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ABSTRACT This article presents an efficient ray-tracing site-specific channel model compatible with

wireless sensor network (WSN) simulator applications for smart cities. It relies on two 2D approaches

dedicated to the main propagation modes; i.e. horizontal and vertical. The first is based on a pre-processing

of the propagation environment, involving the calculation of an exact visibility graph. Computed from the

discrete geometry concept called the super-cover model, it is improved to reduce its size and is used to very

efficiently compute the most significant propagation paths in 3D. The specific WSN context, characterized

by the sensor’s radio range and mobility, is exploited to limit the size of the propagation environment and to

pre-compute and store a set of visibility graphs, which are finally loaded and used on demand. The second

approach is an over-rooftop model that re-uses the super-cover model to very efficiently extract the vertical

profile containing the sensors, and proposes an original solution for the electrical field prediction where

there are multiple diffractions in the transition zone. The results are validated against measurements, and

show markedly better performance compared to others recent ray-tracing models. Finally, integration of the

proposed overall solution for channel modeling in a WSN simulator is proposed, and interest in using such

a model compared to conventional statistical models is demonstrated.

INDEX TERMS Radio propagation, Ray-tracing, Wireless sensor network.

I. INTRODUCTION

It was estimated in 2014 that 54% of the world’s popula-

tion lived in urban areas; roughly 3.3 billion people. This

proportion is expected to increase to 66% by 2030, around

5 billion people [1]. This massive increase has encouraged

new avenues of research into approaches to manage cities

and offer urban services in a different way. The increase

in interconnected elements in cities’ infrastructure due to

new technologies has also reshaped the vision for managing

cities [2]. This, in turn, has led to the concept of the “Smart

City”. In general, a smart city refers to new technologies and

innovative ideas to improve both the quality and efficiency of

urban services, and to improve people’s lives.

Technically, smart city communications rely on wireless

sensor networks (WSNs). To develop tomorrow’s smart city,

researchers have to study, develop, test and evaluate new

WSNs. These performance tests can be conducted using ei-

ther experimental test beds or simulations. Although test beds

are more realistic and more reliable, they are fairly complex,

time-consuming, costly, and may be practically unfeasible

for deploying a large number of sensors [3]. Simulation is

an appropriate alternative for studying network parameters

before deployment, especially for large-scale WSNs, as it

provides a cost-effective, rapidly deployable, and fairly re-

liable solution. A comparison between simulation tools and

test beds is given in [4] as a reference for choosing between

them. In fact, simulation is used by the majority of the

research community [5].

WSN simulators handle dynamic virtual networks, to ob-

serve and evaluate their operation. They rely on radio channel
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models along with their related protocols and algorithms.

One challenge is the accuracy and the computation speed

of the radio channel model. A wide range of available

WSN simulators is presented in the literature [5]–[7]. Un-

fortunately, most of them use very simple and unrealistic

propagation models [8]–[19], allowing fast simulations even

for large networks but lacking in precision. Some simulators

incorporate more realistic site-specific models [20]. The most

widely used radio channel models are based on ray-tracing

(RT) combined with geometrical optics (GO) and uniform

theory of diffraction (UTD). Unfortunately, they often be-

come computationally expensive when the environment con-

tains a large number of obstacles, or when a high order of

ray interactions is considered. This applies particularly in

the WSN context, with a high number of mobile sensors

necessitating continuous updating of the channels estimation.

The most computationally efficient models use 2D pre-

processing of the propagation environment [21], [22] to com-

pute an accelerating structure. A radio propagation model

based on such a structure relies on two steps. Firstly and from

a given transmitter, this structure is built to encode the wave

propagation with some reflexions and diffraction. The second

step uses this structure to calculate all valid paths for given

receivers. In other words, the complexity is split in two parts;

the calculation of the structure, and the calculation of the

paths. In previous studies, the authors have proposed a 2D

accelerating structure, the visibility graph (VG) [23]. This

is an accurate solution, since it calculates all ray contribu-

tions in the plane like any other exact 2D structure. Its fast

computation and use in ray-path determinations have already

established its high level of efficiency [24], [25].

In this article we propose a global solution (with horizontal

and vertical propagation) of a RT site-specific channel model

compatible with urban WSN simulator applications. It is

based on an improved VG structure and new contributions

addressing the specific context of WSN:

• A new VG computation is proposed that reduces its size,

and so reduces both the memory consumption and the

computation time for the final ray-paths.

• A very efficient algorithm is proposed to limit the ray-

path computations to the most significant ones. This

reduces the ray-path computation time while limiting

the increase in the power estimation error.

• The radio range of the sensors, depending on their

technology, is exploited to limit the size of the simulated

environment, and thus the computation time.

• A new channel pre-process is proposed, based on the

relative spatial stationarity of the channel. It consists of

pre-computing and storing a set of VGs associated with

a grid of virtual transmitters. These VGs are then loaded

from the hard drive and used on demand.

• Finally, a new and efficient method is proposed for over-

rooftop transmission (ORT). It relies on fast vertical

profile extraction, and an original solution to avoid elec-

trical field divergence when multiple diffractions occur

in the transition region, which is often the case in dense

urban environments.

This paper is organized as follows. Section II presents

the state of the art in radio channel modeling. Section III

discusses the computation of exact VGs, and presents our

contribution to minimizing their size and thus the corres-

ponding ray-path computation times. Section IV details our

new contributions, addressing the specific context of WSN.

Section V shows how to handle ORT modeling, with low

computation times and divergency-free results. Section VI

presents the overall performance results of the proposed

model. Section VII discusses the channel model integration

into the WSN simulator, and illustrates how it produces

added value. Section VIII concludes this paper.

II. STATE OF THE ART

Of the different kinds of propagation channel models, only

site-specific models can provide accurate field predictions

in a particular environment. Such models require detailed

data about the propagation environment [26], usually from

a Geographic Information System (GIS). Basic RT models

involve impracticable complexity even for low geometry and

interaction numbers. Where n denotes the number of faces,

and i the number of interactions (reflection plus diffraction),

the computation time is in O(ni). Many models try to reduce

this.

A. 3D RT MODELS

Some of these models can be parametric, and although

they are based on site-specific geometry they need some

measurements for calibration purposes [27], [28]. Others

are fully deterministic and rely on exact or approximate

numerical solutions of Maxwell’s equations. The full wave

solutions are obviously not usable in WSN simulators due

to the need to sample the propagation environment at a sub-

wavelength order, leading to prohibitive computation costs.

Therefore ray-tracing models based on the geometrical optics

(GO) concept and its extensions appear to be better solutions

[29], [30]. Many RT models proposed in the literature have

been proved accurate. By considering all the main physical

phenomena, namely line of sight, reflection, diffraction and

their combinations, it is possible to simulate complex three

dimensional (3D) rays. However, 3D RT can drastically slow

down multi-path determination in a realistic city environ-

ment. Some optimization methods have been developed to

keep computation times down to an acceptable level, such as

AZ buffer [31], space-division methods [32]–[42], visibility

pre-processing [43], [44], GPU implementation [45] and

machine learning approach [22]. The calculation times for

these methods are often not given. When they are available,

they show either that these methods can only deal with very

simple environments (an interior scene with 4 rooms [46] or

an exterior scene made up of 64 buildings [47]), or that they

are based on a non-exact and costly visibility pre-process

[43], which would miss some significant contributions. In the

context of WSN smart city simulators, the potentially high

number of sensors and their dynamic behavior imply the need
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for continuous updating of the calculated channel estimate

in very complex environments. Therefore, 3D RTs are not

efficient enough.

Other approaches convert the three-dimensional problem

into a two-dimensional (2D) hybrid one, depending on the

distance between transmitting/receiving antennas, and their

relative heights compared to the average height of buildings

in the environment. Hence, 2D RT models fall into two

categories depending on the main plane in which the rays

are computed: 2D vertical propagation and 2D horizontal
propagation.

B. 2D VERTICAL PROPAGATION MODEL

Reference [30] computes RT in a vertical plane by launching

some rays in vertical half-planes to identify the reflection

and diffraction points. When reflection occurs, a new vertical

plane containing the reflected ray is used to find the next

intersected building and so on until a stop criterion is met.

Thus, 3D ray-paths can be computed from 2D vertical ray-

launching. Good agreement with measurements is found

in [48], but this algorithm needs many intersection tests

to validate the ray-paths, and therefore still involves high

computation times.

ORT models are efficient and accurate solutions when the

transceivers are very far from each others. They only compute

the 2D ray-paths propagating in the vertical plane containing

the transceivers. They are based first on the extraction of

geometrical obstacles involved in the vertical plane, and then

on the estimation of the electrical field propagating in this

plane by successive diffractions from the horizontal edges of

the roofs of buildings. Obviously, this drastically reduces the

model complexity compared to basic RT models, since only

one propagation path is computed.

Several solutions have been proposed to deal with the mul-

tiple diffraction problem. The multiple knife-edge diffraction

method is a recursive approach for estimating the over-

all diffraction loss due to multiple diffraction. Using this

method, the obstacles are represented by simple geometry

as infinitely thin edges (knife-edges). The most widely used

multiple knife-edges methods are those of [49], [50]. They

give relatively good results when there are large differences

in building heights, but lead to large errors with grazing inci-

dence, which is common case in dense urban environments.

In [51], Vogler proposed a general multiple integral solution,

valid even at grazing incidence, but the computation cost

increases exponentially with the number of edges [52]. The

well-known Uniform Theory of Diffraction [53], although

computationally efficient and valid in the transition region,

still gives inaccurate results in the case of multiple diffrac-

tions in the transition zone. Some improvements involving

the addition of a higher order diffracted field have been

proposed by Holm [54], but they need to consider a very high

order for a realistic number of edges (100 order for 10 edges),

and so still imply huge computation times. As an alterna-

tive, Andersen and Rizk [55], [56] enforced the diffracted

field continuity at the shadow boundary by adding a second

order diffracted field with a modified distance parameter

L in the definition of the UTD coefficient. This solution

gives good results but for separate wedges only, not for two

joint wedges as found in a conventional building shape, and

their iterative behavior leads to significant computation times

as the number of wedges increases. Finally, Capolino and

Albani [57], [58] proposed a closed-form solution for high-

frequency diffraction problems from a perfectly-conducting

thick screen. It is efficiently computable, strictly continuous

in the transition region and still valid when the thickness

becomes vanishingly small. In this article, we use this co-

efficient jointly with the conventional UTD coefficient for

simple diffraction problems to predict the electrical field for

any realistic building roof shape, which is an advantage with

regard to the continuous improvement of GIS data quality.

C. 2D AND 2.5D HORIZONTAL PROPAGATION MODELS

2D horizontal models are used when the most significant

ray-paths propagate horizontally in the streets by interacting

with building walls and vertical edges. The simulated results

usually compare well with measurements [59]. 2.5D models

are built on 2D ones, but using the correct elevations of the

interaction points for field calculations. Although 2D and

2.5D models are more computationally efficient than 3D RT

thanks to simpler computations and less geometry, they often

use some accelerating structures based on pre-processing of

the propagation environment.

The first VG was proposed by [60]. From the image

theory, it iteratively builds illumination zones, i.e. lit regions

from a given source’s image. These illumination zones are

not exact visibility zones, since they contain some blockers

(building faces). Then this VG is applied using a two-step

RT approach: first, all zones containing a given receiver are

identified; second, obstacles present in these illumination

zones are tested to validate propagation paths in the RT

process. Clearly, this reduces the computation time compared

to a brute force RT, because fewer contributions are built and

checked to obtain valid outcomes. Nevertheless, numerous

intersection tests are still needed. As with all VG methods,

the global complexity may be expressed from the complexity

of two successive steps, building and RT:

Build(n, i) + RT(n, i). (1)

In [61], the illumination zones are more accurately com-

puted: an image is not valid for the whole wall, but only for

the part of the wall illuminated by the parent image. However,

illumination zones are still not exact visibility zones.

In [62], an exact VG is computed from the association

of image theory and a polar sweep algorithm, which is next

reused in [39]. Another optimization is to use the bounding

box of buildings to limit the number of walls and edges

on which intersection tests are needed to validate ray-path

segments in the RT process. Unfortunately, the computation

time is not given, and both its computational complexity and

the fact that this VG is emitter dependent (as in [61]) suggest

that it is not suitable for urban WSN simulators.
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More recently, the illumination zone concept was reused

by [63]. Each illumination zone, called a lit visibility poly-

gon, is associated with a dark visibility polygon corres-

ponding to the part of the zone shadowed by one blocker

(building). A ray segment is validated if the receiver is both

inside the lit polygon and outside all the dark ones at a given

depth of the graph. This operation is repeated for the lit

polygon of the previous order image and so on to validate

a propagation path. The dark polygons lead to numerous

intersection tests for each ray-path, and thus high RT com-

putation times. Moreover, the proposed pre-process is very

time consuming, as shown in [66]. In [64], the solution was

optimized for the treatment of several receivers, by mapping

in pre-process the lit polygons to a coarse grid to limit the

number of intersection tests needed in RT. In [65], the use

of the polar sweep algorithm [62] is added to compute an

intra visibility matrix in pre-process. It stores the visibility

relationship between each pair of geometrical elements (faces

or edges), as the extreme angles for which some parts of the

two elements are visible. Another pair of angles is computed

to establish the lit polygon of an image with regard to a wall.

Thus in pre-process, validation of wall visibility is obtained

by comparing its visibility angles with the lit polygon ones.

A 50% reduction in pre-process computation time is obtained

against [64], but because the intra visibility matrix is still

non-exact, costly intersection tests are still needed to validate

the potential ray-paths in RT, so the computation times re-

main too high for WSN simulators. In [66], the intra visibility

matrix is reused jointly with a visibility table containing the

list of faces/edges visible from an emitter moving along a

linear route. This allows significant acceleration of the pre-

processing time compared to [65] in the case of a mobile

emitter, but it still takes a lot of time. In [67], a new algorithm

is proposed to provide a dynamic visibility table taking into

account the modifications of the visibility relations between

a mobile emitter and mobile obstacles. A computation time

reduction of only 20% is achieved with regard to a brute-

force RT-process. Hence, it remains too large for WSN simu-

lators. In the rest of this article, the efficiency of the proposed

solution will be compared to those of [65] and [66].

As stated in Section 1, an exact 2D accelerating structure

called a visibility graph (VG) is proposed in [23]. Its main

advantage compared to other visibility structures is the exact

nature of the visibility relation, which leads to a very simple

and efficient usage for a given receiver. Indeed, since the

visibility zones are mapped to a discrete grid, all those

containing a given receiver are extracted linearly, in a very

short time. Not only does this lead to far fewer zones; in

addition it doesn’t require checking the existence of ray-paths

since each zone is exact. Furthermore, the building of this

structure is optimized in many ways, such that even the pre-

processing is relatively fast. In order to use this structure in

WSN simulators for 2D and 2.5D horizontal propagation,

some new specific optimizations are proposed in this article,

allowing a reduction in the complexity of the two steps.

More precisely, the solution proposed here to establish a

channel model suited to urban WSN applications is com-

posed of two components:

• A 2.5D RT model associated with a 2D exact VG. Its

efficient computation is presented in Section III, and the

optimizations dedicated to the WSN context are detailed

in Section IV.

• An ORT model dedicated to distant transceivers com-

bining a very efficient vertical plane extraction and an

accurate field prediction, which is detailed in Section V.

III. 2D EXACT VISIBILITY GRAPH

The visibility graph proposed here is the main acceleration

structure used for the 2.5D model. A graph contains some

elements called nodes, linked one by one by an arc providing

a kind of layered structure.

A new VG implementation was written compared to [23],

and a new optimization was added to minimize the number of

nodes. Furthermore, some explanations are missing in [23].

This is why we detail the VG computation in this section

before presenting its validation and performance evaluation.

A. VG COMPUTATION

In contrast to [60], [63], the VG used in this article is

exact. There is no dark zone inside the illumination zones;

i.e. the initial illumination zones are cut according to the

blockers located inside. In this way, every point located in

a zone is really visible from the transmitter (after reflec-

tions/diffractions). Thus, the VG exploitation is very effi-

cient, because no intersection test is needed for ray-path vali-

dation, which drastically reduces the RT process. To ensure

efficient zone use, a zone’s outline is composed of only 3

points, i.e. a triangle for line-of-sight (LOS) and diffraction,

or 4 points, i.e. a quadrangle for reflection. All zones are

convex.

As noted in Section II, a VG has a layered structure. Its

levels are built iteratively, according to the electromagnetic

interactions that occur. Its root node corresponds to the

transmitter; nodes at the first level of the VG represent the

visible zones; and nodes at the next levels are zones lit after

some reflections and/or diffractions from the geometrical

elements (walls or vertical edges). The VG computation prin-

ciple is presented by considering only reflection at first. The

treatment specific to diffraction is presented below. Fig.1(b)

illustrates the computation of an initial illumination zone by

the image method for a first order reflection on the face F1 of

building B1, from the image Tx′ of the emitter Tx. Buildings

B2 and B3 are two blockers that must be taken into account

to obtain the exact reflection zone in Fig.1(d). The remaining

problem involves efficiently cutting any illumination zone

according to the blockers’ shapes. We call this process zone
reduction.

The corresponding treatment is based on a discrete geo-

metry concept, called the super-cover model, which dis-

cretizes a line segment as a set of pixels. Fig.1(a) illustrates

this principle for the line D of equation ax + by + c = 0,

where (a, b, c) ∈ R are the line coefficients. The super-cover
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(a)

A grid's cell

Cell's center

(b)
A grid's cell

Discretization of the 2D
building's outline

Initial illumination
zone

Discretization of the
zone's outline

x maximum size of the data structure

y maximum size
of the
data structure

Bad scanning direction
of the illumination zone

Good scanning
direction of the
illumination
zone

(c)

Non-optimal reduction
zone

(d)

Optimal reduction
zone

FIGURE 1. (a) Line super-cover, (b) buildings mapping and zone reduction principle, (c) non-optimal and (d) optimal zone reduction.

of D corresponds to the pixels whose centers are between the

two lines D′ and D′′ (see Fig.1(a)) defined by:

D′ = a(x+
1

2
) + b(y +

1

2
) + c = 0 (2)

D′′ = a(x−
1

2
) + b(y −

1

2
) + c = 0. (3)

For example, the super-cover of D in Fig.1(a) is composed

of all the blue pixels (x, y) given by the following double

inequation:

−
(⌊a⌋+ ⌊b⌋)

2
≤ ax+ by + c ≤

(⌊a⌋+ ⌊b⌋)

2
, (4)

where ⌊⌋ defines the integer part function.

In the first step, all the horizontal edges of the propagation

environment are mapped, using the super-cover model, into

a regular 2D grid, as illustrated in Fig.1(b) for building B0.

Hereafter, this first step is referred to as scene2D mapping.

Thus, each grid’s cell (i.e. pixel) stores the list of building

edges located in this cell. This step is done only once,

independently of any transceiver location. This mapping is

very much more accurate than the mapping of the buildings’

bounding box proposed in [62], which leads to map large

empty areas.

When a new illumination zone is computed at a given VG

level (i.e. for a given interaction order), it extends first from

the source (previous image) of the zone to the edges of the

scene’s outline (cf. Fig.1(b)). This zone is thus too wide and

contains some dark zones as in [60], [63]. To become exact,

i.e. that all its points are visible from the source, it has to

be cut according to the shape of the blockers. To do this, the

proposed solution is based on determining all the edges in

the environment that intersect the zone. As presented above,

this is achieved by using a discrete geometrical approach.

Here the problem is twofold: first, being able to provide an

accurate zone’s discretization in the most possible efficient

way; and second, scanning the zone’s discretization in the

best direction, i.e. from the closest pixels to the most distant

ones.

This last point is quite logical: by scanning the zone’s

discretization from the pixel farthest from the zone’s source

(Tx′ in the example given in Fig.1(b)), we will probably

find a first edge that in fact is shadowed by many others.

In this case the zone will be cut in a non-optimal manner,

leading to many zones as illustrated in Fig.1(c). Even if

the number of resulting zones is not optimal, they remain

exact. In contrast, scanning the zone’s discretization from the

closest pixel to the source towards the most distant one (see

Fig.1(b)) increases the probability of first finding a visible

edge and so minimizing the number of resulting zones (see

Fig.1(d)). This second approach firstly avoids loss of time

in dealing with shadowed parts of the illumination zone,

and secondly minimizes the memory consumption for VG
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storage, since it creates fewer zones at the current VG level,

leading to fewer zone reduction steps in the next VG levels.

As can be seen in Section III-B, this is important for the ray-

path computations. The second solution is used in this work.

In our implementation, these two problems are solved by

the two next elements.

Firstly, four potential directions are considered for the zone

scanning:

• from the minimum to the maximum x-axis value;

• from the maximum to the minimum x-axis value;

• from the minimum to the maximum y-axis value;

• from the maximum to the minimum y-axis value.

Secondly, the zone’s discretization is stored in a specific

data structure. Because the illumination zone is convex, its

discretization can easily be obtained from its outline, com-

puted from the super-cover model. Fig.1(b) illustrates the

super-cover of the zone’s outline as colored pixels. This data

structure is an array in which each cell contains two integer

values. The semantics of these two values depends on the

direction chosen for the scanning of the zone’s discretization,

as indicated previously. So zone reduction comes down to the

following process:

1) computation of the best scanning direction of the zone;

2) computation of the super-cover of the zone’s outline;

3) scanning of the zone’s discretization in the best direc-

tion.

The third step simply consists of two nested loops (x and y-

axis). It is not time consuming because a very small number

(often 0) of edges is contained in each pixel. Each edge stored

in the corresponding pixel is tested as a valid blocker. If it is

a valid blocker, the zone is cut according to this blocker and

will be potentially cut again, either by another blocker in the

same pixel, or by a blocker in another pixel in the case of a

non-optimal scanning direction.

Applied to Fig.1(b), the best scanning direction is from the

minimum to the maximum y-axis, and from the minimum

to the maximum x-axis. The starting pixel is the closest

red one to the source. The data structure’s size, containing

the discretization of the zone’s outline, is given by the ex-

treme pixels on the x and y-axis respectively (in red and

purple in Fig.1(b)). The discretization of the zone’s outline

corresponds to the colored pixels. Zone reduction will start

as soon as a pixel containing a building edge corresponds to

a pixel in the zone’s discretization, i.e. pixels lying between

the red and purple ones in Fig.1(b), by scanning the zone in

the previously defined direction. Finally, the main parameter

of zone reduction is the resolution of its grid. In [23], we

found that any sizes between 3 and 10 m gave almost the

best performances. Therefore, for the rest of this paper we

consider a constant cell size of 5 m x 5 m.

As mentioned above, diffracted zone computations need

specific attention. They are independent of the parent node

because they are linked only to buildings’ vertical edges.

As in [24], diffraction sub-graphs are thus computed once,

before the VG computation, according to all the diffraction

edges of the propagation environment. We call this step DG
computation. Starting from a diffraction edge (the sub-graph

root), the first DG level corresponds to diffraction zones. The

next levels are reflection zones, iteratively computed until

the maximum number of considered reflections is reached.

During VG computation, each diffraction sub-graph is stored

only once; i.e. the first time that its diffraction edge is lit

by a VG zone. When a diffraction on the same edge occurs

elsewhere in the VG, the corresponding sub-graph is re-used.

From a programming perspective, this is performed by only

copying pointers on the already computed sub-graph. This

technique allows optimization of the VG’s size and memory

consumption.

According to the grid resolution, a pixel can store several

edges; even a full building in the case of a coarse grid.

Consequently, when a zone has to be cutted according to the

edges located in a given pixel, it is possible to first cut it with

a bad edge, i.e. one that is shadowed by another edge located

in the same pixel. This situation can arise independently of

the scanning direction. Thus, the result of the zone reduction
will be a set with too many (but exact) visible zones, as in

Fig.1(c). To solve this problem, a new step is proposed in this

article. It consists of merging the zones resulting from a non-

optimal reduction. These zones are identified if they satisfy

the following two conditions: they have the same source and

they share the same cutting edge (face F2 in Fig.1(c)). If this

is the case, the two zones are easily merged using knowledge

of their respective outlines.

B. MULTI-PATHS COMPUTATION

The ray-path computation simply consists of browsing the

nodes of all the VG’s levels to determine whether they in-

clude the receiver. However, complex environments and large

numbers of interactions lead to a high number of zones (up to

several tens of thousands), each having a very low probability

of containing the receiver. Hence, performing an exhaustive

inclusion test for every zones would become very time-

consuming. Consequently, we define a more efficient method

called VG mapping. First, we use a second 2D discrete grid

into which the VG’s list of zones is mapped. Thus, each pixel

of the grid contains the list of zones that intersect this pixel.

Finally, the pixel containing a given receiver is identified,

and the inclusion test is reduced to the list of zones stored

in this pixel; i.e. the zones with a very high probability of

containing the receiver. This step ensures the high efficiency

of this method.

Zone mapping can be done in a very accurate way by

reusing the same concept of 2D discretization used to com-

pute the VG (cf. Section III-A). A zone is stored in a given

pixel p if one pixel of its discretization corresponds to p.

The mapping is also very efficient because of the use of

the simple data structure presented in Section III-A to store

the discretization of the zones’ outlines. The concept is

illustrated in Fig.2, corresponding to a simple scene with 3

rectangular buildings (B1 to B3). It shows the zones obtained

by considering a maximal order of interactions equal to one.
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FIGURE 2. Extraction of the list of zones intersecting a pixel of the 2D grid.

Here, for the given Rx location, only four zones will be tested: V3, V4, R7, and

D2. Final inclusion test will remove V3.

A total of 23 zones is found (10 visible zones: V1 to V10; 9

reflected zones: R1 to R9; and 4 diffracted zones: D1 to D4;

for the sake of simplicity, diffracted zones are only shown

for the edge P). Let us consider the receiver Rx. Instead

of conducting inclusion tests for 23 zones (for this simple

configuration, with a limited number of interactions, and

without considering all the diffracted zones), the test is done

only for four zones, namely V3, V4, R7, and D2, to identify

the ones that really contain the receiver, which are V4, R7,

and D2.

The mapping of the VG to a 2D grid is quite similar to

the process used in [64]. However, the crucial difference

is that in [64] the illumination zones are not cut according

to the blockers. They are wider and contain dark zones,

which are also mapped to the grid, increasing the number of

inclusion tests needed. As a result, the grid mapping in [64] is

much less efficient than ours: the increase in grid resolution

leads to only a minor decrease of the computation cost due

to the inclusion tests, because the dark zones are stored

in many cells. In contrast, our VG contains exact visibility

zones only. Since dense urban environments contain a very

high number of blockers, the visibility zones are relatively

small. Consequently, the use of a high grid resolution (small

grid cells) is very efficient. Indeed, each cell stores a small

number of zones, reducing the number of inclusion tests for

a given receiver location. The increase in the grid’s resolution

obviously increases the computation cost due to the mapping

process for the VG’s zones, but it is kept very low thanks to

the efficiency of the zone discretization algorithm. The grid’s

resolution is empirically fixed to 5 m x 5 m in the rest of this

article.

Once this node identification process is completed, the

nodes containing the receiver are known, as shown in Fig.3.

Another process is required to go up through each identified

branch from the node to the root (Tx) to compute the received

paths (cf. Fig.4). As explained in Section III-A, each node

stores all the necessary data to build the received paths

(nature of node: reflection or diffraction, geometry: face or

FIGURE 3. Resulting 2D paths.

R8

Rx Rx

Rx

Tx

V2 V3 V4 V5 V6 V7 V8 V9 V10V1

D4 D3 D2 D1 R1 R2 R3 R4 R5 R6 R7 R9

FIGURE 4. Extraction of the zones list intersecting a pixel of the 2D grid.

edge, zone boundary, zone source, etc.). This information,

from the receiver to the transmitter and in the right order, is

the key advantage of our VG structure. It allows an almost

instantaneous ray-path computation. There is no need for

intersection tests to validate the ray-path segments since

the VG’s construction ensures it contains only exact visible

zones. Since in Fig.4 Rx is included in zones V3, R6, and

D2, three paths (direct, reflected, and diffracted paths) are

easily identified. These paths are built first in 2D using the

source image technique, as shown by the red dotted lines

in Fig.3. This is very fast because the order, the type of

interactions and the objects that generated these interactions

are all known. Then, from the knowledge of the transceivers

and buildings heights, and from Fermat’s principle of least

time travel, the heights of the intermediate reflection and

diffraction points along the path are adjusted to transform

all the 2D paths into real 3D paths [25]. Finally, the pro-

posed model is further improved by introducing the ground

reflected ray because it has a great impact, especially in near-

ground scenarios.

As a last step, the complex electrical field associated with

each 3D path is computed as follows:

Ei = E0FTx
FRx

∏

m

Rm

∏

n

An(s
′, s)Dn

e−jkd

d
, (5)

where E0 represents the reference field, FTx
and FRx

the

transmitting and receiving antenna radiation patterns, Rm the

reflection coefficient for the mth reflector, Dn the diffraction
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FIGURE 5. Measurement route in downtown Paris.

coefficient for the nth diffracting wedge, An(s
′, s) the diver-

gence factor of the diffracted rays, and e−jkd the propagation

phase factor due to the path length d (k = 2π/λ, with λ
representing the wavelength).

C. PERFORMANCES

Model validation is based on field measurements that were

conducted by France Telecom R&D in the Charles de Gaulle
- Étoile neighborhood of downtown Paris (cf. Fig.5). The

measurement route of 5 km (blue curve) corresponds to

1,650 equidistant reception points at a height of 1.5 m. The

transmitter was a vertical dipole antenna located at a height of

7 m with a transmission power of 45 dBm at 1.8 GHz. This is

a typical urban configuration with quite high buildings, where

the dominant propagation paths are mainly in the horizontal

plane. The geometry of the propagation scene, provided

by the IGN (Institut National Géographique), includes 813

buildings (10,276 faces). The buildings are modeled as typi-

cal concrete blocks (relative permittivity ǫr = 9, conductivity

σ = 0.01 S/m), and the ground as a perfectly flat concrete

surface.

As example, Fig.6(a) illustrates the power delay profile

obtained at the receiver position depicted by a black point

on Fig.5. This emphasizes the wideband character of our ray-

tracing channel method. From this result, we can deduce all

the wide-band parameters, like RMS delay spread whom the

evolution along the measurement route is shown on Fig.6(b).

Fig.7 shows the received power obtained from the pro-

posed 2.5D model (the black curve). It is parametrized for 4

reflections and 1 diffraction (4R1D), except for the pink parts

of the route where a second diffraction is needed to reach the
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FIGURE 6. (a) Power delay profile example, (b) RMS delay spread evolution

along the measurement route.
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FIGURE 7. Simulation vs measurement.

corresponding receiver locations. The 4R1D notation means

that the VG is computed up to the fifth order of interactions,

combining all the possible interaction arrangements from 0

(LOS) to 5 order, including a maximum of 4 reflections and

1 diffraction. In other words, the diffraction may occur in

positions 1 to 5 or even be absent.

There is good agreement between the simulation and the

measurements (the red curve), except for the pink parts where

it is difficult to accurately predict the field strength, even with

a second diffraction. The remaining errors, as circled in Fig.7,

and corresponding to a stroll through the Arc de Triomphe
and the portion of the route along the Champs Élysée (cf.
black circled zones in Fig.5), can be justified by the vehicular

traffic and the vegetation that were not considered in the GIS

data. The mean error is 4.15 dB and the standard deviation of

the error is 8.87 dB.

Table 1 presents the performances obtained on a PC run-

ning with a processor Intel CORE i7 3.1 GHz and 16 Go

RAM. Notice that the results presented in this paper were

all obtained on this computer. The computation time asso-

ciated with the scene2D mapping plus the DG computation
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TABLE 1. Performances of the 2.5D model.

Charles de Gaulle,

10,276 faces

Munich part,
1,734 faces

Scene2D mapping
+ DG computation

9 s 1.7 s

VG computation +
VG mapping

4R1D: 13 s,
Nb zones: 98,888

5R0D: 0.12 s,
Nb zones: 1,242

Path computation 1,650 Rxs: 7 s 1 Rx: 10 ms

Pre-process in

[66]
- 5R0D: 3,458 s
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FIGURE 8. Environment for performances comparison with [66].

is 9 s, whereas the time for the VG computation plus the

VG mapping (cf. Sections III-A and III-B) is 13 s. The

VG computation time is almost the same as in [23]. The

additional computation time due to the zone merging step is

compensated for by the technological advances in processor

performance. However, the number of resulting zones has

decreased from 270,168 in [23] to 98,888 with the zone

merging step. This reduction factor of about 2.7 leads to a

significant time gain in the path computation step. Hence, the

multi-path contributions between the emitter and all the 1,650

receivers of the route presented in Fig.5 are computed in 7 s

using the VG described in Section III-B.

To further assess performance, we also present in Table 1

results obtained in a second environment, described in Fig.8,

corresponding to a part of the city of Munich (Germany)

used to evaluate performances of another recent published

RT-method [66]. The environment’s size is 1,000 m x 1,000

m and is composed of 1,734 vertical faces.

In [66], the polar sweep algorithm is used jointly with

the intra visibility matrix to generate the visibility list for

a fixed transmitter location, to accelerate the RT process.

This pre-process is computed using a maximum reflection

depth of 5, which corresponds in our formalism to 5R0D.

The resulting computation time given in [66] is 262,800 s

for 76 emitter locations, extrapolated to 3,458 s for a single

emitter location. These results were obtained on a computer

running with an Intel CORE i5 3.3 GHz. The difference

between CPUs in our work and [66] should imply a constant

but small scale factor in computation time. Since the visibility

structure is not exact, the computation time of the RT-process

must be added. Although it is not given in [66], it should

be significant because of the need for numerous intersection

tests to validate the potential ray-path segments.

As presented in Table 1, the computation times for the

method proposed in this article is 1.7 s for the Scene2D
mapping plus the DG computation and 0.12 s for the VG

(computation + mapping), for a total of about 2 s. Finally,

using the VG to compute ray-paths for one receiver location

takes on average 10 ms per receiver.

Although these performances are relatively good, the next

section introduces other processes dedicated to the specific

context of WSN, which allow further improvements.

IV. OPTIMIZATIONS IN A WSN CONTEXT

This section proposes more new optimizations developed

specifically to address the urban WSN context. Section IV-A

presents an original VG application to very efficiently limit

multi-path computations to the most significant ones. Section

IV-B shows how we exploit the WSN sensors’ characte-

ristics to limit the size of the simulation environment in an

efficient and accurate way. Finally, Section IV-C illustrates

the proposed solution to take account of the WSN’s sensors

mobility.

A. LIMITATION TO THE MOST SIGNIFICANT PATHS

In many cases, a large number of propagation paths does

not significantly contribute to the total field, but takes time

to be computed. A simple optimization would involve only

computing the most significant paths, without degrading the

field prediction quality [68].

The VG nodes are roughly sorted from the most significant

to the least. The leveled structure of the VG naturally leads to

the nodes of level N being more significant than those of level

N+1, since it has undergone one less interaction. Further-

more, since reflection is less penalizing than diffraction, the

reflected zones are always placed before the diffracted ones

for the same VG level, so the reflected paths are computed

before the diffracted ones. Therefore, optimization simply

consists of calculating the paths by increasing levels of

interaction (the VG’s depth), from the VG’s root, until the

desired number of paths is reached. Table 2 shows the results

obtained for the same environment as Fig.5, always using the

1,650 receivers composing the measurement route. The abso-

lute mean error is computed by taking the computation of all

the paths as the reference. It shows that the path computation

becomes very fast as the number of paths decreases, but at

the price of a loss in accuracy. For example, if only 5 paths

are considered for each receiver, the path computation is

almost instantaneous but with an important loss in accuracy.

Limiting to 50 paths provides almost the same simulation

results in terms of accuracy as for all paths computation,

but in about 0.59 s instead of 6.78 s. Consequently, the
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TABLE 2. Limitation to the most significant paths: accuracy and computation time.

Maximum number of paths 5 10 20 30 50 100 150 200 All

Average number of paths 4.59 9.12 17.99 26.53 42.99 79.63 108.81 130.56 261.34

Absolute mean error (dB) 11.35 7.63 4.44 3.04 1.75 0.63 0.48 0.37 0.00

Paths computation, all Rxs (s) 0.081 0.125 0.25 0.36 0.59 1.20 1.70 2.25 6.78

default value for the optimal number of propagation paths

is empirically set to 50 in the rest of this article.

One might ask about the difference between limiting the

number of interactions and limiting the number of paths for a

fixed number of interactions. It is not exactly the same thing,

even if both procedures limit the number of paths. Increasing

the number of interactions while limiting the number of

propagation paths has the advantage of achieving a higher

coverage rate, i.e. distant receivers need more interactions to

be reached.

B. SIZE LIMITATION OF THE SIMULATION

ENVIRONMENT

As presented in Section II-C, the complexity of the simula-

tion environment has a direct impact on the computation time

for any RT model, VG included: the lower the complexity,

the faster the computation. Furthermore, in the context of

WSN, the transmitting power is usually limited for supply

autonomy reasons. As an example, nominal transmitting

power for the most commonly used protocols based on the

IEEE 802.15.4 physical layer is 1 mW (0 dBm) [69], giving

a radio range of at most a few hundred meters. Thus, limiting

the simulation environment size to the order of magnitude

of the distance separating the sensors should reduce the

computation time while limiting the loss of precision.

The developed algorithm is designed as follows: starting

from the transmitter, the buildings completely within a given

range are considered in the simulation (blue circle in Fig.9).

What exists outside this range is completely ignored (red

buildings). Partially included buildings are also considered

by adjusting the computation window’s size (black rectangle)

without including any new buildings that may exist inside the

modified window. Consequently, the VG is only computed

for the window of interest, which is much smaller than the

whole propagation scene.

In order to determine the optimal simulation range, three

urban test scenarios were defined on Fig.10 as follows:

• Scenario 1 - an open area: a uniform grid of 1,061

receivers (the blue points in Fig.10) located around the

transmitter at distances of 0 - 100 m in an open space.

The receivers in this scenario are mainly in LOS;

• Scenario 2 - a narrow street: a uniform grid of 347

receivers attached around the transmitter in a narrow

street. This environment is rich in multi-paths, and the

receivers are mainly in non-line-of-sight (NLOS);

• Scenario 3 - an intersection: a uniform grid of 162

receivers placed at a distance between 80 - 100 m
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FIGURE 9. Principle of simulation scene limitation.
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TABLE 3. Simulation range limitation: performance evaluation.

Scenario 1: Open area

Range (m) 100 150 200 250 300
Whole

scene

Absolute mean error

(dB)
0.47 0.14 0.10 0.10 0.07 -

VG computation +
mapping (s)

0.09 0.84 1.96 3.03 3.55 12.14

Path computation

time, all Rxs (s)
0.81 3.81 5.61 6.65 7.05 15.48

Scenario 2: Narrow street

Range (m) 100 150 200 250 300
Whole

scene

Absolute mean error

(dB)
0.69 0.31 0.03 0.01 0.01 -

VG computation +
mapping (s)

0.90 1.34 1.78 2.06 2.39 4.03

Path computation

time, all Rxs (s)
0.99 1.11 1.20 1.29 1.29 1.36

Scenario 3: Intersection

Range (m) 100 150 200 250 300
Whole

scene

Absolute mean error

(dB)
1.34 0.11 0.10 0.01 0.004 -

VG computation +
mapping (s)

1.50 2.56 3.06 4.26 4.97 7.80

Path computation

time, all Rxs (s)
0.28 0.45 0.50 0.59 0.59 0.59

(where the error values are higher than those of the

near receivers due to the scene limitation, in order to

assess the worst-case impact due to the area limitation

technique). The receivers are both in LOS and NLOS.

From these scenarios, the simulation ranges (represented

in Fig.10 as circles around the transmitter) vary from 100 m

to 300 m with 50 m steps.

Table 3 shows both the absolute mean error and the

computation time (VG computation + mapping and multi-

paths computation for all Rxs) of the three test scenarios for

4R1D at 1.8 GHz, using the whole scene as a self-reference

for evaluating the impact of the simulation range. All three

scenarios showed the same behavior: limiting the simulation

range (∼150 m for these test scenarios) has a negligible

impact on accuracy (from 0.11 to 0.84 dB) with a significant

gain in time (gain factor from 2.2 to 5.9).

C. VISIBILITY GRAPHS PRE-PROCESSING

The VG computation depends on a given emitter location.

However, smart cities contain many mobile sensors. A new

VG needs to be computed at each location. In [66], Hussain et
al. proposed computing a dynamic visibility table according

to the emitters’ linear displacement. Although it reduces the

pre-processing time with regard to the computation of a

D1

Tx

V2

R1

R2 D2

V1

Choosen VG

Candidate VG

Precomputed VGs

(a) (b)

FIGURE 11. (a) Example of VG, (b) nearest VG search principle.

visibility image tree according to each emitter’s location, first

its computation remains very time consuming and second,

it only allows linear emitter displacements. The pre-process

time for the emitter’s mobile route in Fig.8 composed of 76

locations and computed for 5R0D is 42,715 s [66]. In com-

parison, the computation time for all our 76 exact VGs for

5R0D is 3 s. However, for the more complex VG considering

4R1D, the computation time is 371 s. Although this time is

significantly less than the pre-process in [66], it remains too

long to treat the high number of mobile sensors involved in

an urban WSN. A significantly faster solution is proposed in

the next section.

1) Description of the algorithm

The VG structure presented in Section III models the propa-

gation channels between an emitter and a set of receivers in

a very efficient way, especially when the path computation

is limited to the most significant ones, and the propagation

environment is limited with regard to the radio range of the

sensor. Consequently, the idea proposed here is to save on

hard disk a set of VGs computed for some virtual transmitter

locations. Then, from a given transmitter location, the VG

pre-computed on the nearest virtual transmitter is directly

used to compute the propagation paths, allowing a consi-

derable time gain. The introduced approximation does not

greatly affect accuracy if the distance between the position of

the pre-computed VG and the current transmitter is within a

limited range. To achieve this goal effectively and efficiently,

three problems have to be addressed: firstly, the best data

structure for saving the VGs in order to reduce both the wri-

ting/reading processing times and the storage size; secondly,

the positioning strategy of the transmitters for which the VGs

are calculated; and finally, how to find the best VG to use for

a given transmitter location and the impact on accuracy.

a: Data structure

Let us assume that the VG in Fig.11(a) needs to be saved.

The proposed data structure is a 2D integer array whose
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TABLE 4. Data structure for pre-computed VG file, storing the VG depicted on

Fig.11(a).

V1 V2 R1 D1 R2 D2

x1−V1 x1−V2 Type R Type D Type R Type R

y
1
−V1 y

1
−V2 IDFace IDEdge IDFace IDFace

x2−V1 x2−V2 x−SR1
x1−D1 x−SR2

x−SD2

y
2
−V1 y

2
−V2 y−SR1

y
1
−D1 y−SR2

y−SD2

x3−V1 x3−V2 x1−R1 x2−D1 Type R Type D

y
3
−V1 y

3
−V2 y

1
−R1 y

2
−D1 IDFace IDEdge

x2−R1 x3−D1 x−SR2
x1−D2

y
2
−R1 y

3
−D1 y−SR2

y
1
−D2

x3−R1 x1−R2 x2−D2

y
3
−R1 y

1
−R2 y

2
−D2

x4−R1 x2−R2 x3−D2

y
4
−R1 y

2
−R2 y

3
−D2

x3−R2

y
3
−R2

x4−R2

y
4
−R2

size equals the number of the VG’s nodes. For each entry,

i.e. node, the number of rows is linked to the node’s depth

in the VG (the number of levels from that node to the

root) as illustrated in Table 4. Visible nodes are coded by

6 integer values corresponding to the Cartesian coordinates

of the 3 zone vertexes (triangle). Simply reflected/diffracted

nodes are represented by 12/8 integer values: 8/6 values for

the zone’ vertexes for reflected/diffracted zones respectively;

1 integer value coding the type of zone (Type R/D); 2

integer values for the coordinates of the reflection zone’

source only; and 1 integer value corresponding to the index

of the face/edge where reflection/diffraction has occurred.

The choice of integer values to code coordinates instead of

floating ones allows the memory size of the data structure

to be reduced. Hence, all the coordinates are rounded in

centimeters, and so are easily coded with integer values.

For nodes of depth > 2, all zones from depth 1 are saved

sequentially, except that only the vertexes of the last level

one are saved (e.g. R2 and D2 in Table 4). The last-level

zone is needed to perform the inclusion test with the receiver,

whereas the upper zones are no longer needed.

b: Pre-computed VG locations

The virtual transmitters’ locations are set using two strate-

gies:

• A regular grid of NxM equally spaced virtual transmit-

ters, with a chosen space step;

• When some data on the sensors’ mobility is known,

the user may provide a list of predefined locations

TABLE 5. Computation time per link according to interactions number.

Nb of interactions Time per link

1R1D < 1 ms

2R1D 2 ms

3R1D 6 ms

4R1D 10 ms
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FIGURE 12. Absolute mean error and storage size vs step size, and the

corresponding number of VGs and computation time.

corresponding to potential sensors’ locations, allowing

the number of pre-computed VGs to be limited.

c: VG search process

The principle is illustrated in Fig.11(b) where blue points

correspond to virtual transmitters of pre-computed VGs.

An intelligent search strategy is implemented by using a

naming format that contains the position of the graph as

VG_xLocation_yLocation. This means that there is no need

to read all the saved VGs to obtain their locations, which can

instead be directly revealed from the name of the file. Finally,

the distance between the transmitter and the candidate VGs

is calculated to select only the nearest VG (green point).

Hence, only one VG file is read and processed. From this

file, the propagation paths are built very quickly, as presented

in Section III-B.

2) Performances

Table 5 shows the computation time evolution according

to the interactions number for selecting the nearest pre-

computed VG file, reading it, reconstructing the 3D propa-

gation paths, and calculating the field strength. It is avera-

ged over thousands of sensors distributed in the Charles de
Gaulle - Étoile environment (cf. Fig.5), and is thus given

per link. It shows that our proposed model can perform

very high-speed simulations even for quite a large number

of interactions, in the order of 1 to 10 ms per link. The

impact on accuracy of the VG pre-processing depends on the

distance between the location of the used VG’s root and the

real transmitter. With our regular grid of virtual transmitters,
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it is thus directly linked to the step size. Another important

parameter is the storage space needed to back up the VGs.

It depends both on the mean VG size, which relies on the

configuration of the surrounding environment, the number

of interactions and the radio range considered, and on the

number of VGs to be stored, which is again directly linked to

the step size of the regular grid.

To illustrate the trade-off between accuracy and disk space

consumption, Fig.12 shows the evolution of the size of all the

precomputed VGs (red curve) and the corresponding absolute

mean error (blue curve) according to the step size, along with

the corresponding number of precomputed VGs and compu-

tation time. These results were computed in the Charles de
Gaulle - Étoile scene for a 4R1D configuration. VGs were

pre-computed using step sizes of 10 m, 5 m, 2 m, and 1

m. Then, 150 transmitters were distributed through a route

of 500 m length. Each transmitter picked the nearest pre-

computed VG to reconstruct the paths. The absolute mean

error was estimated over a grid of 150 receivers regularly

distributed inside a range of 150 m around each transmitter.

Of course, Fig.12 shows that the error decreases with the step

size while the disk space requirement increases. The error

goes from 0.78 dB for a 1 m step to 4.4 dB for a 10 m step. It

remains relatively modest and of the order of the estimation

error of conventional RT models. Both the required disk

space and the computation time of the VGs pre-process reveal

a square dependency to the grid step size. Hence the required

amount of data to be stored goes from 14.8 Go for a 10 m step

to 1.5 To for a 1 m step, while the corresponding computation

time goes from about 3 hours to 13 days. The best trade-off

would be fixed by the accuracy requirement of the application

considered and the storage capacity of the used computer. But

in a first approach, a 10 m step could be a standard solution

for conventional computers.

V. OVER ROOFTOP PROPAGATION SOLUTION

As mentioned in section II, communication between two

sensors separated by a large distance in a dense urban area,

as for Lora or Sigfox sensors, is often established based

on ORT propagation. Models for this type of contribution

must first extract the geometry involved in the vertical profile

between the two sensors to compute the propagation paths.

Then a suitable physical model has to be used to predict the

corresponding electrical field.

A. COMPUTATION OF VERTICAL PROPAGATION PATHS

As presented in Section III-A, all the horizontal building

edges were mapped into a 2D discrete grid during the

scene2D mapping (cf. pink pixels in Fig.13). In order to

extract the vertical profile between the transmitter and the re-

ceiver, the 2D straight segment of line is first drawn between

these two points. Next the segment of line is discretized ac-

cording to the super-cover scheme (cf. blue pixels in Fig.13).

Then its pixels are scanned, and all the contained edges

intersecting the segment are added to the vertical profile. The

above-mentioned algorithm was used to extract the vertical

FIGURE 13. Principle of vertical profile extraction.
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FIGURE 14. (a) Considered link in Munich, (b) extracted vertical profile.

profile between a transmitter and a receiver in the dense urban

environment of Fig.14(a). The corresponding profile (build-

ings height as a function of distance) is shown in Fig.14(b).

From this profile, the propagation path with the minimum

number of diffractions is considered to evaluate the electrical

field, enhanced with a ground reflection between the last

building and the receiver. These two paths are depicted in

blue on Fig.14(b).

B. ELECTRICAL FIELD PREDICTION

As mentioned in Section II, propagation paths involved in

ORT configuration can present a large number of successive

diffracted rays on edges in each other’s transition zones (cf.
black circle in full line in Fig.14(b)). Conventional UTD

diffraction coefficients [53] fail to accurately predict the elec-

trical field in this case. Our solution relies on the closed-form
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FIGURE 15. COST 231 measurement routes in Munich downtown.

solution for high-frequency double diffraction problems with

a perfectly-conducting thick screen, provided by Capolino

and Albani [57]. This was first formulated in a 2D geometry

illuminated by a line source. It was validated against results

obtained from the method of moment, and is still applicable

when the thickness becomes vanishingly small, which is the

case when a ray diffracts near any roof corner. Although

it needs the computation of generalized Fresnel integral,

an efficient solution was provided in [70]. Finally, it was

extended in [58] to handle 3D diffraction problems. This

solution is used in this work, in combination with classical

UTD coefficients when single wedge diffraction occurs (cf.
black circle in dotted line in Fig.14(b)).

VI. OVERALL PERFORMANCES

Our model was evaluated in comparison with the well-known

measurement data realized in the framework of the COST231

European project [71]. Path loss measurement campaigns

were conducted at 947 MHz in downtown Munich over

three routes (the total length of the routes was about 23

km) including different receiver heights (from 1.2 to 1.9

m), as illustrated in Fig.15. The transmitter was located 13

m above the ground and had an omnidirectional radiation

pattern. These three routes had receiver locations both distant

and close to the transmitter, with significant paths propagated

in both lateral and vertical planes. Hence, simulation results

were obtained with the full model, i.e. the 2.5D model (cf.
Section III) configured with 3R1D for the METRO200 and

METRO202 routes and 3R2D for the METRO201 route

(sufficient for convergence in this environment), in addition

to the ORT model. Both geometrical data and measurements

were provided by the Mannesmann Mobilfunk company.

Fig.16(a, b, and c) compare our simulation results to the

TABLE 6. Computation time performances in Munich environment. The

pre-processing time given in the last row ( [66]) is given for order 2 with a

maximum of 1 diffraction (i.e. 1R1D + 2R0D), for the small part of Munich

environment presented in Fig.8.

Measurement routes
Metro 200 Metro 201 Metro 202

970 Rxs 355 Rxs 1,031 Rxs

Mean error (dB) -2.29 -1.95 2.25

Standard deviation
of the error (dB)

8.66 7.77 7.81

scene2D mapping
+ DG computation

85 s

ORT model
All Rxs 580 ms 180 ms 480 ms

Per link 0.60 ms 0.51 ms 0.47 ms

2.5D model

VG comp.
+ map.,
3R1D

11 s

All Rxs

(all paths)
2.1 s 128 ms 12 s

All Rxs

(50 paths)
100 ms 35 ms 150 ms

[27]
Pre-proc. 1 hour

All Rxs 123.5 ms 45.20 ms 131.28 ms

[64], [66]

Pre-proc. 1,871 s

All Paths,
All Rxs,
order 2

1,400 s 540 s 1,560 s

measurements. The pink areas indicate the portions of the

routes mainly covered by ORT contributions. They show

good agreement with the measurements. Quantitative com-

parison values in Table 6 are of the same order as those

in other published models [27]. Notice that both the mean

errors and the standard deviations given in Table 6 are those

obtained according to the full model, i.e. ORT+ 2.5D model.

One important point is that despite the good agreement

between simulation and measurements, some larger errors

were noticed at certain receiver locations (black circles in

Fig.16(b and c)) where the simulation underestimated the

path loss. This observation is similar to other models’ results

[63], [64]. These points are located near the transmitter as

shown in Fig.16(d) (bottom scheme). The upper scheme of

Fig.16(d) shows a Google Earth map in this area, with a lot

of vegetation (green circles) around the buildings. These trees

are not considered in the GIS data. These missing obstacles

that obstruct the propagation path between the transmitter

and the receivers could explain the highlighted errors. Some

vegetation models recommended by the ITU could be inte-

grated to model the vegetation-induced losses [72]. The two

buildings surrounded by purple rectangles were built after the

measurement campaign and are therefore not modeled in the

GIS data.

Table 6 also presents the overall model performance in

terms of computation time. First, the scene2D mapping plus
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FIGURE 16. Performance evaluation: (a) route Metro 200, (b) route Metro 201, (c) route Metro 202. (d) Vegetation impact and missing buildings.

the DG computation takes 85 s. These computations are

performed only once, whatever the transceivers locations.

Then, it shows that the ORT model is very fast: it takes

less than 1 ms per link to extract the vertical profile, to

find the vertical paths, and to estimate the electrical field.

Consequently, the computation time for all the receivers in

each of the three measurement routes is less than 600 ms.

The 2.5D horizontal model was also calculated for Munich
environment to show that the overall model is fast even

for large scenarios. Table 6 shows that the VG computation
according to the combination 3R1D takes about 11 s, whereas

the paths computation takes 2.1 s, 128 ms, and 12 s for

routes 200, 201, and 202 respectively, when all paths are

computed. When only the 50 most significant paths are com-

puted, according to the method presented in Section IV-A,

the computation time is drastically reduced to 100, 35, and

150 ms for the three routes. It should be noted that it is still

possible to obtain very fast performance with the VG pre-

processing mode (cf. section IV-C). The computation time

per link for the 2.5D model is not included because it is not

particularly dependent on the number of receivers.

Finally, Table 6 compares computation times obtained

from the proposed model with those of other published

solutions. The solution presented in [27] demands a pre-

processing step for the environment model, taking about

1 hour with a CORE i5 running at 2.8 GHz. Then the

computation of the propagation paths and the corresponding

electrical field is very fast but needs some measurements to

calibrate the model, which is a significant constraint because

measurements will be needed for any new environment in

which one wants to deploy a WSN. In [64], [66], no mea-

surement is needed, as in our solution, but computation times

are very high (obtained with a CORE i5 running at 3.3 GHz).

The visibility pre-process for 2R0D + 1R1D takes 142,200

/ 76 = 1,871 s on the small part of the Munich environment

presented in Fig.8 [66]. Unfortunately, the pre-process time

for the whole Munich environment is not given in any papers,

but should be much greater. To compute all the paths for all

Rxs locations, the RT-process takes 1,400 s, 540 s, and 1,560

s for routes Metro 200, 201, and 202 respectively [64].

VII. INTEGRATION INTO THE WSN SIMULATOR

Having demonstrated the performance of our model in terms

of both accuracy and efficiency, this last section presents its

integration into the CupCarbon WSN simulator developed

in the framework of the PERSEPTEUR project, funded by

the French national research agency. An illustration of the

advantage of using a realistic channel model instead of a

conventional statistical ones is also presented.
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A. CUPCARBON

CupCarbon [73]–[75] is a Smart City and Internet of Things

WSN simulator for both scientific and educational purposes.

Its objective is to provide reliable simulations for WSNs,

mainly in terms of propagation and interference of signals.

It is very useful for designing, visualizing, validating, and

debugging distributed algorithms for real projects such as

environmental data monitoring. It also enables engineers and

researchers to test their wireless topologies, protocols, etc. in

a 3D urban environment.

Networks can be easily designed with CupCarbon’s user

interface by deploying sensors directly on the map. CupCar-

bon uses the OpenStreetMap (OSM) framework, which is the

geometry source for deterministic radio propagation models.

Two simulation environments are offered by CupCarbon. The

first one enables the design of mobility scenarios and the

generation of events. The second enables discrete event sim-

ulation, and takes into consideration the mobility scenarios

defined in the first environment.

CupCarbon also includes many interesting features such

as: the ability to simulate the interference of signals; an

energy consumption model; an easy script language (Sen-

Script) to program sensors; intelligent mobility; a user-

friendly graphical interface; the ability to split sensors into

separate networks; and clear visualization of the network and

the working environment, etc. It also includes some WSN

protocols such as ZigBee, LoRa, and WiFi.

B. PROCESSING OF GEOMETRICAL DATA

Radio propagation models were integrated through an Ap-

plication Programming Interface (API), designed to send

only the required simulation parameters and the geometry

database, to launch the computation and deliver back the re-

quired channel estimations without having access to the ope-

rations occurring in the background. The end-user can define

(through CupCarbon interface) the simulation parameters for

the API; as for example, the combination of electromagnetic

interactions.

The polygons defined in the geometry database contain a

large number of points, many of them having been generated

by the measurement process and thus having no physical

meaning. These unnecessary details considerably reduce the

performance of any RT model while consuming a huge

amount of memory. Therefore, in order to ensure the best per-

formance of the API, it is necessary to simplify the buildings’

outlines before using them as an input for the API. We used

the Douglas-Peucker method [76] to do this, as illustrated in

Fig.17, where its parameter ǫ was fixed at 0.3. This process

allows a drastic reduction of the number of faces composing

the building (138 to 30 in this example) while preserving its

overall shape.

Finally, some problems remain with the OSM geometric

database. First, a large number of existing buildings are not

modeled, even in the dense urban environments of the city

centers of major cities, such as Paris in France. Second, the

heights of the modeled buildings are often very poorly docu-
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FIGURE 17. (a) Initial OSM building (138 faces), (b) simplified building (30

faces) with ǫ = 0.3.
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FIGURE 18. (a) Scene extracted from OSM (in blue) superposed to the one

provided by the IGN (in brown, cf. Fig.5); some buildings are missing in OSM;

(b) simulation result from OSM scene.

mented or missing. However, these problems are likely to be

corrected in the near future with the continuous improvement

of GIS.
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C. API VALIDATION

We validated the API with the scene Charles de Gaulle -
Étoile, Paris, already used in section III-C. But here, its

geometry was taken directly from the CupCarbon user inter-

face, and so from the OSM database. Obviously, the building

outline simplification based on Douglas-Peucker algorithm

was applied. The result is shown in Fig.18(a). As mentioned

in Section VII-B, some buildings are missing in comparison

to those shown in Fig.5.

Fig.18(b) compares the simulation result of the OSM scene

to the measurements, by considering 4R1D. Relatively good

agreement can be seen even though the mean and standard

deviation errors are higher than those obtained in section

III-C (10.87 dB and 12.83 dB respectively), as expected with

the large number of missing buildings. This result shows the

importance of accurate geometrical data in achieving good

field predictions in urban areas.

D. IMPACT OF DETERMINISTIC MODEL ON WSN

PERFORMANCES

This section describes a case study carried out in Brest city,

France. The test scenario consisted of a small WSN with 10

sensors (s1, s2, ... , s10). All the sensors are moving along

predefined trajectories represented by the red-dotted paths in

Fig.19. The sensors move at a constant speed along these

paths and reach the end of their trajectories in 59 seconds;

therefore, it is convenient to trace the behavior in steps of 1

second, resulting in 60 snapshots for each sensor.

The main simulation parameters are presented below:

Configuration: Urban;

Location: Downtown Brest;

Simul. area: 800 m x 800 m;

Protocol: ZigBee;

Transmit power: 20 dBm;

Frequency: 2.4 GHz;

Sensitivity level: -100 dBm;

Channel model: 2.5D;

Interactions number: 4R1D.

However, it should be noted that the transmitter’s power

and Rx’s sensitivity values are not the theoretical values

defined by the standard; rather, they came from a commercial

ZigBee module (Ember EM357 Transceiver - ZICM357P2)
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FIGURE 20. Impact of channel model on the PER. The results for the 300 first

links are detailed in the zoomed part.

in order to extend the link budget.

In order to show the importance of using a realistic channel

model that takes the propagation environment into account,

we conducted a comparison of a network parameter: the

Packet Error Rate (PER). PER values were obtained by using

firstly our deterministic model and then a statistical channel

model classically used in WSN simulators, i.e. the Log-

Normal shadowing model. To obtain comparable results, the

different parameters of the Log-Normal model were fitted to

measurements obtained in the relevant environment, which

led to the following model:

LdB(d) = −14.27 + 10× 5.7× log(d) +Xσ=16dB, (6)

where d is the distance between the sensors and Xσ is a

normal distributed random variable with σ standard deviation

equal to 16 dB. Thus, random data were generated and

formatted as ZigBee Payloads, then they were added to the

ZigBee preamble to form a ZigBee frame as defined by the

physical layer of the protocol. All the other physical layer

parameters such as center frequency, sampling frequency,

bit rate, chip rate, etc., were also considered. The ZigBee

frames were then sent to the receiver sensor, via the radio

channel: first with the proposed deterministic model and then

with the adapted Log-Normal one. The same white Gaussian

noise was added to the two channels. At the receiver side,

the received signal was decoded with a maximum of three

retransmission requests, as indicated by the ZigBee protocol.

The PER values of the two models were computed over the

2,700 links of the considered mobility scenario in Fig.19. Our

deterministic model led to a mean PER of 57.10−2 whereas

the Log-normal model overestimated the transmission per-

formances with a mean PER of 46.10−2.

In order to highlight their specific impact, Fig.20 compares

the PER obtained by our deterministic model to the Log-

normal one, radio link per radio link. More specifically, the

three y-axis values in the figure were analyzed as follows:

• 1: the packet was correctly received/not received by

considering the deterministic model and the Log-normal
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one respectively;

• 0: the packet was received or not received for both

models;

• -1: the packet was not received/correctly received by

considering the deterministic model and the Log-normal

one respectively.

From this figure, it appears that 51% of packets were

considered as received by the Log-normal model when they

were not received correctly by the deterministic model, and

vice versa. This difference confirms that the parametrized

Log-Normal is not accurate enough to characterize the WSN

performances in a realistic specific environment.

VIII. CONCLUSION

This article has presented a study of the radio wireless chan-

nel used in a dense urban environment for the communication

between a set of mobile sensors composing a WSN. The

proposed solution is a ray-tracing based model able to effi-

ciently simulate large networks. It consists of two approaches

linked to the main mode of wave propagation - horizontal or

vertical - depending on the relative heights of the antennas

and buildings, and the distance between the sensors.

The first approach uses a 2D exact visibility graph, which

is a point-to-zone structure allowing the fast calculation of

exact lit zones based on the super-cover model. The exploita-

tion of this structure permits very efficient computation of

the 3D propagation paths between a transmitter and a set of

receivers. As a first contribution, a new implementation of the

VG computation allows a reduction of the number of nodes,

and so both the memory consumption and the final ray-paths

computation time. After validating the model by comparison

with measurements, and as a second contribution, we showed

that the specific VG structure naturally led to classifying

the ray-paths contributions in an increasing order of atte-

nuation. It is thus easy to limit the calculation to the main

significant paths so as to decrease the computation time while

controlling the loss of precision in the simulation. A third

contribution uses the theoretical radio range of sensors to

limit the size of the simulation area. The results show that this

drastically reduces the computation time without decreasing

the accuracy level of the simulation. As a fourth contribution,

we proposed an algorithm dedicated to the management of

the dynamic behavior of the sensors. This involves precom-

puting a set of VGs according to a set of virtual transmitter

locations. Then, the one computed for the nearest location to

the considered sensor is used on demand, instead of the exact

VG, to simulate the propagation paths. The results showed

that this process leads to mean computation times of less

than 10 ms per link, which is significantly better than other

published models, and compatible with WSNs composed of

thousands of sensors. Nevertheless, a tradeoff has to be found

between computation time gain and disk space consumption

for VG storage.

The second approach is dedicated to ORT transmission for

distant sensors. First we used the super-cover of the Tx-Rx

segment to quasi-instantaneously extract the vertical profile,

and compute the main significant ray-paths contributions.

Then, we avoided the field divergence problem for multiple

successive diffractions on the building roof tops, by the

joint use of conventional UTD coefficients for single edge

diffraction and the Albani and Capolino’s coefficients for

double diffraction on a thick screen. The simulation results

were validated by comparison with measurements and gave

a level of accuracy of the same order as the literature results.

Computation times were, in turn, significantly better.

As a global validation, we integrated the proposed propa-

gation model into the CupCarbon WSN simulator. Some

problems relating to the accuracy of the geometric database

were highlighted, such as the level of detail of the building

outlines, and solutions were proposed to remedy them by

adapting the available data in an automatic way. Finally,

we demonstrated the importance of considering a realistic

channel model instead of a conventional statistical one, by

simulating a WSN evolving in a real environment. Results

showed that a statistical model can lead to the mis-estimation

of more than 50% of the links.

Further research could address the environment geometry.

First, new algorithms could be developed to simplify the 2D

outline of the buildings, for instance by grouping a set of

related buildings together, in order to further improve the VG

computation time. Second, the geometry of roof tops could

be enhanced by introducing the real shape of the roof, i.e. not

a flat surface as considered in this study. The impact on the

ORT model could be significant. Finally, new algorithms will

have to be developed to deal with future 5G networks, taking

into account the diffusion phenomena for millimeter waves

or even light waves. In this case, particular attention should

be paid to the vegetation and accuracy of 3D urban models,

which will have a great impact on predictions.

As the parametrization space for this type of channel

propagation modelling approach is large, future research

may consider machine learning approaches to adaptively

determine suitable parameters, for any properly defined ur-

ban context. This would allow the WSN designer to more

productively focus on the task at hand with less knowledge

needed on the intricate radio model components.
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