mutation

probability: 0.002; size of each DNA sequence: 200.

HUMAN-CHIMPANZEE RESULT: Average time: 22

seconds; Distance achieved: 3698; Closest string: G T A C T A

C G C G T T T A C T C T A C C A A A C G C A T A C T G A

C A A A T G T C T G T T A G A T G G A T C C A T C T C C

G C G T G T A C T G T C T A A A A G C G T A G C G T C A

C G T A C G T C A A G C A G T G T T T C A G T C C C A C

A A T C C A T T G C A C A T T A C T G A G C T C T C C A

T T C G T C T C A C T C T T T T T A C G A A C A A T A T

T A T C A A T G C A A A C G T G G G C C C T C T T C.

HUMAN-DONKEY RESULT: Average time: 22 seconds;

Distance achieved: 5001; Closest string: T G A A G A G C A T T

C C A T A T C T A A C T C C T G A A G T A C A C G A A C

G G A T A T G C A C T T T G C T T C G T T A C A C T A G

C G T G G A C G T A C A T T C T C G G C T G A C C T T G

G G C A T A T A A T A T T A A A G T A A C G G A G T C T

A C A T C T A A T A T C A T C G T A A C C C A T A G A A

T G T T A T A C C C T C A T C G T C C T T C G C C C A A

G T G C C C T G C T T A A C T T C T C A T.

2. HAMMING DISTANCE TEST CASE 1: Population size:

2500; number of generations: 300; crossover probability: 0.36;

mutation probability: 0.002; size of each DNA sequence: 200.

HUMAN-CHIMPANZEE RESULT: Average time: 1 min

14 seconds; Distance achieved: 73; Closest string: G A T C A T G

T G G C T A T C A C C C T C A A A G C C A C T C A C G G

G A A C T G T T C A G A C A T T T T T A C A T T A C C C

C A T G A A G A T A T G C G C G T G G T A C T A T T C T

G T C A A G C A G C A G T C A G A A A A C T C A C T C T

T G C A A T A A C T G T C T T T G C T T G C T T C A T C
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Figure 3. The distance evolution of the best chromosome at each step for - TEST CASE 3. GREEN = rat-house mouse distance, BLUE =
rat-fat dormouse, RED = rat-cow distance.
doi:10.1371/journal.pone.0037576.g003
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A T C T T A A T C T C T A T C A T C A C T A G G T A C A

A T A A T A C A G G C C G A C G C A C T G C A G C.

HUMAN-DONKEY RESULT: Average time: 1 min 13

seconds; Distance achieved: 77; Closest string: G A T C A C A

G A G C T A A A A G A C A A C A A A C C A C G C A C C T

G A A A A T G C C A A G A T T T T G G T T C C T A C G C

C T T G G G C A T A T A C A C T C G A T C C C G T T C T

G A T A C T C T G T A A C C G G T G C A A C C A C T C A

T G C A A G A T T C G T C A T T C C T G C C T G A A T G

A T C T C T T T A T T G A A C T C T C C G A T C T T A A

G G A G C A G G T G C G A A C A A A A T T A C T A.

3. LEVENSHTEIN DISTANCE TEST CASE 1: Population

size: 2500; number of generations: 300; crossover probability:

0.36; mutation probability: 0.002; size of each DNA sequence:

200.

HUMAN-CHIMPANZEE RESULT: Average time: 24 min

12 seconds; Distance achieved: 63; Closest string: G T A T A C A

C A G C T C T A C C C C C T A A A G C A A T A C C A C G

G A A G A T C T T C C A T G G A T T T A T A T C A T C C

T C T A A G C A A C A T G C A T G G T A G C C T T G C G

A T T C G A T T G A G C T C G T G A G A C C C T A T A T

C G C A T A C T G A T C C C C G A T C C T G G T C A T C

C T A T T A A T C A T C C A T G T A A A G T T A C A A G

T A T T A C A G C G C G C A G C A A T T A C A A C.

HUMAN-DONKEY RESULT: Average time: 24 min 11

seconds; Distance achieved: 59; Closest string: G T T C A A T G

T A C T A T C A C G A T A T A A A T C A A G G A G C T G

T C A A T G C A C T T G G T A G T T T C C T C T G C G C

T A T G C A C A C A T A G G G C A T T G C G A C C T G G

A G C C T T A T T A T T A C T A T G A A G C A G A T T A

A C A T G C A T T G A T T C C T G C C T C C C C A T A T

A A T C C T C T A A A T C G C A C T C T A G A T C A A A

T T A C A G G C G A A C A A G A C T C T A C T A.

CSSP setting. In this setting we use the first 300 nucleotides

extracted from the human, chimpanzee and donkey genomes. We

want to determine the human-chimpanzee and human-donkey

closest substrings of 24 nucleotides.

Here the substring size input parameter represents the desired

length of the best substring (which represents the output of the

genetic algorithm).

1. RANK DISTANCE TEST CASE 2: Population size: 500;

number of generations: 100; crossover probability: 0.36; mutation

probability: 0.02; size of each DNA sequence: 300; substring size:

24.

HUMAN-CHIMPANZEE RESULT: Average time: 39

seconds; Distance achieved: 26; Closest substring: C T T A G T

A A C T A T A T C G A G A C A A G C.

HUMAN-DONKEY RESULT: Average time: 40 seconds;

Distance achieved: 34; Closest substring: A C A T G C C T A T C

T A C C C G T A A T A C C.

2. HAMMING DISTANCE TEST CASE 2: Population size:

500; number of generations: 100; crossover probability: 0.36;

mutation probability: 0.02; size of each DNA sequence: 300;

substring size: 24.

HUMAN-CHIMPANZEE RESULT: Average time: 1 min

36 seconds; Distance achieved: 7; Closest substring: C T A C A C

A C G C A A G C C T T C C C T G C A.

HUMAN-DONKEY RESULT: Average time: 1 min 38

second; Distance achieved: 7; Closest substring: A C G T A C

G A A C C A T A C T A C A A G C T A.

3. LEVENSHTEIN DISTANCE TEST CASE 2: Population
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Figure 5. The distance evolution of the best chromosome at each step for - TEST CASE 7, 8 and 9, respectively. GREEN = human-
chimpanzee distance, RED = human-gorilla distance.
doi:10.1371/journal.pone.0037576.g005

Table 1. Chromosomes C1, C2 and C3.

C1 7 3 2 9 1 5 8 6 4

C2 4 8 1 6 3 7 9 5 2

C3 2 5 9 8 7 1 3 4 6

doi:10.1371/journal.pone.0037576.t001

Table 2. Recombined chromosomes C1 and C2 with same
prefix.

C1 7 3 2 9 4 8 1 6 5

C2 4 8 1 6 7 3 2 9 5

doi:10.1371/journal.pone.0037576.t002

A Rank Based Approach for Closest String

PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e37576



size: 500; number of generations: 100; crossover probability: 0.36;

mutation probability: 0.02; size of each DNA sequence: 300;

substring size: 24.

HUMAN-CHIMPANZEE RESULT: Average time: 7 min 4

seconds; Distance achieved: 4; Closest substring: T T G A T T C

C T G C C T A T C T A T T A G C T.

HUMAN-DONKEY RESULT: Average time: 7 min 3

seconds; Distance achieved: 4; Closest substring: A T G C T A

C T C T T A A T C G C A C C T A C G.

Observations. First, we must point out that rank distance,

Hamming distance and Levenshtein distance use different scales,

i.e. a rank distance of 100 is not equivalent to a Hamming distance

of 100, nor a Hamming distance of 100 to a Levenshtein distance

of 100. We would also like to point out that rank distance has

a finer scale, possibly being able to detect subtle differences

between DNA strings.

As one might expect, the results indicate that the human

genome is closer to the chimpanzee genome, than it is to the

donkey genome.

In the CSP setting, rank distance shows a great difference

between the human-chimpanzee closest string and the human-

donkey closest string. Levenshtein distance indicates that humans

are closer related to donkeys than to chimpanzees, while

Hamming gives the expected result as rank distance does. Both

Hamming and Levenshtein distances show small differences

between the two analysed strings. The evolution of the best closest

string candidate for each distance measure is given in Figure 1.

In the CSSP setting, RD is the only distance that can catch the

subtle difference between the human-chimpanzee closest substring

and the human-donkey closest substring, even if we use only 300
nucleotides. Hamming and Levenshtein distances are unable to

make any difference between the two closest substrings. Figure 2

presents the graphs with the best closest substring candidate

according to rank distance, Hamming distance and Levenshtein

distance, respectively.

In both CSP and CSSP settings, rank distance clearly outper-

forms Hamming and Levenshtein distances (see Figures 1 and 2).

Rat-Mouse-Cow Experiment
As for the Human-Chimpanzee-Donkey experiment, there are

two different settings corresponding to CSP and CSSP. We

present the test cases and results separately for each setting.
CSP setting. In this setting we use the first 150 nucleotides

extracted from each of the rat, house mouse, fat dormouse and

cow DNA sequences. We want to determine the rat-house mouse,

rat-fat dormouse and rat-cow closest strings which also have 150

nucleotides.

1. RANK DISTANCE TEST CASE 3: Population size: 1800;

number of generations: 300; crossover probability: 0.36; mutation

probability: 0.005; size of each DNA sequence: 150.

RAT-HOUSE MOUSE RESULT: Average time: 12 seconds;

Distance achieved: 454; Closest string: G T T G A A T C G T T A

A T A T A C A A A G C A A G T A C A T G A A T C A G A A

G T G A T A T T C T A A A A G C T T A G C A A C C A T C

A A A T A T G T G G C C G T G T T C T A C A T T T A A G

T G A A G A T G T A A A T C A A A C C T A A G C A T C A

T G A C A T G C G A A T C A A G C A T A C C T A T T.

RAT-FAT DORMOUSE RESULT: Average time: 12

seconds; Distance achieved: 1209; Closest string: G T A T A C

T G T A G T A T A A A A A A T C T G A G A C C A T G A T

A A T G T A C A G T A G G A T A C A T A C C T A A C C G

Table 3. Chromosomes C1, C2 and C3 with mutations.

C1 7 5 2 9 1 3 8 6 4

C2 4 8 1 6 3 7 9 5 2

C3 2 1 9 8 4 5 3 7 6

doi:10.1371/journal.pone.0037576.t003
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Figure 6. The graph of density probability function.
doi:10.1371/journal.pone.0037576.g006
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C A A C A A T T G A T G C C G T G T A C G C T T A A T T

T C A A T G T C T C T A G C A G G A A G A A A A T T T G

C A A A C T T C C A A C G A A A G T C G C T A A A T G T

C C A T.

RAT-COW RESULT: Average time: 12 seconds; Distance

achieved: 3321; Closest string: G T A T A A C A T G T C A C T

G A A C C G A A T A C T A G T A A T G A A A A T T C G G

C T C T T A T G C A A G A C T T A T A C T T T C A G G A

G G A T C G A T T T T A G A A C A T G A A A A T G C T A

G G C T G T A G T G G C G T A G A T C A C T A G G C A G

C T G C T T G T T C T T T T G T C A A C T G G.

2. HAMMING DISTANCE TEST CASE 3: Population size:

1800; number of generations: 300; crossover probability: 0.36;

mutation probability: 0.005; size of each DNA sequence: 150.

RAT-HOUSE MOUSE RESULT: Average time: 42 seconds;

Distance achieved: 45; Closest string: G T T A A T G T A G C T

T A T T A A C A A G G A A A G G A A T T G A A A A T G T

T T A G T G G G T T C A A T A T T C C C A A T A A C C C

A A A G G G T T G G T C C C G G G C C T G T A A A T A A

A T T A A G G G T A G A A T A A A C A T T C A A A A C C

C C C A A A A A C C G G G T T A A A A C C C T T T A.

RAT-FAT DORMOUSE RESULT: Average time: 41

seconds; Distance achieved: 43; Closest string: G T T A A T G

T A G C T T A T A A T A A G C A A A A C C A T T A A A A A

G C T T T G G A T G G A A T C T A A A A C C C C T A A A

A C A A A A A G T T T G G G C C C A G G C T T T T T A A

T T G T T T G T A G G A A A A A T A A A C A T T G C A A

C A A T C A C G A C A C C G G T A T A A A A C C C T T T

A C.

RAT-COW RESULT: Average time: 41 seconds; Distance

achieved: 56; Closest string: A T T A A T G G A T A A T C T G

C T A A T G C A A A G A C A T G A C A A T G C T G T G A

T A G A T T T A G A A A T T C T A T A A T C A G G A A G

G T T T T G G C A T T C A G C T A T G G T T G A C T G A

G G G T A T G A T T C G A C A C A T A A A C T T C A A T

A G G C C T T A G C A G A A T C T T T A G A.

3. LEVENSHTEIN DISTANCE TEST CASE 3: Population

size: 1800; number of generations: 300; crossover probability:

0.36; mutation probability: 0.005; size of each DNA sequence:

150.

RAT-HOUSE MOUSE RESULT: Average time: 9 min 28

seconds; Distance achieved: 14; Closest string: G T T A A T G T

A G C T T A T A A T A A A G C A A A G C A C T G A A A A

G C T T A G A T G G A T C A A A T G A T C C C A T A A A

C A C A A A G G T T T G G T C C T G G C C T A A A T A A

T T A G A G G T A A A G A T C T A C A C A T G C A A A C

C T C C A T A G A C C G G T G T A A A C A T C C C G T T

A A.

RAT-FAT DORMOUSE RESULT: Average time: 9 min 29

seconds; Distance achieved: 28; Closest string: T T A A T G A G

C T T A A A A G C A A A G C A A C T G A A A T G C T T A

G A T G G T A G C A A A T A T C C C A T A A A C A C A A

A G G T T C T G G T C C C A G C C T T C T A T T A A T T

A G A T T G T A T A G C A A G A T T A C A C A T G C A A

C A T C A T G A A C C T G G T G T A A G A A T C C C T T

A A.

RAT-COW RESULT: Average time: 9 min 29 seconds;

Distance achieved: 46; Closest string: G A C T A A T G G C

T A T C A G A A T G C A A A G C A C A T G A A C A T G C

T G C T G A G A T A G A T T T G A A A A T C T T T A A T

A C T G G A A G G G T T G C T C C T G G A C T C A T A G

C T A T G G A C G T A A G G C T T G A C A C A G C A T A

C A T T G T A C C G G A G T A A A A T G C A C T T A A G.

CSSP setting. In this setting we use the first 300 nucleotides

extracted from the rat, house mouse, fat dormouse and cow

genomes. We want to determine the rat-house mouse, rat-fat

dormouse and rat-cow closest substrings of 24 nucleotides.

The substring size parameter is the desired length of the best

substring.

1. RANK DISTANCE TEST CASE 4: Population size: 700;

number of generations: 110; crossover probability: 0.36; mutation

probability: 0.03; size of each DNA sequence: 300; substring size:

24.

RAT-HOUSE MOUSE RESULT: Average time: 1 min 25

seconds; Distance achieved: 0; Closest substring: A A A G C A A A

G C A C T G A A A A T G C T T A.

RAT-FAT DORMOUSE RESULT: Average time: 1 min 24

seconds; Distance achieved: 4; Closest substring: A T A A G A C

A A G C A C T G A A A A T G C T T.

RAT-COW RESULT: Average time: 1 min 25 seconds;

Distance achieved: 22; Closest substring: A G A T A C G T T

C A G T A C A T G A G T A C C.

2. HAMMING DISTANCE TEST CASE 4: Population size:

600; number of generations: 110; crossover probability: 0.36;

mutation probability: 0.03; size of each DNA sequence: 300;

substring size: 24.

RAT-HOUSE MOUSE RESULT: Average time: 2 min 5

seconds; Distance achieved: 0; Closest substring: T C A G C A G

T G A T A A A T A T T A A G C A A.

RAT-FAT DORMOUSE RESULT: Average time: 2 min 4

seconds; Distance achieved: 1; Closest substring: C C C C A T A

A A C A C A A A G G T T T G G T C.

RAT-COW RESULT: Average time: 2 min 4 seconds;

Distance achieved: 7; Closest substring: G T A A T T G G A C

A T A A A T T T T C A C A T.

3. LEVENSHTEIN DISTANCE TEST CASE 4: Population

size: 700; number of generations: 110; crossover probability: 0.36;

mutation probability: 0.03; size of each DNA sequence: 300;

substring size: 24.

RAT-HOUSE MOUSE RESULT: Average time: 13 min 18

seconds; Distance achieved: 1; Closest substring: T A A A A A A G

C A A A G C A C T G A A A A T G.

RAT-FAT DORMOUSE RESULT: Average time: 13 min

19 seconds; Distance achieved: 1; Closest substring: T A A A C G

A A A G T T T G A C T A A G C T A G.

RAT-COW RESULT: Average time: 13 min 19 seconds;

Distance achieved: 6; Closest substring: C A A A C A T C T A C

C A C C C G G T T A A A A.

Observations. The expected result for this experiment

should indicate that the rat is closer to the house mouse and fat

dormouse, than the cow. We would also like to catch even a finer

difference between the rat-house mouse distance and the rat-fat

dormouse distance.

In the CSP setting, rank distance shows again a great difference

between the rat-house mouse closest string, the rat-fat dormouse

and the rat-cow closest string. Hamming is able to distinguish the

rat from the cow genome, but it doesn’t catch the difference

between the rat-house mouse closest string and the rat-fat

dormouse closest string. The rat-fat dormouse Hamming distance

appears to be smaller than the rat-house mouse Hamming

distance, which is wrong. Levenshtein distance works as good as

rank distance in this case, giving the expected result. Our

observations are supported by the graphs shown in Figure 3.

In the CSSP setting, all distances perform very good and are

able to put the rat genome near the house mouse and fat dormouse

genomes rather than the cow genome. However, the rat-house

mouse Hamming distance is very close to the rat-fat dormouse
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Hamming distance (the closest substrings differ only by one letter).

The Levenshtein distance is the same for rat-house mouse and rat-

fat dormouse closest substrings. The associated graphs are given in

Figure 4.

In both CSP and CSSP settings, all distances are able to put the

rat near the house mouse and fat dormouse rather than the cow,

which is the expected result (see Figures 3 and 4). On top of this,

RD is the only distance able to catch subtle differences, putting the

rat DNA near the house mouse DNA rather than the fat dormouse

DNA.

Artificial Experiment
For this experiment we use only the CSSP setting. The goal of

this experiment is to show the time improvement obtained by

optimizing the genetic algorithm introduced in [29].

CSSP setting. 1. TEST CASE 5: Population size: 500;

number of generations: 100; crossover probability: 0.36; mutation

probability: 0.02; size of DNA sequence 1:90; size of DNA

sequence 2:90; substring size: 30.

DNA Sequence 1: A A A A A A A A A A A A T T T T T T T T

T T T T T T T T T T T T T T T T T G G G G G A A A A A A

A A A A A A A A A A A A A A A A A A A A A G G G G G G G

G G G T T T T T A A A A A A A A A A A A A A A A.

DNA Sequence 2: C C C C C C C C C C G G G G G G G G

G G T T T T T C C C C C C C C C C C C C C C C C C T T T

T T T T T T T T T T T T T T T T T T T T T T G G G G G C

C C C C C C C C C C C C C C C C.

RANK DISTANCE RESULT: Average time: 10 seconds;

Distance achieved: 0; Closest substring: T T T T T T T T T T T

T T T T T T T T T T T T T T G G G G G.

HAMMING DISTANCE RESULT: Average time: 35

seconds; Distance achieved: 0; Closest substring: T T T T T T

T T T T T T T T T T T T T T T T T T T G G G G G.

LEVENSHTEIN DISTANCE RESULT: Average time:

3 min 22 seconds; Distance achieved: 0; Closest substring: T T

T T T T T T T T T T T T T T T T T T T T T T T G G G G G.

Observations. Using an algorithm to compute rank distance

in linear time and a hash table to store precomputed distances

between DNA sequences, we are able to report a great improve-

ment in terms of speed. The algorithm that computes rank

distance in linear time was introduced in [14] and it takes

advantage of the alphabet size (only four letters) to compute the

distance. This algorithm doesn’t annotate the DNA strings, but it

uses extra space to remember the position of each character in the

DNA strings. We can reduce the time complexity of rank distance

to be the same of Hamming distance using this linear time

algorithm.

At the selection step, the genetic algorithm needs to sort the

chromosomes in each generation by distance. In order to sort the

chromosomes we must compare distances that are computed (or

recomputed) between chromosomes and input sequences. Instead

of computing the distances each time, we store the precomputed

distances in a hash table. It is much faster to access a distance

value stored in a hash table instead of computing it in linear time.

Note that we also used the hash table optimization for Hamming

and Levenshtein distances. This optimization helps us reduce the

number of distances to be computed from O(n log n) to O(n).

For this test case, in [29] we reported a time of 58 minutes and

42 seconds. The average time in the same settings was reduced for

58 minutes to only 10 seconds. We recall that the average times

are computed after running the algorithm 10 times on each test

case using a computer with Intel Core i5 2:3 GHz processor and 4
GB of RAM memory.

We obtained the same closest substring for each of the three

metrics. This result shows that if an exact common substrings

exists, the genetic algorithm can find it disregading the metric

used. This shows that the genetic algorithm is robust and it can

find the optimal solution if the input parameters are properly set.

General Observations
We designed simple and clear experiments that can show the

differences of the compared distances. In order to keep things

simple, we used the genetic algorithms to determine the closest

string or substring for only two DNA sequences. Of course, the

algorithms work as well with multiple sequences at once, since the

CSP and CSSP problems are generally defined for sets of strings.

We mention that the results obtained are not influenced by the

fact that the DNA strings are part of coding or non-coding

sequences or within genes or part of intergenic regions. The DNA

strings used in our experiments were selected without taking into

consideration these aspects so the strings may be part of any kind

of region. However, it is important for DNA strings used in the

same experiment to be extracted from the same position because

the alignment matters. In other words, it doesn’t have sense to

compare DNA from different regions that have different

significance.

All our experiments show that RD can be computed 2 times

faster than Hamming distance and 10 to 15 times faster than

Levenshtein distance. As the closest string (or substring) size

increases the Levenshtein distance takes more time to compute

when compared to rank distance and Hamming distance.

Although the Hamming distance computes almost as fast as

rank distance, the downside is that is gives inaccurate results

compared to RD. The Levenshtein distance can easily be

dismissed because is takes longer to compute and it is also unable

to detect the subtle differences that rank distance detects by having

a finer scale.

Neither Hamming distance or Levenshtein distance were able to

give the right answer in all our experiments (Levenshtein distance

is wrong in TEST CASE 1 and Hamming distance is wrong in

TEST CASE 3). Only rank distance has the expected outcome in

all the experiments. Overall, we believe that rank distance is best

suited for finding closest strings or substrings on DNA sequences.

Due to this observation we conducted the following experiment

using only RD.

Human-Chimpanzee-Gorilla Experiment
The goal of this experiment is to see if the DNA information can

lead to one of the three distinct unrooted phylogenetic trees of

higher primates. For this experiment we use only the CSP setting:

we want to find the human-chimp closest string and the human-

gorilla closest string and compare the associated rank distances.

We perform four tests using DNA sequences of variable length and

different input parameters for the genetic algorithm. We show

graphs for the last three test cases which are more relevant.

CSP setting. In the first test case (TEST CASE 6) we use the

first 800 nucleotides extracted from each of the human,

chimpanzee and gorilla DNA sequences. Obviously, the closest

strings will also have 800 nucleotides.

The difference between the human, chimpanzee and gorilla

mtDNA is very small and 800 nucleotides may not be enough.

Thus, for the next two test cases we use the first 5000 and 7000
nucleotides (respectively) from the human, chimpanzee and gorilla

to search for the closest string. In the last test case we will use

16000 nucleotides (almost the entire DNA sequences).

We present only the distance achieved for each closest string,

because the strings are too long to be presented here.
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1. RANK DISTANCE TEST CASE 6: Population size: 7000;

number of generations: 500; crossover probability: 0.36; mutation

probability: 0.001; size of each DNA sequence: 800.

HUMAN-CHIMPANZEE RESULT: Average time: 7 min 3

seconds; Distance achieved: 43207.

HUMAN-GORILLA RESULT: Average time: 7 min 6

seconds; Distance achieved: 45544.

2. RANK DISTANCE TEST CASE 7: Population size: 33000;

number of generations: 2000; crossover probability: 0.36; muta-

tion probability: 0.0002; size of each DNA sequence: 5000.

HUMAN-CHIMPANZEE RESULT: Average time: 13–14

hours; Distance achieved: 426232;

HUMAN-GORILLA RESULT: Average time: 13–14 hours;

Distance achieved: 358525.

3. RANK DISTANCE TEST CASE 8: Population size: 40000;

number of generations: 2400; crossover probability: 0.36; muta-

tion probability: 0.0001; size of each DNA sequence: 7000.

HUMAN-CHIMPANZEE RESULT: Average time: 27–28

hours; Distance achieved: 682664.

HUMAN-GORILLA RESULT: Average time: 27–28 hours;

Distance achieved: 656806;

4. RANK DISTANCE TEST CASE 9: Population size: 55000;

number of generations: 2800; crossover probability: 0.36; muta-

tion probability: 0.00005; size of each DNA sequence: 16000.

HUMAN-CHIMPANZEE RESULT: Average time: 5 days

and 6–7 hours; Distance achieved: 2412780.

HUMAN-GORILLA RESULT: Average time: 5 days and 6–

7 hours; Distance achieved: 2089976.

Observations. We adjusted the genetic algorithm parameters

to obtain the best results disregarding the higher computational

time needed to get these results for the first three test cases. The

graphs show that the size of the population used in the genetic

algorithm is much higher than necessary because the best

chromosome evolves very fast during the first 100{300 genera-

tions and then very slow. We also could of used less generations,

but we wanted to make sure we catch every bit of information

contained in the DNA.

In TEST CASE 9 the parameters are rather ajusted for speed

than accuracy. We can obtain better approximations of the closest

strings by using a population larger than 55000 and a greater

number of generations, but our results are more than good enough

for this investigation.

The results for TEST CASE 6 shows that according to rank

distance the human is near the chimpanzee rather than the gorilla.

The graphs corresponding to TEST CASE 7, 8 and 9 from

Figure 5 point to the other direction, that is the human is closer

related to the gorilla.

It seems that 800 nucleotides are not enough to obtain

a conclusive result. But our results are consistent when the length

of the DNA is high enough. Here we show that using 5000 or 7000
nucleotides we obtain that the human’s closest relative is the

gorilla. We mention that we tested with more sequences of variable

length and we obtained the same result for everything above 3000
nucleotides to 8000 nucleotides. These results are consistent with

our latest test case that uses 16000 nucleotides.

Note that in our last test case we used almost all of the entire

mtDNA which is approximately 16000 nucleotides long. We

believe that the length of the DNA strings used in our experiment

is enough to let us make a conclusion.

Overall, the DNA information that RD was able to extract

during this experiment seems to support the theory favours the

phylogenetic tree that joins the human with the gorilla [30].

However, we think more investigations in this area are needed to

bring a strong conclusion to one way or the other.

Conclusion and Further Work
In this paper we presented two genetic algorithms designed for

solving the closest string problem and closest substring problem,

respectively. The genetic operations for the closest string problem

have a strong mathematical background and are only inspired

from nature. The genetic algorithm designed for the closest

substring problem uses standard genetic operations.

We tested these two algorithms using several experiments that

involve DNA sequences extracted from mammals genomes. Each

of these experiments were performed using three different metrics:

rank distance, Hamming distance and Levenshtein distance. In all

our experiments rank distance clearly outperforms Hamming and

Levenshtein distances. On top of this, rank distance is the only

distance able to catch subtle differences between DNA strings.

By comparing the results for each distance measure, we are able

to conclude that RD is best suited for finding closest strings or

substrings on DNA sequences.

We used our genetic algorithm with rank distance to bring some

light in a case disputed by biology scientists: which is the closest

human relative, the chimpanzee or the gorilla? The DNA

information extracted by rank distance supports the theory that

says the human closest relative is the gorilla. We also showed the

importance of using DNA sequences that are long enough to

obtain conclusive results. Too short DNA sequences can lead to

confusing results.

In the near future we would like to compare our genetic

algorithms based on RD with other approaches, such as dynamic

programming techniques. We strongly believe that our approach is

comparable, in terms of precision and speed, with other

approaches.

We also want to investigate a possible approach to obtain better

results. This approach combines the results coming from several

parallel executions of the genetic algorithm. The best candidates

from these parallel executions may be taken to form the first

generation of another genetic algorithm. The best candidates will

evolve together until the final result is achieved. The final result is

expected to be an optimal solution. This approach could work very

good with very high-dimensional input data.

Methods

Genetic algorithms are adaptive searching techniques based on

the principles of genetics (see [31] or [32]). The first genetic

algorithms were introduced in [33] and [34]. The idea behind

a genetic algorithm is to simulate the biological process of natural

selection. A genetic algorithm applies a set of operations on

a population over a number of generations. The population is a set

of individual elements (called chromosomes) usually represented as

binary strings. The set of operations applied on the population are

inspired from biology: crossover (also called recombination),

mutation, selection, etc. Genetic algorithms are used to solve

optimization or search problems. A close-to-optimal solution

should be enough when one wishes to use a genetic algorithm to

solve a certain problem. In other words, one should not expect to

get the optimal solution each time a genetic algorithm is executed.

The General Algorithm
We used the classic general form of the genetic algorithm. For

each problem, we used a different set of operations. The set of

operations used for the closest substring problem are classical. The

crossover and the mutation operations are the same operations

found in nature. For the closest string problem the operations are

only inspired from biology, but they rely on a mathematical

A Rank Based Approach for Closest String

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e37576



background. We will later describe the structure of the chromo-

somes and the operations applied on each generation.

Algorithm 1 General Form.

1: Initialization: Generate a random population that

represents the first generation.

2: Loop: For a number of generations apply the next

operations:

2.a 1em Apply the crossover according to the probability of

having a crossover.

2.b 1em Apply mutations according to the probability of having

a mutation.

2.c 1em Select the best candidates for the next generation using

a density of probability.

3: Termination: Choose the best individual from the last

generation to be the optimal ranking.

The Closest String Problem Via Rank Distance (CSRD)
The chromosome. An individual chromosome is a permuta-

tion of ranks. Each chromosome is a possible candidate for the

optimal ranking. Table 1 contains an example of three random

chromosomes of length 9. Note that this is only an internal

representation of the chromosomes. They are actually strings or

DNA sequences.

We need to convert each input DNA to a permutation. Note

that any string can be converted to a permutation. Each letter of

the string can be annotated with an index that starts at 1 for each

letter. For example, if we annotate the string ‘‘alibaba’’, we will

obtain ‘‘a1l1i1b1a2b2a3’’. Now each letter is unique and can be

replaced with a unique number. This is how we obtain the

permutation. To obtain a string from the output permutation we

only need a mapping from annotated letters to numbers. The

mapping should be generated when the input strings are

previously converted to permutations.

The crossover operation. There are three forms of cross-

over that are used by the algorithm. Each time the crossover must

occur we apply all three forms of crossover.

The first crossover operation keeps the first part (prefix) of the

individuals and completes the rest of the permutation according to

the order given by the complementary chromosome. Table 2 gives

the result of this crossover operation applied on chromosomes C1

and C2.

The second operation uses the same principle, but applies it at

the other end of the chromosomes. This crossover operation keeps

the last part (suffix) of the individuals and completes the rest of the

permutation according to the order given by the complementary

chromosome.

The third crossover is a natural combination of the previous

two. This crossover keeps both the prefix and the suffix of the

chromosomes but completes the middle part according to the

order found in the complementary chromosome.

In order to successfully apply the crossover operations a certain

cutting point should be randomly generated. There are six new

individuals after the recombination because each crossover

operation generates two new individuals. The best two individuals

are chosen to replace the parent chromosomes. The optimality

condition is used as a criterion to choose the best individuals.

We have chosen this model (with 3 types of crossover) because

the use of a single crossover usually destroys certain parts of the

two individuals involved in the operation. For example, the

crossover that keeps the prefixes will have to reorder the

components of the suffix. If this single type of crossover is used,

we would be unable to evolve the suffix part of the chromosome.

This will generate populations with similar individuals that tend to

have a bad pattern. In this pattern a good part and a bad part

always appear. With our model we ensure that individuals do not

follow this pattern and get close to the optimal ranking, but in

different ways.

The mutation. The mutation operation may be applied to

any chromosome. The mutation only needs one chromosome. To

apply a mutation on an individual two positions are randomly

chosen. The values at the two positions are swaped.

Table 3 shows chromosomes C1, C2 and C3 with mutations.

Although mutations are rare, multiple mutations may appear at

the same chromosome. This situation is very unlikely.
The selection. To select the individuals for the new

generation from the current generation we use a density of

probability function. The new generation is involved in the next

iteration of the algorithm. The first step is to sort the individuals on

the maximal distances from the input rankings criterion in

descending order. Then we generate indexes from the top to the

bottom of the list of candidates. The indexes close to the top of the

list are more probable. Note that one index can be generated

several times; this is the case with the best candidates. There are

also indexes that may never be generated; this is the case of the

candidates close to the bottom of the list. The density probability

function used to select the candidates for the next generation is the

normal distribution of mean 0 and variance 0:081 on the interval

½0,1�:

f (x)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:p:0:0816
p e

{x2

2:0:0816

The graph of this function is represented in Figure 6.

Note that in the implementation of the algorithm the fitness

function was statistically approximated.

The motivation for using this fitness function is based on test

results. This fitness functions reduces the number of generations

that are required to obtain a close-to-optimal solution. Helped by

the crossover and mutation operations, the fitness function has

a good generalization capacity: it doesn’t favour certain chromo-

somes which could narrow the solution space and lead to local

minima solutions.

The Closest Substring Problem via Rank Distance
The chromosome. Each chromosome is a sequence of DNA

of fixed length that represents a possible candidate for the closest

substring. Note that a sequence of DNA is simply a strand of

nucleotides (A, C, G or T) that appear randomly in a sequence.

The crossover operation. The crossover operation between

two chromosomes for the closest substring problem is straightfor-

ward. First, we need to generate a random cutting point. The

prefixes of the two chromosomes remain in place, while the

suffixes of the two chromosomes interchange. This is the standard

crossover operation inspired directly from nature.
The mutation. To apply a mutation to a certain chromo-

some, one position is randomly chosen. The nucleotide found at

that position will be changed with a new one. Multiple mutations

may appear at the same chromosome, although this is very

unlikely. This is the classic mutation operation that can also be

found in nature.
The selection. The selection operation used here is similar to

the selection used for closest string problem and is based on the

normal distribution of mean 0 and variance 0:081 on the interval

½0,1�. We have also tried other density probability functions such

as f (x)~1{x, which has a better generalization capacity (it keeps

a better variety of possible solutions over a greater number of

generations). In our experiments we decided to go with the same
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function used for CSRD which makes the population evolve much

faster. The lower generalization capacity can be compensated by

increasing the size of the population.
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