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Abstract—In this paper, we present a new shape-coding

approach, which decouples the shape information into two inde- Q Q

pendent signal data sets; the skeleton and the boundary distance | \ ‘J N
from the skeleton. The major benefit of this approach is that it )/ VL /
allows for a more flexible tradeoff between approximation error L 2

and bit budget. Curves of arbitrary order can be utilized for
approximating both the skeleton and distance signals. For a given (b) ©

bit budget for a video frame, we solve the problem of choosing Fig.1. Decoupling of shape and texture information. (a) Original video frame.
the number and location of the control points for all skeleton (b) Binary shape information. (c) Boundary information.

and distance signals of all boundaries within a frame, so that the

overall distortion is minimized. An operational rate-distortion

(ORD) optimal approach using Lagrangian relaxation and a information. In MPEG-4 [1] and most of the work in the

four-dimensional Direct Acyclic Graph (DAG) shortest path literature, shape or boundary encoding is completely decoupled
algorithm is developed for solving the problem. To reduce the fom texture encoding. That is, as shown in Fig. 1, for given

computational complexity from O(IN®) to O(N?3), where N is : ; : :
the number of admissible control points for a skeleton, a subop- a frame, the shape is extracted using a certain technique. The

timal greedy-trellis search algorithm is proposed and compared Problem then becomes the encoding of the shape, which is
with the optimal algorithm. In addition, an even more efficient represented either in binary form [as shown in Fig. 1(b)] or as a
algorithm with computational complexity O(N?) that finds an  two-dimensional boundary or contour [as shown in Fig. 1(c)].
ORD Opgma'dsomtio” ”jingﬁf'axeq diftortlion Critgrion is a'sol Freeman [2] originally proposed the use of chain coding
proposed and compared with the optimal solution. Experimenta 7 .
results demonstrate that our proposed approaches outperform for.boundary quam'zat'or_] and lOSS|eSSf boundary encoding,
existing ORD optimal approaches, which do not follow the same Which has attracted considerable attention over the last forty

decomposition of the source data. years. The most common chain code is the 8-connect chain

Index Terms—Boundary coding, object-based video com- code, which is based ona recta_ngular grid supe_rimposed ona
pression, rate-distortion optimization, shape coding, skeleton planar curve. The curve is quantized using the grid intersection
decomposition, skeletonization. scheme and the quantized curve is represented using a string of
increments. Since the planar curve is assumed to be continuous,
the increments between grid points are limited to the eight grid
_ _ _ _ neighbors, and hence an increment can be represented by 3 bits.
I N RECENT YEARS, object oriented video coding has \wjthin the MPEG-4 standardization effort [3], several

received a lot of attention because it facilitates retrievadontour-based shape coding methods have been developed and
interactive editing, and manipulation of videos. Within th@roved to be very efficient. In [4]-[6], the shape is represented
object-oriented framework, a video sequence is represenifgig a vertex-based polygonal approximation for lossy shape
through the evolution of video object planes (VOP), with eackpding. The placement of vertices allows for a direct control
frame composed of one or more VOPs. Evolution of thegg the local variations of the shape approximation error. For
VOPs in time is described in terms of shape, texture and motigfgsiess shape coding, the polygonal approximation “degener-
ates” to a chain code. In [7], a baseline shape coder places the
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inter modes is proposed. First order (polygons) and higher or¢ O @‘\ C\' Q\W

(i.e., splines) approximation techniques are adopted to repres ) &Y (' i

the boundary, and the control points of these curves are enco \ ~ ? \ — ) { E\S

e — qhY

to achieve the ORD optimal result. ‘} f / RSy 1/
In addition to the approximation mentioned above whic 4N J -7 AL ,”gL‘!

operate directly on the boundary vertices, a number of i g ___,J" -

vestigations have also considered alternative approaches Object = Skeleton + Distance

first transform or decompose the shape information before

processing (the baseline coder already mentioned performs Fig. 2. Example of skeletonization.

such transform). In [11] the shape description algorithms are

classified into external and internal. The former ones are bas§tihe skeleton and distance signals, and illustrate the ORD
on the description of the shape boundary, like Fourier descrip@‘gtimm process for allocating bits between the skeleton and
[12], [13], time series [14], and shape matrices [15]. The lalig{stance signal data sets. In addition, a four-dimensional DAG
ones are mainly area descriptor algorithms, like moment basggtest path algorithm is proposed, which is compared with
approaches [16], skeletons or medial axis transform [17]-[1@}ore efficient but only near optimal methods. In Section V, we
and shape decomposition [20]. discuss more general cases and extend the results for the jointly
In[17], the skeleton decomposition was proposed as an altgptimal encoding of multiple boundaries. Section VI presents

native shape description method for biology research. The maigherimental results, and Section VIl draws conclusions.
idea behind it is to find a set of points that are equidistant from

the object boundary by means of maximally inscribed disks. The
description consists of the locus of the center of each inscribed
disk and its associated radius [18]. This is the morphological The basic idea of skeletonization is to represent an object
definition of a skeleton, and has been employed for coding BY two or more 1-D signals (skeletons with associated distance
binary images [19] and motion estimation [21]. In the case gata). Each pixel of the skeleton is associated with the distance
many extra branches (bones) in the skeleton, when the bound&rjhe closest boundary pixel in a given direction. We use the
has many outward ripples (see example in [18, p. 377]), therizontal distance for both simplicity and efficiency. The ob-
skeleton decomposition results in coding inefficiencies, siné@ct boundary can be exactly recovered from its skeleton and
the skeleton points are sparsely distributed. Furthermore, if pfistance data. Fig. 2 shows examples of skeletonization for a
gressive contour transmission of images is considered, codffgme from the “kids” sequence.
becomes even more inefficient, because the skeleton points dff general, there are two basic and interchangeable ways to
coarser levels are farther apart from each other. define an object shape, by the boundary of the shape or the bi-
In this paper, a new definition of the skeleton is proposddry mask of the shape. By labeling the pixels on the boundary
which is suitable for the problem under consideration and & the object with “1” while filling the inside pixels of the ob-
ORD optimal shape coding approach is presented, which K¢t With “0”, the binary mask of the object is generated. On
lows for more flexible tradeoff between accuracy and bit-alldh€ other hand, the boundary shape can be obtained by tracing
cation cost. The object shape is decomposed into the skelelfd® contour of the binary mask. In both cases, there is an ambi-
(defined as the midpoints between the two boundary points) a9ty which nee(_js to be resolved, whether t_he boundary pixels
the distance of the boundary points from the skeleton in the h&&long to the object or the background. In this paper, we use the
izontal direction. The skeleton points are connected in the v&eundary form of the object shape, and we therefore assume that
tical (y-axis) direction (most of them are 8-connected), whicii€ boundary pixels belong to the object.
facilitates processing. The decoupling of skeleton and distance N definition of the boundary is as follows:
signal sets allows in principle for more flexibility in encoding,
that is, it allows for the application of different transform and B = {bi(x,y),ba(z,y), ... bz(z, )} 1)
compression methods for each data set, according to their cr@%

acteristics. Furthermore, the skeleton of an object can be u th pixel of the bound ith and its hori l'and
for the estimation of the object motion in the inter-mode. AS he:th pixel of the boundary with: andy its horizontal an

an example of a way to encode the two signal data sets, Wert'cal coordinates, respectively. For any integer < ¢ <

apply polygonal approximation on both the skeleton and di¢-~ 1); bi+1(z, y) is an 8-connect neighbor pixel b’f(‘r’y)'.
n é/\/e can represent the extracted skeletBras the set of points

tance signals. The resulting symbols are then encoded usj | y e i S
arithmetic coding. The scope of this paper is limited to intr%’y) atth.e cent_er ofthe objectin the horlz.ontal direction and
e associated distande€rom the boundary, i.e.,

frame boundary coding. t
This paper is organized as follows. Section Il provides a

description of the skeleton-based shape representation. Sec- 1t = {(@y,d)[(z+d.y) € B,(z —d,y) € B,

tion Ill mathematically defines the problem of the ORD optimal (z+d+1,y) and(z—d—1,y)

boundary encoding of a single object. Section IV shows how are outside of the objekt (2)

the Lagrangian multiplier method can be applied to solve the

proposed constrained problem as a series of unconstraimédtered has half-pixel accuracy. A generic shape may contain

problems. We describe the lossy polygonal approximationsore than one skeletons.

Il. SKELETON-BASED SHAPE REPRESENTATION

reZ is the number of pixels on the boundary an@r, y)
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Before the problem is formulated, the means for measuring
the quality of a boundary approximation or a distortion metric
needs to be determined. The problem of finding the most ap-

: 2 propriate distortion metric is open and is application dependent.
We do not address it in this work, but instead we are using a
distortion metric adopted by MPEG-4, as explained in the next

N E section. This allows us to also compare the results obtained with
the proposed method with published results. Let us denote the
(a) (b) distortion of the skeleton b(S) = {Ds1, Ds2,...,Dsn},
Fig. 3. Highly correlated boundary data, resulting in (a) constant distanwereDSi 'S_ the d|5t0r_t|0n '_ncurred by_ thigh Ske_leton_ pixel.
signal and (b) constant skeleton signal. Correspondingly, the distortion of the distance signal is denoted

by D(T) = {Dr1, Dra, . .., Dry}. Clearly, all distortion ele-

The decoupling of the boundary data into skeleton and d@-ems are nonnegative.

tance signals allows for their independent encoding. Since the
skeleton and the distance signals typically have different char- ) ) _ L )
acteristics, such an approach allows us to capitalize on their djf-1 "€ distortion metric adopted by MPEG-4, which is also uti-
ference. As an example, let us consider two special cases shdgf in this work, is given by

in Fig. 3. In Fig. 3(a), the skeleton signal conveys all the infor- D _ Number of pixels in error 3)
mation of the boundary (the distance signal is constant), while MPEG=4 = Number of interior pixels

in Fig. 3(b), the opposite occurs. In both cases, 2-D shape {ghere a pixel is said to be in error if it belongs to the interior of
formation is represented by an 1-D signal, which can result {Re original object and the exterior of the approximating object,
higher compression efficiency. or vice-versa.Dyipra—_4 in (3) refers to one object; if there
Another decomposition example with actual data is shown ite more than one objects in the scene, the sum of the object
Fig. 4. In Fig. 4(a) a frame with two objects and three majaiistortions will form the distortion for the complete frame.
skeletons is shown. Fig. 4(b) shows the skeleton and distancen lossy shape coding, distortion in both the skeleton and dis-
signal of the leftmost major skeleton in Fig. 4(a), while Fig. 4(qhnce will contribute to the distortion of the shape. Fig. 5 shows
shows the skeleton and distance signal of the rightmost mai&amples of shape distortion. The object in Fig. 5(a) is the orig-
skeleton in Fig. 4(a). Notice that in Fig. 4(b), the skeleton igal object with its skeleton. The objects in Fig. 5(b) are the
“smoother” than the distance signal because the boundaryopiginal object and its approximation resulting from the shifting
the left kid in the frame is highly correlated. In Fig. 4(c), neithegf its skeleton to the left. The areas marked with dots are pixels
function is very smooth, because the boundary of the right kidlerror to be used in measuring the distortion. Similarly, the ob-
in the frame is less correlated. Our experiments have shown e in Fig. 5(c) results from the expansion of the distance data.
in most video frames, highly correlated boundaries are quitte dark areas represent pixels in error. When both skeleton and
common, so our approach can result in a substantial advantaggtance data are encoded in a lossy fashion, the overall distor-
The skeleton and distance data in Figs. 4(b) and 4(c) contgish has a nonlinear relationship to the individual distortions of
constant or nearly constant subintervals, which can be encodgigg skeleton and distance data, as explained next.
very efficiently by straight lines. Such an example is shown in Since the number of interior pixels is fixed, we are clearly
Fig. 4(d), where a lossy approximation of the skeleton and disoncerned only with the “Number of pixels in error” in the nu-

tance signal of the left kid of the first frame [Fig. 4(b)] is shownmerator of (3), which is denoted d3(S, T'). The following
Each constant subinterval can be treated as the special case@nas address properties B (S, T).

Distortion Metric

the example shown in Fig. 3. Lemma 1:If lossy coding is only applied on the skeleton
signal and the distance signal is coded losslessly, then
~
I1l. PROBLEM FORMULATION Dot (S, T) =2 - Z Ds;.

In the following, we first introduce the notation to be used =1

in this paper and then formulate the optimization problem to L8mma 2:1f lossy coding is only applied on the distance
be solved. To simplify the problem description, we first assunfédnal, and the skeleton signal is coded losslessly, then

that there is only one object that contains only one skeleton, N
and defer the solution of the general case of encoding multiple Diot(S,T) =2 Z Dr;.
objects with multiple skeletons to Section V. Let), o) denote i=1

the starting point of the skeleton. The points of the skeleton areLemma 3: If lossy coding is applied on both skeleton and
specified byS = {S1, S, ..., Sy}, Where(S; + zq,y0 +i — distance data, then

1) are the coordinates of thgh pixel point on the skeleton, N

with7 = 1,2,...,N. LetT = {T,T»,...,Tx} denote the Dot (S, T) =2~ ZmaX(DSi7DTi)-
corresponding distances. Thus, the coordinates of the boundary i=1

points will be(S; + zo + 15, yo +i—1) and(S; + zo — T;, yo + Proof. In proving this lemma, we assume that after

i—1). encoding, the resulting skeletons are inside the original shape
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Comparison of skeleton and distance signal set of the leftmost kid in Fig (a)
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Fig. 4. Decomposition into skeleton and distance data.

Finally, by summing up the distortion in each offset of the
direction for all skeletons, we get

¥
)
&E;

TN

N
Diot(8,T) =2+ > max(Ds;, Dri).
i=1
g
Lemma 4: D;oi(S,T) < 2 - YN max(Dsg;, Dry) < 2 -
N
@ © >i=1(Dsi + Dri).
: , > > iti
Fig. 5. Distortion caused by lossy coding of skeleton or distance (a) original Proof: Given :vy(a: z 0y 2 0)’ itis clear that max

shape; (b) shape after shifting of skeleton; and (c) shape after shifting of .y) < x +y. Therefore
distance data.

N N

Z max(Dg;, Dri) < Z(DSi + Dry).

boundary. This is an assumption which holds true in almost i=1 =1

all cases and rates of interest. Let theoordinates of the From Lemma 3, we have that when the skeletons are inside

boundary points at the skeleton at locatipr= 7 be given by the shape boundarf)..(S,T) = 2 - ZiNzl max(Dg;, Dr;).

z1 andz,. With the given skeleton distortioRs; and distance We now prove that the last expression with inequality for those

distortion Dr;, there are the following four possibilities for theskeleton points outside the shape boundary. Without loss of

location of ther-coordinates pair of the reconstructed boundargenerality, we assume that the skeleton is on the right side of

points: (1 — Ds; — Dr;, v2 — Ds; + Dr;), (x1 — Ds; + the shape boundary; then, there are only two possible cases

Dri w3 — Ds; — Dr;), (21 + Ds; — Dri, w2 + Ds; + Dr;), as shown in Fig. 6. One is the overlapping object case shown

(x1 + Ds; + Dri,z2 + Ds; — Dr;). Based on the MPEG-4 in Fig. 6(a), and the other is the nonoverlapping object case

distortion metric, all four possibilities have the same resultirghown in Fig. 6(b). For the first case, if we denote that the

distortion given by z-coordinates of the boundary points on the left object by

z1 and z9, the x-coordinates of the boundary points on the

D = |D5i — DTi| + |D5i + DTi| = 2maX(DSi7DTi)- r|ght ObjeCt are then elthqriﬂl + Dg; — DTi7$2 + Dg; +
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Original boundary - Reconstructed bowdary  Oviginal boundary  Reconstructed bowndiay problem we are setto solve. Given a skeleton signal and the cor-
: responding distance signal, we want to determine, the vertices
w0s  1Vsi}(1 < i < M) of the curve providing an approximation
to the skeleton signal, and the vertigdsy; }(1 < j < Q) of
‘ the curve providing an approximation to the distance signal, as
DT D well as, the number of skeleton signal vertiddsand distance
i ] ) ] o signal vertices@, which minimize the overall distortion of
Feoonairucted ob oot (gsfgfiﬁ;faiaé).re'at'O”Sh'p between original e reconstructed shapByo(S, 1), utilizing R (S, ) bits
which satisfy a bit budget of?,,,. bits. That is, the problem

_ _ to be solved is given by
Dr;) or (z1 + Ds; + Dr;,x2 + Dsi — Dr;). The distortion

!
1
1
1
1
1
1
i
1
1
|

is given by ‘rguvnT Diot(S,T), subjecttoRio:(S,T) < Rpax-  (5)
D =|Ds; — Dp;| + |Ds; + Dri| = 2max(Ds;, D). Let Ryudget = Rimax — Ro, that is the bit budget available after

the encoding of the starting point. By utilizing Lemma 3 and

For the case of Fig. 6(b), it is obvious that (4), problem (5) can be rewritten as

D < 2Dg; < 2max(D5i7DTi). N
Therefore, by summing up all the distortions, we obtain i 2 max(Dsi, Drq),
N - M
Diot(S,T) < 2> max(Ds;, Dri). subjectto " r(Vsi ..., Vs(i—o))
i=1 i=1
O Q
+ Z T(VTiv ey VT(i—o)) S Rbudgot~ (6)
B. Bit Rate i=1
Let us denote by, the total available bit rate for the en-
coding of an object shape. Thét(S,7) = Ry + R(S) + IV. SOLUTION METHOD

R(T), whereR, represents the bits required for the encoding of |n this section, we introduce both optimal and near optimal

the starting point of the skeletor?(S) the bits allocated to the solutions to the problem for various requirements from different

encoding of the skeleton signal, aig7’) the bits allocated to applications. The optimal solution to be derived in Section IV-A

the encoding of the distance signal. is based on the Lagrange multiplier method and dynamic pro-
We denote byWs = {Vsi1,Vs2,...,Vsar} the set of ver- gramming adopted to solve a DAG shortest path problem. To

tices used for the approximation of the skeleton; withthe  speed up the algorithm, two suboptimal algorithms are proposed

number of vertices. Let us denote byVs;,...,Vsi—0)), in Section IV-C.

the rate required for the encoding of the vertéy;, based

on a pre-assigned encoding scheme, when a curve of a ger-Optimal Solution

taln_or:del_ro Is used fo; t?e aﬁproxmanpn. I_:or example, Ifl We derive a solution to problem (6) using the Lagrange multi-
straight lines are used for the approximation, two Contr%Iier method to relax the constraint, so that the relaxed problem

points are needed to define a line segment and the Ojrde{:an be solved using a shortest path algorithm. We first define
equals 1; if on the other hand, second order curves are usg, ' Lagrangian cost function

such as 2nd order B-Splines, three control points are needed

to define a curve segment and the ordeequals 2. Then, al
R(S) = M r(Vsi....Vsis)). Similarly, the set of Ir(Vs,Vr) = 3 max(Dsi, Dri)
vertices defining the approximatiorg)of the distance signals is =t "
represented byr, and R(T) = > r(Vri,- .-, Vir(i—o)), A\ Ve Ver.
wherer(Vr;, ..., Vri_,)) represents the rate for encoding the + ;T( siv s Vs(izo)
ith control point(i = 1,...,Q) of the approximating curve. o
Therefore + ZT(VTn B ~7VT(¢0))} @)
M i=1
Rtot:RO+ZT(VS%“'7V5(Z’*")) where )\ is called the Lagrange multiplier. It has been
=1 shown in [22] and [23] that if there is &* such that

Q . .
{V&, Vi) = argminy, v, Ja«(Vs, V), and which leads to
+ r(Vpey oo s Vrgi—oy). (4 I s ’
> r(Veise Vig-s)- (4) St (Vsin o Vstma) + Sy r(Vrie . Viey) =
Ryuaget, then {VE,V} is also an optimal solution to (6).
It is well known that when\ sweeps from zero to infinity,
the solution to problem (6) traces out the convex hull of the
With the notation and the quantities introduced in theperational rate distortion function, which is a nonincreasing
previous section, we now proceed with the formulation of thenction. Hence, bisection or the fast convex search we present

C. Problem Formulation
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in [24] can be used to find*. Therefore, if we can find the skeleton distance Complete list of nodes in the node space:
optimal solution to the unconstrained problem 0
- o g
min Z max(Dgi, Dr;) + A Z r(Vsiyeo o, Vs(i-o)) 2 (0,060
. / : T (0,0,6,6)
| im1 3 o o 0.6,0,6)
Q . o o (0,6,6,6)
(6,0,6,0)
+ > r(Vri, -, VT(io))} ® o o (6,0,6,6)
i=1 (6,6,6,6)

we can find the optimakh* and the convex hull approximation ¢ The size of the space is 9.
to the constrained problem of (6).

Clearly, if the skeleton is encoded without loss, while
the distance signal with loss, then based on Lemmas Fig. 7. Example of node space.
1 and 2, problem (8) becomes the minimization of
(S D+ AN 7(Vri,... . Vri_s)}.  Similarly, polygonal approximations (filled circles). The approximation
for the lossy encoding of the skeleton signals with losslegs the skeleton signal consists of the use of the samples num-
distancg signals, optimization (8) becomes the minimizatigiered 0, 1, 3, and 8, as vertices of the polygon, and for the
of {00, Dsi + AXi0, 7(Vsis..., Vs(i—o)) }. The last two distance data of the samples numbered 0, 3, 5, and 8. The ap-
optimizations can be solved using a Directed Acyclic Gragiroximation, in other words, consists of these two lists of vertex
(DAG) shortest path algorithm proposed in [8]-[10], [25]. Weyoints. An alternative way to represent their approximation is
proceed next with the development of an algorithm for solvingith the use of the node space, that is, by the linked node list
optimization (8). (0,0,1,3) — (1,3,3,5) — (3,5,8,8). We therefore define a

, ) , mapping between the vertex lists and the linked node list. As

B. Four-Dimensional DAG Shortest Path Algorithm can be easily understood, this mapping is not 1-to-1 but.-to-

The optimization problem of (8) is more complicated sincEor example, for the given vertex lists, another linked node list
the skeleton and distance signals are coupled through the @#g0,0,1,0) — (1,0,3,3) — (3,3,8,5) — (8,5,8,8). Actu-
tortion. We are expanding the DAG shortest path algorithm dally, n can become a very large numberisand( increases,
veloped in [8]-[10], [25] to a 4-D space to solve this problensince it is an exponential function éf and(@.
In other words, the states in the DAG state space will be repre-2) State Spacein order to be able to use dynamic program-
sented by 4-tuple elements instead of 1-tuple elements. In thiang for obtaining the optimal solution of problem (8), we de-
following, we are showing how to map the original problem (8jine a state space, which is a subset of the union of all node
into a graph theory problem. We will start from the simplest caspaces, with elements (so called statés), p, ¢q) satisfyingi <
when the control points are restricted to belong to the originglandj; < p, and edges among elements. This definition ex-
signal set (skeleton or distance data). In general we utilize a sktdes from consideration those nodeég, p, ¢) with segment
of points outside the original signal set as the admissible contfalp] not overlapping with segmeft ¢]. The motivation for this
point set, as was done in [8], [9]. This set typically forms a barid twofold: 1) By removing the nonoverlapping segments, we
of a certain width around the original signal set. The simplesan express the distortion as the sum of link distortions between
case we study next results when the width of this control poistates, as will be shown later. This will make a dynamic pro-
band is set equal to zero. gramming solution possible. 2) The fewer the states the faster

1) Node SpaceGiven a polygonal approximation of boththe algorithm, given we do not remove from consideration any
skeleton and distance signals, we define a node space withfeésible polygonal approximations with this pruning.
ements the 4-tupléi, 7, p, ), representing all combinations of There are only two kinds of edges allowed starting at state
the last two control points in the skeleton approximatidrand (i, 4, p, ¢), which correspond to the first two kinds of links in
(p) (i < p), and the last two control points in the distance signalode space, as shown in Fig. 8(a) and (b). In other words, the
approximation(j) and(q) ( < q). Clearly, there is one nodetwo edges describe the transitiofisj,p,q) — (p,7,$,q),
space for each possible approximation. For the skeleton apprard (i, j,p,q) — (i, q,p,t), respectively. Therefore, the total
imation with M vertices and the distance approximation witlmumber of edges i©(N?°), whereN the total number of points
Q vertices, the size (number of nodes) of the space is equalirathe skeleton and distance data. It is important to note that
(M(M+1)Q(Q + 1))/4) (see Fig. 7 for an example). excluding the third possibility in Fig. 8(c) does not exclude any

Let s denote the next vertex aftgin the skeleton approxima- optimal path, since, as shown later, any possible approximation
tion andt the next vertex aftef in the distance approximation.can be achieved using only the first two possibilities [Fig. 8(c)
There are only three links starting at nddej, p, ¢q) to describe can be obtained by the concatenation of Fig. 8(a) and (b)].
the transitiongi, 7, p, ¢) — (p,4,s.q), (i, 7,p,q9) — (i,4q,p,t), This restriction is of considerable help when later we define
and(z, j,p,q) — (p,q, s,t), indicated by bold arrows in Fig. 8. edge distortion, so that the total distortion is the sum of edge
The above defined node space is providing an alternative (atfidtortions.
more useful) way in representing an approximation of the dis-We now prove that the exclusion process [of those nodes
tance and skeleton data. Consider for example, the approxiraad links represented in Fig. 8(c)] will not remove any optimal
tion shown in Fig. 8(a). A 9-point skeleton and distance sigolutions for problem (8), by demonstrating that there is an
nals are shown (open circles), along with the vertices of theto-K mapping between the vertex lists and the linked state

(] Control points O Boundary points
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O Control points ~ -=====
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(b) (©)

—~
&
~

Fig. 8. Examples of connected nodes.

distance

list (K is a variable nonzero integer considerably smaller th:
n). First, we show that for any linked state list starting at sta,
(0,0,0,0) and terminating at stateV, N, N, N), there are cor-
responding vertex lists. Based on the definition of edges, a
the edge terminating at stat&, N, N, N), we can find the last 2
past state of stateV, N, N, N), and therefore the past vertex3
of the last poin{ V) in the skeleton approximation, or the pas,
vertex of the last point/V) in the distance approximation. Then
by backtracking, vertex points in the skeleton approximation >
the distance approximation are recorded, until state,0,0) 6
is reached and the vertex lists of the approximations for bc 7
skeleton and distance signals are completed.

. . . 8
Then, we provide a generic procedure to obtain a corr

sponding linked state list from any given vertex lists. The ide @®  Control points 6
is straightforward. We start by including staf 0,0, 0) into O Boundary points 3.7.8.8

an empty list, (as we knowy(Vs1) = y(Vri1) = 0, where

y(V) is the vertical index of verteX in the original signal set). (a) (b)

Then statg0, 0, y(Vs2),0) is appended into the list, followed

by state(0,0,y(Vs2),y(Vrz2)). Then, the value of)(Vse) is  Fig.9. Example of the state transition list (b) corresponding to vertex lists (a).

compared withy(Vs). If (Vsy) < y(Vrz), then the next

is;[a(lge "?‘(}/ (‘)/52)("9’%(‘/*(9%/) y)()vngr ?;gtewz/;ie’)tizecg;ﬂasr;aée 3) Dynamic Programming:To implement the algorithm to
Y\Vr2), Y\Vs2), YLVT3))- YL Vs3 P solve the optimization problem (8), we create a cost function

with y(Vrs), (or y(Vs2) is compared withy(Vr3)), and the . : . . X i
state transition process proceed iteratively. Eventually, the stgg) k) (assumingy, is representing state, j, p, ¢)), which rep

transition will reach state(y(Vs(r-1)), ¥(Vr(o-1)), N, N) ;?;g(]/t.sfhe m)'?r']nt]ﬁénstg?el ;atz(?end_rﬂzci);tmn up toand including
(as we know,y(Vsy) = y(Vrg) = N). Fig. 9 shows an SRR pace.

example of the procedure. In Fig. 9(a), the sequence of steps
is labeled and Fig. 9(b) shows the list of the state transitions.
From the iterative procedure for obtaining the linked state list

[mapping Fig. 9(a) to (b)] and the backtracking procedure

min(p,q)

C(pr) = min Z max(Dg;, Dr;)

i=1

[mapping Fig. 9(b) to (a)], described above, it is clear that there v, (@)

is an 1-to/C mapping between the vertex lists and the linked +A r(Vsis- s V(o))

state list. This means that the specific definition of the state =1

space introduced in this section will not cause the exclusion of v, ' (0)

any optimal paths, since every possible skeleton and distance + Z r(Vriy ..o Vr(izo)) 9)
approximations are maintained. i=1
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© Control points ~~ =====-

O Boundary points == == : Next State

Fig. 10. Examples of segment distortion and segment rate.

where the function;*(z) = ¢ iff y(Vs,) = =, andy; ' (z) =t Using (10), the problem stated in (8) can be formulated as a

iff y(Vr:) = . In the following, we assume that the order ohortest path problem in a weighted directed gré@ph (V, F),

the approximating curve isequalto 1, ie5 1. Foro > 1,we whereV is the set of graph vertices aiélthe set of edges, for

need to construct a state space contaififagt 2)-tuple states, G the state space, where any directed edg€ fnom a vertex

instead of 4-tuple states. to another vertex represents a state transition. A directed edge is
The key observation for deriving an efficient algorithm is thelenoted by the ordered pdit, v) € E, which implies that the

fact that given a certain stafp;.—1 ) in a path and the cost func- edge starts at vertaxand ends at vertex. The weight of edge

tion up to and including this stateg”(px—1)), the selection of (u,v) is defined aswv(u,v) in (11). Clearly, the problem state

the next statey, is independent of the selection of the prein (8) can be solved by finding the shortest path from the vertex

vious state®o, p1, ..., pr_2. This is true since the cost func-corresponding to the stafé, 0, 0, 0) to the vertex corresponding

tion can be expressed recursively as a function of the segmenthe statg N, N, N, N), and the ordered list of vertices on

rates((pr—1, pr) and the segment distortiatipr_1, px). More the shortest path correspond to an ordered state sequence. By

specifically, backtracking we get the vertex lists for skeleton and distance

. signals.

C(pr) = min(Cpr-1) + w(pr—1,px)) (10) In summary, the state definition and the recursive represen-
where (see (11)—(13) at the bottom of the page). Fig. 10 shogSion of the cost function in (10) makes the future step of the
an example of the segment distortion and segment rate. Tdjftimization process independent from its past step, which is the
figure on the right .1 represents statg, », p, j)] shows the foundation of the dynamic programming technique. The com-
next step relative to the figure on the lefi.(_; represents state putational complexity of a DAG shortest path DP algorithm is
(m, j,i,q)). Itis easy to see how the edge distortions add up {9(|V/| + | E|). For the graplt¥ corresponding to the state space,
the total distortion. In other words, we are showing that sumy'| is O(N*) and|E| is O(N°®), therefore, the computational
ming the above segment distortions up will result in the totgbmplexity of the proposed 4-D DAG shortest path algorithm is
distortion and, that these segment distortions are only depeyn-V?). In most cases, it only takes several iterations to find the
dent on state,_; and statepy. optimal lambda. So, comparing withi®, the number of itera-

Recursion (10) needs to be initialized by settingons is not a significant factor in consideration of computational
C(0,0,0,0) equal to zero. For all possible approximacomplexity.
tions, C(y(Vsm),y(Vrq), N, N) is equal to the minimum  4) Admissible Control Point BandTo handle the case of a
value of, S, max(Dsi, Dr;i) + A(Xit, 7(Vsi, Vsii—1)) +  nonzero admissible control point band (i.e., the control points
Zf”zl r(Vri, Vr@i-1))), the Lagrangian cost function for thecan be nonboundary points) and make the optimal solution still

entire skeleton and distance data. feasible, we need to take the following steps. First, we have to
W(Ppk—1, ) = d(Pr—=1,Dk) + AN (Pr=1,Dk) (11)
and
J B Ef:iﬂ max(Ds:, Dr¢) Transition occurs in skeleton data 12
(Pre—1,p1) = >0_;+1max(Ds,, Dpy) Transition occurs in distance data (12)
and
_ [ r(y7'(p),y71(i)) Transition occurs in skeleton data
C(Pr—1,pr) = { r(y; ' (q),y; ' (4)) Transition occurs in skeleton data (13)
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Fig. 11. Example of labeling of the admissible control points.

label the admissible control points in a line one by one from lef .

to right and repeat this process line by line from top to botton

in the vertical direction (shown in Fig. 11), so that paoigs on  x; O e o o
the left of pointj (i < j) if they are on the same horizontal line,

otherwise, point is on the line above the line containing point Fig. 12.
Jj- The state space is constructed with those statésp, ¢) that

combine theith andpth admissible points for skeleton signal,

and thejth andgth admissible points for distance signal, wittstate(é, j) to state(i, ¢) (¢ > ;) or state(p,j) (p > i). The

the restrictions that < p,i < ¢,j < p, andj < ¢, and total number of edges in the state space then becomes equal to
the ith point is not on the same line with theh point, and O(N?).

alSO thejth point iS not on the same |ine W|th ﬂwh point_ 2) Relaxed Distortion Optlmal SolutionVarious WayS can

The weighted directed edges from one state to another stateRg€nvisioned for obtaining suboptimal results. For example, as
defined the same way as above. Clearly, the mapping betwda@ntioned in Section IV-A, lossy encoding can be performed
state space and gramh exists, and dynamic programming |50n|y on one of the two data sets, while the other is encoded loss-
applicable. Therefore, the optimal solution can be found by t#ssly. An alternative way [26] is to apply polygonal approxima-

Example of a 2-D state space.

DAG shortest path algorithm. tion on both the skeleton and distance data, while assuming that
the distortion from the skeleton approximation and the distor-
C. Suboptimal Algorithms tion from the distance approximation are additive, although, as

shown earlier, they are not.

In this approach, we assume that,; ~ 2 - EfV:l(DSi +
tDTi). Based on Lemma 4, it is clear that the resulting actual
distortion in this case can be smaller that the one calculated by
H1ee algorithm. Problem (8) in this case can be written as

1) Greedy-Trellis SearchA greedy suboptimal approach

Such an approach is obtained by using a 2-tuple gtatd
instead of a 4-tuple state, which consists of the last point in t
skeleton approximatioft), and the last point in the distance N M
approximatior(j). As shown in Fig. 12, the state space consistsin {Z(DSi + Dpi)+ A (Z T(Vsis -, Vs(izo))
of states and weighted directed edges from one state to another. {i=1 1=1

However, the terminating statés, q) of those edges starting Q
at state(i, j) are a restricted subset of the whole states set that + Z r(Vriy .o s Vr(izo)) (15)
satisfyingp > i andq > j, resulting in an acyclic graph. The i=1

greedy approach keeps the lowest cost branch at all stagegie skeleton and distance data are independent, (15) can be
the trellis up to that point, i.e., the selection of the optimal stai)|i into two optimizations as mentioned in Section IV-A, with
at the current stage is forced based on the optimal state at { fhputational complexity oD (N?).

previous stage. So, every state keeps the shortest path from the,yher way to improve the efficiency of the algorithm with
source stat€0, 0) to itself. The edge weight from state j) 10 o4y optimality is to use a sliding window [27], which restricts

state(p, ¢) is defined as the maximum vertical distance of consecutive starting/ending

min(p,q) vertices. By denoting byV.i, the window size, the compu-
w(i,j,p,q)= Y max(Dsk, Drx) tational complexity of the 4-D DAG shortest path algorithm
k=min(i, ) will be reduced ta@) ( N* W, ), and the near optimal algorithm

-1 -1 mentioned above will have computational complexity equal to
AT ) +rly (@) (149 O(NWyin). Experimental results indicate that whiéfyi,, is in-
Obviously,w(4, j, p, q¢) could depend on the states in the pasireased, the RD curve improves slightly, at the expense of con-
of the state(,5) in the so far selected optimal path, whictsiderably increased execution time.
destroys the optimality of the algorithm, and makes this ap- The width of the admissible control point band is another
proach a greedy search algorithm. To speed up the performariaetor influencing the efficiency of the algorithm. The wider the
pruning can be implemented by only allowing those edges frdpand, the larger the number of admissible control paits
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V. GENERAL CASES 2000 R—?cums’for 100 frames ofvtheKid? sequence
We now consider the more general cases where an object con- e A S Efgbg%mifﬂr::%:mg;mmm L
tains more than one skeletons, and there are multiple objects in \\ S T
a frame. ‘6°°”“J'""”:L"J“'L"“"‘l”'f"“
1) Object With Multiple SkeletonsAssume that thé. skele- 1400 R
tons{S', S2,..., S’} are encoded with the associated distance £ | ]
signals{T*,T?,...,TE}. Then the optimization problem can 3 o
be stated as 1000 E“ o ]
min Dyt (S*, S%,..., 8%, T, 7%, ... T"), subjectto s
Z {R(S™) 4+ R(T™)} < Rpuaget (16) - TR,

m=1 0 001 002 003 004 005 006 007 008 0.09

where the total distortion of the object depends onLadikele- MPEGH Distortion

tons and distances. This problem can be solved by solving #1§ 13. Comparison of optimal and suboptimal (greedy-trellis search)

unconstrained problem first solutions.
min {Dm(sl, S2 .8kt Tk 1400 e e
R -¢3- Near optimal result evaluated with additive distortion metric
Y + Near optimal result evaluated with MPEG-4 distortion metric
L 12000 — ',ﬁ L .. Optimal result by 4D DAG shortest path algorithm
"\l I 1 1 I I 1
+ A Z [R(S™) + R(Tm)]} . @17 N R
m=1 8 B S [ P
. | | I 1 I ] 1
It can be easily shown that 5 RN Co
) L gl 2 L = i i g A A i R R
7 02 \ ~ |
Diot(SY,8%,...,8 ,T,T,...,T)gZDmt(S,T). Lo N !
i=1 o - SR
(18) : : | | | i . ,,7_?\
. .. . 400- - - L - - L - L 14 J%
In most cases, equality holds, and then the optimization e
problem decouples intd problems ofmin{ Do (S™,T™) + ol b o
)\[R(Sm) + R(Tm)]}(l S m S L), Wh|Ch are identical tO (8) 0 0.01 002 0.03 :,1'245(3.2&55(0,—33: 0.07 008 0.09 0.1

solved in the previous section. In some rare cases, when the

distance distortion pixel sets corresponding to two skeletofhig- 14. Comparison of RD curve for additive distortion metric and actual
. . . . . MPEG-4 distortion metric obtained by the near-optimal and optimal algorithms.

overlap, the total distortion is less than the sum of distortions

in (18). In such cases, solving the decoupling problem yield=

a suboptimal overall solution. Since these cases are ri i} § } E
and the solution of the overall problem becomes extreme: "«3, -
complicated, we will not consider it here. }}‘ ‘ ,”g ,
2) Multiple Object Boundary EncodingSince the distor- . 5
tion calculation is defined on an object-by-object basis, tt % ~ L
problem remains decoupled even if the distortion pixel sets * “id )

two objects overlap. That is, the results of Section IV apply.

is underlined here that in the cases of decoupled optimizatiois,
the same Lagrange multiplier is used for the optimization of all Fig. 15. Examples of approximating only distance data.
the relaxed problems.

(Rate=976, Distortion=3.9%) (Rate=1080, Distortion=2.35%)

the result obtained by the relaxed distortion optimal solution
is evaluated using the MPEG-4 distortion metric, showing
A number of experiments have been conducted, some safime improved performance. As a general conclusion, the
which are reported here. Fig. 13 shows a comparison of theboptimal algorithms studied demonstrate a performance
results obtained using the greedy-trellis search suboptintalite comparable to that of the optimal algorithm.
approach and the 4-D DAG optimal approach. One-hundredSome of the experiments address the suitability of various
frames of the SIF sequence Kids were used in this experimemtw compression techniques for compressing each of the
The distortion axis represents the average of MPEG-4 distortiskeleton and distance signals. We compared the methods of
(Dmpec—4 in (3) for one frame over 100 frames). The resultencoding skeleton signals without loss while encoding distance
are comparable, with a great reduction in the computatiorsfjnal with loss (Fig. 15), and the method of encoding both
complexity of the greedy algorithm. In this second experimergkeleton and distance signals with loss (Fig. 16). As expected,
the relaxed distortion optimal solution is compared to the 4-By introducing distortion on the skeleton, the rate is reduced
DAG optimal solution. Fig. 14 shows the corresponding ORDy about 40% for distortion around 4% (compare left figure
curves for the first frame of the Kids sequence. In additioof Fig. 15 to right figure of Fig. 16). Another experiment is

VI. EXPERIMENTAL RESULT
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(rate=376, Distortion=8.86%) (rate=592, Distortion=4.1%)

Fig. 16. Shape approximation results according to the proposed 4-D DAG

optimal algorithm. Fig. 19. Original and reconstructed shapes from Cyclamen sequence.

R-D cunes for 100 frames of the Weather sequence

R-D curves for 100 frames of the Kids sequence 550 . . ; . . .
2400~ I A
& MPEG—4 method (CAE) 1 | | i | = MPEG4 method (CAE) |
—%— 4D DAG shortest algorithm ! ! i + Vertex-based method [3]
2200 F —-&- Min Sum Polygonal approximation in [9] 500+~ 7\7\:;— T : 77777 T :7 71 -+ Skeleton-based method }‘
Y~ | i [ T T
17 ] i i I '
2000 450__;,,1,,;\{:_____: _____ R e
1 Ny i I 1 i i
! ~ ! i ' ! i
1800 " | | . | i '
400 -+ - - - R e R i e I e
—_ \ | | ! |
1600 2 ! ! ! Iy ! |
z Q0 EREERREE R
% 1400 & \’ : : 1 : 12N !
o 300+---- 4\ _____ [P Lol LS o N |
1200 | ; | 1 i poA
I I I i
! i i ' i |
1000 i R T S TR
I | N | | T 1
1 ! Sl | | £ i
800 200+ - -- - 4----- - S Uk B i
1 ] e ]
B L T
—0 | I | | T |
600 150 | L | L L i | =
0 0.005 0.010 .015 0.02 0.025 0.03 0.035 0.04
) MPEG-4 Distortion

400 L L L L L L L L L
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

MPEG-4 Distortion
Fig. 20. Comparison of RD curves by various algorithms for “Weather”

Fig.17. Comparison of RD curves by various algorithms for “Kids” sequencgequence.

R-D cunes for 100 frames of the Cyclamen sequence polygonal approximation are shown, indicated by “0”, and the

5000g O | [ MPEG4 method (CAE) || results obtained by the CAE method are shown, indicated by

—+-_Skeleton-based method i “00". As it can be inferred from Fig. 17, the decomposition of

proposed algorithm and CAE are shown, while in Fig. 19
2500 L e - * a representative original and compressed frames from the
| N S~ i “Cyclamen” sequence are shown. The proposed algorithm

4" outperforms CAE with this sequence as well, which is a chal-
[ lenging sequence for the proposed method. Finally, three RD
; ‘ ! L ! \ 1 ! - y curves are shown for the “Weather” sequences (Fig. 20). The

0 0005 0.01 0015 002 0025 003 0.035 004 0045 005 proposed method greatly outperforms CAE and an RD optimal
MPEG-4 Distortion vertex method in this case, since the “Weather” sequence with

Fig. 18. RD curves for the proposed method and CAE for the “Cyclametjiyp'C‘r’l"y one skeleton per frame is extremely well suited for
sequence. the skeleton decomposition.

4500 e T the boundary data into two signal data sets (skeleton and dis-
4000 o tance}, vyith differgnt .characteristics, allpws for their efficient
: ; exploitation resulting in better compression results.
— 2500 7 ] The effectiveness of the proposed approach was also tested
£ ! ‘ utilizing 100 frames of the CIF “Cyclamen” and the QCIF
gsm o LNt R l “Weather” sequences. In Fig. 18, the RD curves for the

2000

1500

reported in Fig. 17. In this experiment, both the skeleton and VIl ConciUsIoN

distance signals are encoded using polygonal approximation|n this paper, we presented a skeleton-based shape-coding al-
VLC optimization is applied as in [25], and the 4D DAGgorithm. By decoupling the two-dimensional shape object data

shortest path algorithm is applied to get the ORD optim&ito one-dimensional skeleton and distance signals, we create a
curves. The results of the optimal approximation are indicatadvel scheme for encoding the object boundary. Since the sep-
by “*”. In addition, in Fig. 17, the results obtained in [9] for aarated skeleton and distance signals are uncorrelated with each
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