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ABSTRACT
People today typically use multiple online social networks
(Facebook, Twitter, Google+, LinkedIn, etc.). Each online
network represents a subset of their “real” ego-networks. An
interesting and challenging problem is to reconcile these on-
line networks, that is, to identify all the accounts belonging
to the same individual. Besides providing a richer under-
standing of social dynamics, the problem has a number of
practical applications. At first sight, this problem appears
algorithmically challenging. Fortunately, a small fraction
of individuals explicitly link their accounts across multiple
networks; our work leverages these connections to identify a
very large fraction of the network.

Our main contributions are to mathematically formalize
the problem for the first time, and to design a simple, lo-
cal, and efficient parallel algorithm to solve it. We are able
to prove strong theoretical guarantees on the algorithm’s
performance on well-established network models (Random
Graphs, Preferential Attachment). We also experimentally
confirm the effectiveness of the algorithm on synthetic and
real social network data sets.

1. INTRODUCTION
The advent of online social networks has generated a re-

naissance in the study of social behaviors and in the un-
derstanding of the topology of social interactions. For the
first time, it has become possible to analyze networks and
social phenomena on a world-wide scale and to design large-
scale experiments on them. This new evolution in social
science has been the center of much attention, but has also
attracted a lot of critiques; in particular, a longstanding
problem in the study of online social networks is to under-
stand the similarity between them and “real” underlying
social networks [29].

This question is particularly challenging because online
social networks are often just a realization of a subset of
real social networks. For example, Facebook “friends” are
a good representation of the personal acquaintances of a
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user, but probably a poor representation of her working
contacts, while LinkedIn is a good representation of work
contacts but not a very good representation of personal re-
lationships. Therefore, analyzing social behaviors in any of
these networks has the drawback that the results would only
be partial. Furthermore, even if certain behavior can be ob-
served in several networks, there are still serious problems
because there is no systematic way to combine the behavior
of a specific user across different social networks and be-
cause some social relationships will not appear in any social
network. For these reasons, identifying all the accounts be-
longing to the same individual across different social services
is a fundamental step in the study of social science.

Interestingly, the problem has also very important prac-
tical implications. First, having a deeper understanding of
the characteristics of a user across different networks helps
to construct a better portrait of her, which can be used to
serve personalized content or advertisements. In addition,
having information about connections of a user across mul-
tiple networks would make it easier to construct tools such
as “friend suggestion” or “people you may want to follow”.

The problem of identifying users across online social net-
works (also referred to as the social network reconciliation
problem) has been studied extensively using machine learn-
ing techniques; several heuristics have been proposed to
tackle it. However, to the best of our knowledge, it has
not yet been studied formally and no rigorous results have
been proved for it. One of the contributions of our work is
to give a formal definition of the problem, which is a precur-
sor to mathematical analysis. Such a definition requires two
key components: A model of the “true” underlying social
network, and a model for how each online social network is
formed as a subset of this network. We discuss details of
our models in Section 3.

Another possible reason for the lack of mathematical anal-
ysis is that natural definitions of the problem are demotivat-
ingly similar to the graph isomorphism problem.1 In addi-
tion, at first sight the social network reconciliation problem
seems even harder because we are not looking just for iso-
morphism but for similar structures, as distinct social net-
works are not identical. Fortunately, when reconciling so-

1In graph theory, an isomorphism between two graphs G
and H is a bijection, f(∗), between the vertex sets of G and
H such that any two vertices u and v of G are adjacent in G
if and only if f(u) and f(v) are adjacent in H. The graph
isomorphism problem is: Given two graphs G and G′ find
an isomorphism between them or determine that there is no
isomorphism. The graph isomorphism problem is considered
very hard, and no polynomial algorithms are known for it.
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cial networks, we have two advantages over general graph
isomorphism: First, real social networks are not the adver-
sarially designed graphs which are hard instances of graph
isomorphism, and second, a small fraction of social network
users explicitly link their accounts across multiple networks.

The main goal of this paper is to design an algorithm with
provable guarantees that is simple, parallelizable and robust
to malicious users. For real applications, this last prop-
erty is fundamental, and often underestimated by machine
learning models.2 In fact, the threat of malicious users is
so prominent that large social networks (Twitter, Google+,
Facebook) have introduced the notion of ‘verification’ for
celebrities.

Our first contribution is to give a formal model for the
graph reconciliation problem that captures the hardness of
the problem and the notion of an initial set of trusted links
identifying users across different networks. Intuitively, our
model postulates the existence of a true underlying graph,
then randomly generates 2 realizations of it which are per-
turbations of the initial graph, and a set of trusted links for
some users. Given this model, our next significant contri-
bution is to design a simple, parallelizable algorithm (based
on similar intuition to the algorithm in [23]) and to prove
formally that our algorithm solves the graph reconciliation
problem if the underlying graph is generated by well estab-
lished network models. It is important to note that our al-
gorithm relies on graph structure and the initial set of links
of users across different networks in such a way that in order
to circumvent it, an attacker must be able to have a lot of
friends in common with the user under attack. Thus it is
more resilient to attack than much of the previous work on
this topic. Finally, we note that any mathematical model
is, by necessity, a simplification of reality, and hence it is
important to empirically validate the effectiveness of our ap-
proach when the assumptions of our models are not satisfied.
In Section 5, we measure the performance of our algorithm
on several synthetic and “real” data sets.

We also remark that for various applications, it may be
possible to improve on the performance of our algorithm by
adding heuristics based on domain-specific knowledge. For
example, we later discuss identifying common Wikipedia
articles across languages; in this setting, machine transla-
tion of article titles can provide an additional useful signal.
However, an important message of this paper is that a sim-
ple, efficient and scalable algorithm that does not take any
domain-specific information into account can achieve excel-
lent results for mathematically sound reasons.

2. RELATED WORK
The problem of identifying Internet users was introduced

to identify users across different chat groups or web ses-
sions in [24, 27]. Both papers are based on similar intuition,
using writing style (stylography features) and a few seman-
tic features to identify users. The social network reconcil-
iation problem was introduced more recently by Zafarani
and Liu in [33]. The main intuition behind their paper
is that users tend to use similar usernames across multi-
ple social networks, and even when different, search engines

2Approaches based largely on features of a user (such as
her profile) and her neighbors can easily be tricked by a
malicious user, who can create a profile locally identical to
the attacked user.

find the corresponding names. To improve on these first
naive approaches, several machine learning models were de-
veloped [3, 17, 20, 25, 28], all of which collect several features
of the users (name, location, image, connections topology),
based on which they try to identify users across networks.
These techniques may be very fragile with respect to ma-
licious users, as it is not hard to create a fake profile with
similar characteristics. Furthermore, they get lower preci-
sion experimentally than our algorithm achieves. However,
we note that these techniques can be combined with ours,
both to validate / increase the number of initial trusted
links, and to further improve the performance of our algo-
rithm.

A different approach was studied in [22], where the au-
thors infer missing attributes of a user in an online social
network from the attribute information provided by other
users in the network. To achieve their results, they retrieve
communities, identify the main attribute of a community
and then spread this attribute to all the user in the commu-
nity. Though it is interesting, this approach suffers from the
same limitations of the learning techniques discussed above.

Recently, Henderson et al. [14] studied which are the most
important features to identify a node in a social network,
focusing only on graph structure information. They ana-
lyzed several features of each ego-network, and also added
the notion of recursive features on nodes at distance larger
than 1 from a specific node. It is interesting to notice that
their recursive features are more resilient to attack by ma-
licious users, although they can be easily circumvented by
the attacker typically assumed in the social network security
literature [32], who can create arbitrarily many nodes.

The problem of reconciling social networks is closely con-
nected to the problem of de-anonymizing social networks.
Backstrom et al. introduced the problem of deanonymiz-
ing social networks in [4]. In their paper, they present 2
main techniques: An active attack (nodes are added to the
network before the network is anonymized), and a second
passive one. Our setting is similar to that described in their
passive attack. In this setting the authors are able to de-
sign a heuristic with good experimental results; though their
technique is very interesting, it is somewhat elaborate and
does not have a provable guarantee.

In the context of de-anonymizing social networks, the
work of Narayanan and Shmatikov [23] is closely related.
Their algorithm is similar in spirit to ours; they look at the
number of common neighbors and other statistics, and then
they keep all the links above a specific threshold. There are
two main differences between our work and theirs. First, we
formulate the problem and the algorithm mathematically
and we are able to prove theoretical guarantees for our algo-
rithm. Second, to improve the precision of their algorithm
in [23] the authors construct a scoring function that is expan-
sive to compute. In fact the complexity of their algorithm
is O((E1 + E2)∆1∆2), where E1 and E2 are the number of
edges in the two graphs and ∆1 and ∆2 are the maximum de-
gree in the 2 graphs. Thus their algorithm would be too slow
to run on Twitter and Facebook, for example; Twitter has
more than 200M users, several of whom have degree more
than 20M and Facebook more than 1B users with several
users of degree 5K. Instead, in our work we are able to show
that a very simple technique based on degree bucketing com-
bined with the number of common neighbors suffices to guar-
antee strong theoretical guarantees and good experimental
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results. In this way we designed an algorithm with sequen-
tial complexity O((E1 +E2)min(∆1,∆2) log(max(∆1,∆2)))
that can be run inO(log(max(∆1,∆2))) MapReduce rounds.
In this context, our paper can be seen as the first really
scalable algorithm for network de-anonymization with the-
oretical guarantees. Further, we also obtain considerably
higher precision experimentally, though a perfect compari-
son across different datasets is not possible. The different
contexts also are important: In de-anonymization, the pre-
cision of 72% they report corresponds to a significant viola-
tion of user privacy. In contrast, we focus on the benefits to
users of linking accounts; in a user-facing application, sug-
gesting an account with a 28% chance of error is unlikely to
be acceptable.

Finally, independently from our work, Yartseva and Gross-
glauser [31] recently studied a very similar model focus-
ing only on networks generated by the Erdős-Rényi random
graph model.

3. MODEL AND ALGORITHM
In this section, we first describe our formal model and its

parameters. We then describe our algorithm and discuss the
intuition behind it.

3.1 Model
Recall that a formal definition of the user identification

problem requires first a model for the “true” underlying so-
cial network G(V,E) that captures relationships between
people. However, we cannot directly observe this network;
instead, we consider two imperfect realizations or copies
G1(V,E1) and G2(V,E2) with E1, E2 ⊆ E. Second, we need
a model for how edges of E are selected for the two copies
E1 and E2. This model must capture the fact that users do
not necessarily replicate their entire personal networks on
any social networking service, but only a subset.

Any such mathematical models are necessarily imperfect
descriptions of reality, and as models become more ‘realis-
tic’, they become more mathematically intractable. In this
paper, we consider certain well-studied models, and provide
complete proofs. It is possible to generalize our mathemat-
ical techniques to some variants of these models; for in-
stance, with small probability, the two copies could have new
“noise” edges not present in the original network G(V,E),
or vertices could be deleted in the copies. We do not fully
analyze these as the generalizations require tedious calcula-
tions without adding new insights. Our experimental results
of Section 5 show that the algorithm performs well even in
real networks where the formal mathematical assumptions
are not satisfied.

For the underlying social network, our main focus is on
the preferential attachment model [5], which is historically
the most cited model for social networks. Though the model
does not capture some features of real social networks, the
key properties we use for our analysis are those common
to online social networks such as a skewed degree distribu-
tion, and the fact that nodes have distinct neighbors includ-
ing some long-range / random connections not shared with
those immediately around them[13, 15]. In the experimental
section we will consider also different models and also real
social networks as our underline real networks.

For the two imperfect copies of the underlying network
we assume that G1 (respectively G2) is created by selecting
each edge e ∈ E of the original graph G(V,E) independently

with a fixed probability s1 (resp. s2) (See Figure 1.) In the
real world, edges/relationships are not selected truly inde-
pendently, but this serves as a reasonable approximation for
observed networks. In fact, a similar model has been previ-
ously considered by [26], which also produced experimental
evidence from an email network to support the independent
random selection of edges. Another plausible mechanism
for edge creation in social network is the cascade model, in
which nodes are more likely to join a new network if more of
their friends have joined it. Experimentally, we show that
our algorithm performs even better in the cascade model
than in the independent edge deletion model.

These two models are theoretically interesting and prac-
tically interesting [26]. Nevertheless, in some cases the an-
alyzed social networks may differ in their scopes and so the
group of friends that a user has in a social network can
greatly differ from the group of friends that same user has
in the other network. To capture this scenario in the ex-
perimental section, we also consider the Affiliation Network
model [19] (in which users participate in a number of com-
munities) as the underlying social network. For each of
G1, G2, and for each community, we keep or delete all the
edges inside the community with constant probability. This
highly correlated edge deletion process captures the fact that
a user’s personal friends might be connected to her on one
network, while her work colleagues are connected on the
second network. We defer the detailed description of this
experiment to Section 5.

Recall that the user identification problem, given only the
graph information, is intractable in general graphs. Even
the special case where s1 = s2 = 1 (that is, no edges
have been deleted) is equivalent to the well-studied Graph
Isomorphism problem, for which no polynomial-time algo-
rithm is known. Fortunately, in reality, there are additional
sources of information which allow one to identify a subset
of nodes across the two networks: For example, people can
use the same email address to sign up on multiple websites.
Users often explicitly connect their network accounts, for
instance by posting a link to their Facebook profile page
on Google+ or Twitter and vice versa. To model this, we
assume that there is a set of users/nodes explicitly linked
across the two networks G1, G2. More formally, there is a
linking probability l (typically, l is a small constant) and each
node in V is linked across the networks independently with
probability l. (In real networks, nodes may be linked with
differing probabilities, but high-degree nodes / celebrities
may be more likely to connect their accounts and engage
in cross-network promotions; this would be more likely to
help our algorithm, since low-degree nodes are less valuable
as seeds because they help identify only a small number of
neighbors. In the experiments of [23], the authors explic-
itly consider high-degree nodes as seeds in the real-world
experiments.)

In Section 3.2 below, we present a natural algorithm to
solve the user identification problem with a set of linked
nodes, and discuss some of its properties. Then, in Section 4,
we prove that this algorithm performs well on several well-
established network models. In Section 5, we show that the
algorithm also works very well in practice, by examining its
performance on real-world networks.

3.2 The Algorithm
To solve the user identification problem, we design a local
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distributed algorithm that uses only structural information
about the graphs to expand the initial set of links into a
mapping/identification of a large fraction of the nodes in
the two networks.

Before describing the algorithm, we introduce a useful def-
inition.

Definition 1. A pair of nodes (u1, u2) with u1 ∈ G1, u2 ∈
G2 is said to be a similarity witness for a pair (v1, v2) with
v1 ∈ G1, v2 ∈ G2 if u1 ∈ N1(v1), u2 ∈ N2(v2) and u1 has
been linked to / identified with u2.

Here, N1(v1) denotes the neighborhood of v1 in G1, and
similarly N2(v2) denotes the neighborhood of v2 in G2.

Roughly speaking, in each phase of the algorithm, every
pair of nodes (one from each network) computes an similar-
ity score that is equal to the number of similarity witnesses
they have. We then create a link between two nodes v1 and
v2 if v2 is the node in G2 with maximum similarity score to
v1 and vice versa. We then use the newly generated set of
links as input to the next phase of the algorithm.

A possible risk of this algorithm is that in early phases,
when few nodes in the network have been linked, low-degree
nodes could be mis-matched. To avoid this (improving preci-
sion), in the ith phase, we only allow nodes of degree roughly
D/2i and above to be matched, where D is a parameter re-
lated to the largest node degree. Thus, in the first phase, we
match only the nodes of very high degree, and in subsequent
phases, we gradually decrease the degree threshold required
for matching. In the experimental section we will show in
fact that this simple step is very effective, reducing the error
rate by more than 33%. We summarize the algorithm, that
we called User-Matching, as follows:

Input:
G1(V,E1), G2(V,E2), L a set of initial identification links
across the networks, D the maximum degree in the graph
a minimum matching score T and a specified number of
iteration k.
Output:
A larger set of identification links across the networks.
Algorithm:
For i = 1, . . . , k

For j = logD, . . . , 1
For all the pairs (u, v) with u ∈ G1 and v ∈ G2

and such that dG1(u) ≥ 2j and dG2(v) ≥ 2j

Assign to (u, v) a score equal to the number
of similarity witnesses between u and v

If (u, v) is the pair with highest score in which
either u or v appear and the score is above T
add (u, v) to L.

Output L

Where dGi(u) is the degree of node u in Gi. Note that
the internal for loop can be implemented efficiently with 4
consecutive rounds of MapReduce, so the total running time
would consist of O(k logD) MapReductions. In the exper-
iments, we note that even for a small constant k (1 or 2),
the algorithm returns very interesting results. The optimal
choice of threshold T depends on the desired precision/recall
tradeoff; higher choices of T improve precision, but in our
experiments, we note that T = 2 or 3 is sufficient for very
high precision.

Figure 1: From the real underlying social network,
the model generates two random realizations of it,
A and B, and some identification links for a subset
of the users across the two realizations

4. THEORETICAL RESULTS
In this section we formally analyze the performance of our

algorithm on two network models. In particular, we explain
why our simple algorithm should be effective on real social
networks. The core idea of the proofs and the algorithm is to
leverage high degree nodes to discover all the possible map-
ping between users. In fact, as we show here theoretically
and later experimentally, high degree nodes are easy to de-
tect. Once we are able to detect the high degree nodes, most
low degree nodes can be identified using this information.

We start with the Erdős-Rényi (Random) Graph model [11]
to warm up with the proofs, and to explore the intuition be-
hind the algorithm. Then we move to our main theoretical
results, for the Preferential Attachment Model. For simplic-
ity of exposition, we assume throughout this section that
s1 = s2 = s; this does not change the proofs in any material
detail.

4.1 Warm up: Random Graphs
In this section, we prove that if the underlying ‘true’ net-

work is a random graph generated from the Erdős-Rényi
model (also known as G(n, p)), our algorithm identifies al-
most all nodes in the network with high probability.

Formally, in the G(n, p) model, we start with an empty
graph on n nodes, and insert each of the

(
n
2

)
possible edges

independently with probability p. We assume that p < 1/6;
in fact, any constant probability results in graphs which are
much denser than any social network.3 Let G be a graph
generated by this process; given this underlying network
G, we now construct two partial realizations G1, G2 as de-
scribed by our model of Section 3.

We note that the probability a specific edge exists in G1 or
G2 is ps. Also, if nps is less than (1− ε) logn for ε > 0, the
graphs G1 and G2 are not connected w.h.p. [11]. Therefore,
we assume that nps > c logn for some constant c.

In the following we identify the nodes inG1 with u1, . . . , un
and the nodes in G2 with v1, . . . , vn, where nodes ui and vi
correspond to the same node i in G. In the first phase, the
expected number of similarity witnesses for a pair (ui, vi) is

3In fact, the proof works even with p = 1/2, but it requires
more care. However, when p is too close to 1, G is close
to a clique and all nodes have near-identical neighborhoods,
making it impossible to distinguish between them.
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(n− 1)ps2 · l. This follows because the expected number of
neighbors of i in G is (n−1)p, the probability that the edge
to a given neighbor survives in both G1 and G2 is s2, and
the probability that it is initially linked is l. On the other
hand, the expected number of similarity witnesses for a pair
(ui, vj), with i 6= j is (n− 2)p2s2 · l; the additional factor of
p is because a given other node must have an edge to both
i and j, which occurs with probability p2. Thus, there is a
factor of p difference between the expected number of sim-
ilarity witnesses a node ui has with its true match vi and
with some other node vj , with i 6= j. The main intuition is
that this factor of p < 1 is enough to ensure the correctness
of algorithm. We prove this by separately considering two
cases: If p is sufficiently large, the expected number of sim-
ilarity witnesses is large, and we can apply a concentration
bound. On the other hand, if p is small, np2s2 is so small
that the expected number of similarity witnesses is almost
negligible.

We start by proving that in the first case there is always
a gap between a real and a false match.

Theorem 1. If (n−2)ps2l ≥ 24 logn (that is, p > 24
s2l

logn
n−2

),
w.h.p. the number of first-phase similarity witnesses between
ui and vi is at least (n−1)ps2l/2. The number of first-phase
similarity witnesses between ui and vj, with i 6= j is w.h.p.
at most (n− 2)ps2l/2.

Proof. We prove both parts of the lemma using Chernoff
Bounds (see, for instance, [10]).

Let consider a pair for node j. Let Yi be a r.v. such
that Yi = 1 if node ui ∈ N1(uj) and vi ∈ N2(vj), and if
(ui, vi) ∈ L, where L is the initial seed of links across G1

and G2. Then, we have Pr[Y1 = 1] = ps2l. If Y =
∑n−1
i=1 Yi,

the Chernoff bound implies that Pr[Y < (1 − δ)E[Y ]] ≤
e−E[Y ]δ2/2. That is,

Pr

[
Y <

1

2
(n− 1)ps2l

]
≤ e−E[Y ]/8 < e−3 logn = 1/n3

Now, taking the union bound over the n nodes in G, w.h.p.
every node has the desired number of first-phase similarity
witnesses with its copy.

To prove the second part, suppose w.l.o.g. that we are
considering the number of first-phase similarity witnesses
between ui and vj , with i 6= j. Let Yi = 1 if node uz ∈
N1(ui) and vz ∈ N2(vj), and if (uz, vx) ∈ L. If Y =∑n−2
i=1 Yi, the Chernoff bound implies that Pr[Y > (1 +

δ)E[Y ]] ≤ e−E[Y ]δ2/4. That is,

Pr

[
Y >

1

2p
(n− 2)p2s2l =

(n− 2)ps2l

2

]
≤ e−E[Y ]( 1

2p
−1)2/4

= e
−2p( 1

2p
−1)23 logn ≤ 1/n3

where the last inequality comes from the fact that p < 1/6.
Taking the union bound over all n(n−1) unordered pairs of
nodes ui, vj gives the fact that w.h.p., every pair of different
nodes does not have too many similarity witnesses.

The theorem above implies that when p is sufficiently
large, there is a gap between the number of similarity wit-
nesses of pairs of nodes that correspond to the same node
and a pair of nodes that do not correspond to the same node.
Thus the first-phase similarity witnesses are enough to com-
pletely distinguish between the correct copy of a node and
possible incorrect matches.

It remains only to consider the case when p is smaller
than the bound required for Theorem 1. This requires the
following useful lemma.

Lemma 2. Let B be a Bernoulli random variable, which
is 1 with probability at most x, and 0 otherwise. In k in-
dependent trials, let Bi denote the outcome of the ith trial,
and let B(k) =

∑k
i=1Bi: If kx is o(1), the probability that

B(k) is greater than 2 is at most k3x3/6 + o(k3x3).

Proof. The probability that B(k) is at most 2 is given
by: (1 − x)k + kx · (1 − x)k−1 +

(
k
2

)
x2 · (1 − x)k−2. Using

the Taylor series expansion for (1 − x)k−2, this is at most
1− k3x3/6− o(k3x3).

When we run our algorithm on a graph drawn fromG(n, p),
we set the minimum matching threshold to be 3.

Lemma 3. If p ≤ 24
s2l

logn
n−2

, w.h.p., algorithm User-Matching
never incorrectly matches nodes ui and vj with i 6= j.

Proof. Suppose for contradiction the algorithm does in-
correctly match two such nodes, and consider the first time
this occurs. We use Lemma 2 above. Let Bz denote the
event that the vertex z is a similarity witness for ui and vj .

In order for Bz to have occurred, we must have uz in
N1(Ui) and vz in N2(vj) and (uz, vz) ∈ L. The probability
that Bz = 1 is therefore at most p2s2. Note that each Bz
is independent of the others, and that there are n − 2 such
events. As p is O(logn/n), the conditions of Lemma 2 apply,
and hence the probability that more than 2 such events occur
is at most (n− 2)3p6s6. But p is O(logn/n), and hence this
event occurs with probability at most O(log6 n/n3). Tak-
ing the union bound over all n(n − 1) unordered pairs of
nodes ui, vj gives the fact that w.h.p., not more than 2 sim-
ilarity witnesses can exist for any such pair. But since the
minimum matching threshold for our algorithm is 3, the al-
gorithm does not incorrectly match this pair, contradicting
our original assumption.

Having proved that our algorithm does not make errors,
we now show that it identifies most of the graph.

Theorem 4. Our algorithm identifies 1−o(1) fraction of
the nodes w.h.p.

Proof. Note that the probability that a node is identified
is 1 − o(1) by the Chernoff bound because in expectation
it has Ω(logn) similarity witnesses. So in expectation, we
identify 1 − o(1) fraction of the nodes. Furthermore, by
applying the method of bounded difference [10] (each node
affects the final result at most by 1), we get that the result
holds also with high probability.

4.2 Preferential Attachment
The preferential attachment model was introduced by Barabási

and Albert in [5]. In this paper we consider the formal def-
inition of the model described in [6].

Definition 2. [PA model]. Let Gmn , m being a fixed
parameter, be defined inductively as follows:

• Gm1 consists of a single vertex with m self-loops.

• Gmn is built from Gmn−1 by adding a new node u to-
gether with m edges e1u = (u, v1), . . . , emu = (u, vm)
inserted one after the other in this order. Let Mi be
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the sum of the degrees of all the nodes when the edge eiu
is added. The endpoint vi is selected with probability
deg(vi)
Mi+1

, with the exception of node u, which is selected

with probability d(u)+1
Mi+1

.

The PA model is the most celebrated model for social net-
works. Unlike the Erdős-Rényi model, in which all nodes
have roughly the same degree, PA graphs have a degree
distribution that more accurately resembles the skew de-
gree distribution seen in real social networks. Though more
evolved models of social networks have been recently intro-
duced, we focus on the PA model here because it clearly il-
lustrates why our algorithm works in practice. Note that the
power-law distribution of the model complicates our proofs,
as the overwhelming majority of nodes only have constant
degree (≤ 2m), and so we can no longer simply apply con-
centration bounds to obtain results that hold w.h.p. For a
(small) constant fraction of the nodes u, there does not exist
any node z such that uz ∈ N1(ui) and vz ∈ N2(vi); we can-
not hope to identify these nodes, as they have no neighbors
“in common” on the two networks. In fact, if m = 4 and
s = 1/2, roughly 30% of nodes of “true” degree m will be in
this situation. Therefore, to be able to identify a reasonable
fraction of the nodes, one needs m to be at least a reason-
ably large constant; this is not a serious constraint, as the
median friend count on Facebook, for instance, is over 100.
In our experimental section, we show that our algorithm is
effective even with smaller m.

We now outline our overall approach to identify nodes
across two PA graphs. In Lemma 11, we argue that for the
nodes of very high degree, their neighborhoods are differ-
ent enough that we can apply concentration arguments and
uniquely identify them. For nodes of intermediate degree
(log3 n) and less, we argue in Lemma 10 that two distinct
nodes of such degree are very unlikely to have more than
8 neighbors in common. Thus, running our algorithm with
a minimum matching threshold of 9 guarantees that there
are no mistakes. Finally, we prove in Lemma 12 that when
we run the algorithm iteratively, the high-degree nodes help
us identify many other nodes, these nodes together with the
high-degree nodes in turn help us identify more, and so on:
Eventually, the probability that any given node is uniden-
tified is less than a small constant, which implies that we
correctly identify a large fraction of the nodes.

Interestingly, we notice in our experiments that on real
networks, the algorithm has the same behavior as on PA
graphs. In fact, as we will discuss later, the algorithm is al-
ways able to identify high-degree/important nodes and then,
using this information, identify the rest of the graph.
Technical Results: The first of the three main lemmas we
need, Lemma 11, states that we can identify all of the high-
degree nodes correctly. To prove this, we need a few techni-
cal results. These results say that all nodes of high degree
join the network early, and continue to increase their degree
significantly throughout the process; this helps us show that
high-degree nodes do not share too many neighbors.

4.2.1 High degree nodes are early-birds
Here we will prove formally that the nodes of degree Ω(log2 n)

join the network very early; this will be useful to show that
two high degree nodes do not share too many neighbors.

Lemma 5. Let Gmn be the preferential attachment graph
obtained after n steps. Then for any node v inserted after

time ψn, for any constant ψ > 0, dn(v) ∈ o(log2n) with high
probability, where dn(v) is the degree of nodes v at time n.

Proof. It is possible to prove that such nodes have ex-
pected constant degree, but unfortunately, it is not trivial
to get a high probability result from this observation be-
cause of the inherent dependencies that are present in the
preferential attachment model. For this reason we will not
prove the statement directly, but we will take a short de-
tour inspired by the proof in [18]. In particular we will first
break the interval in a constant number of small intervals.
Then we will show that in each interval the degree of v will
increase by at most O(logn) with high probability. Thus
we will be able to conclude that at the end of the process
the total degree of v is at most O(logn)(recall that we only
have a constant number of interval).

As mentioned above we analyze the evolution of the degree
of v in the interval ψn to n by splitting this interval in a
constant number of segments of length λn, for some constant
λ > 0 to be fixed later. Now we can focus on what happens
to the degree of v in the interval (t, ·λn+t] if dt(v) ≤ C logn,
for some constant C ≥ 1 and t ≥ ψn. Note that if we can
prove that dλn+t ≤ C′ logn, for some constant C′ ≥ 0 with
probability 1− o

(
n−2

)
, we can then finish the proof by the

arguments presented in the previous paragraph.
In order to prove this, we will take a small detour to avoid

the dependencies in the preferential attachment model. More
specifically, we will first show that this is true with high
probability for a random variable X for which it is easy to
get the concentration result. Then we will prove that the
random variable X stochastically dominates the increase in
the degree of v. Thus the result will follow.

Now, let us define X as the number of heads that we
get when we toss a coin which gives head with probability
C′ logn

t
for λn times, for some constant C′ ≥ 13C. It is

possible to see that:

E[X] =
C′ logn

t
λn ≤ C′ logn

ψn
λn ≤ C′λ logn

ψ

Now we fix λ = ψ
100

and we use the Chernoff bound to get
the following result:

Pr

(
X >

C′ − C
2

logn

)
= Pr

(
X >

(
100(C′ − C)

2C′

)
E[X]

)

≤ 2
− C′

100
logn

(
100(C′−C)

2C′

)

≤ 2
−
(

(6C′)
13

logn

)

≤ 2−6 logn ∈ O
(
n−3)

So we know that the value of X is bounded by C′−C
2

logn

with probability O
(
n−3

)
. Now, note that until the degree

of v is less than C′ logn the probability that v increases
its degree in the next step is stochastically dominated by
the probability that we get an head when we toss a coin

which gives head with probability C′ logn
t

. To conclude our
algorithm we study the probability that v become of degree
C′ logn

t
precisely at time t ≤ t∗ ≤ λn. Note that until time t∗

v has degree smaller than C′ logn
t

and so it is dominated by
the coin. But we already know that when we toss such a coin

at most λn times the probability of getting C′−C
2

logn heads

is in O
(
n−3

)
. Thus for any t ≤ t∗ ≤ λn the probability that
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v reach degree C′ logn at time t∗ is O(n−3). Thus by using
the union bound on all the possible t∗, v will get to degree
C′ logn with probability O(n−2).

At this point we can finish the proof by taking the union
bound on all the segments(recall that they are constant)
(ψn, ψ + λn], (ψ + λn, ψn + 2λ], · · · and on the number of
nodes and we get that all the nodes that join the network
after time ψn have degree that is upper bounded by C′′ logn
for some constant C′′ ≥ 0 with probability O(n−1).

4.2.2 The rich get richer
In this section we study another fundamental property of

the preferential attachment, which is that nodes with degree
bigger than log2 n continue to increase their degree signifi-
cantly throughout the process. More formally:

Lemma 6. Let Gmn be the preferential attachment graph
obtained after n steps. Then with high probability for any
node v of degree d ≥ log2 n and for any fixed constant ε ≥ 0,
a 1

3
fraction of the neighbors of v joined the graph after time

εn.

Proof. By Lemma 5 above, we know that v joined the
network before time εn for any fixed constant ε ≥ 0. Now we
consider two cases. In the first, dεn(v) ≤ 1

2
log2 n, in which

case the statement is true because the final degree is bigger
than log2 n. Otherwise, we have that dεn(v) > 1

2
log2 n, in

this case the probability that v increase its degree at every
time step after εn dominates the probability that a toss of a

biased coin which gives head with probability log2 n
2mn

comes
up head. Now consider the random variable X that counts
the number of heads when we toss a coin that lands head
with probability log2 n

2mn
for (1 − ε)mn times. The expected

value of X is:

E[X] =
log2 n

2mn
(1− ε)mn =

1− ε
2

log2 n

Thus using the Chernoff bound:

Pr

(
X ≤ 1− 2ε

2
log2 n

)
≤ exp

(
−1

2

(
1− ε

1− ε

)
log2 n

)
∈ O(n−2)

Thus with probabilityO(1−n−2)X is bigger that 1−2ε
2

log2 n
but as mentioned before the increase in the degree of v
stochastically dominates X. Thus taking the union bound
on all the possible v we get that the statement holds with
probability equal to O(1−n−1). Thus the claim follows.

4.2.3 First-mover advantage

Lemma 7. Let Gmn be the preferential attachment graph
obtained after n steps. Then with high probability all the
nodes that join the network before time n0.3 have degree at
least log3 n.

Proof. To prove this theorem we will use some results
from [9], but before we need to introduce another model
equivalent to the preferential attachment. In this new pro-
cess instead of constructing Gmn , we first construct G1

nm and
then we collapse the vertices 1, · · · ,m to construct the first
vertex, the vertex between m + 1, · · · 2m to construct the
second vertex and so on so for. It is not hard to see that
this new model is equivalent to the preferential attachment.
Now we can prove our technical theorem.

Now we can state two useful equation from the proof of
Lemma 6 in [9]. Consider the model Gnm1 . Let Dk =
dnm(v1) + dnm(v2) + · · · + dnm(vk), where dnm(vi) is the
degree of a node inserted at time i at time nm. Then k ≥ 1
we have:

Pr
(
|Dk − 2

√
kmn| ≥ 3

√
mn log(mn)

)
≤ (mn)−2 (1)

From the same paper we also have that if 0 ≤ d ≤ mn−k−s,
we can derive from equation (23) that

Pr(dn(vk+1) = d+ 1|Dk − 2k = s) ≤ s+ d

2N − 2k − s− d (2)

From 1 we can derive that:

Pr
(
Dk − 2k ≥ 3

√
mn log(mn) + 2

√
kmn− 2k

)
≤ (mn)−2

Pr
(
Dk − 2k ≥ 5

√
kmn log(mn)

)
≤ (mn)−2

Thus we get that:

Pr(dn(vk+1) < log3 n) =

log3 n−1∑
0

Pr(dn(vk+1) = i)

≤ Pr
(
Dk − 2k ≥ 3

√
mn log(mn) + 2

√
kmn− 2k

)
+

log3 n−1∑
i=0

5
√
kmn log(mn)∑
j=0

(
Pr (Dk − 2k = j)

Pr(dn(vk+1) = i|Dk − 2k = j)
)

≤ (mn)−2 +

log3 n−1∑
i=0

Pr
(
dn(vk+1) = i|Dk − 2k

= 5
√
mn log(mn)

)
≤ (mn)−2 +

log3 n−1∑
i=0

5
√
mn log(mn) + i− 1

2mn− 2k − 5
√
mn log(mn)− i+ 1

∈ O

(
log4(n)√

n

)
where we assumed that k ∈ O

(
n

1
3

)
.

So now by union bounding on the first mn0.3 nodes we
obtain that with high probability in Gnm1 all the nodes have
degree bigger than log2 n. But this implies in turn the state-
ment of the theorem by construction of Gnm1 .

Now we state our last technical lemma on handling prod-
uct of generalized harmonic, the proof of this lemma is de-
ferred to the final version of the paper:

Lemma 8. Let a and b be constant greater than 0. Then:

nb−2∑
i=na

nb−1∑
j>i

nb∑
z>j

1

i2j2z2
∈ O

(
1

n3a

)
Completing the Proof: We now use the technical lemmas
above to complete our proof for the preferential attachment
model.

Lemma 9. For a node u with degree d, the probability
that it is incident to a node arriving at time i is at most
max{d, log3 n}/(i− 1) w.h.p.
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Proof. If node i arrives after u, the probability that i
is adjacent to u is at most the given value, since there are
m(i−1) edges existing in the graph already, and we take the
union bound over them edges incident to i. If i arrives before
u, let t denote the time at which u arrives. From Lemma 6 of
[9], the degree of i at t is at most

√
ti log3 n w.h.p.. But there

are (t−1)m edges already in the graph at this time, and since
u has m edges incident to it, the probability that one of them

is incident to i is at most log3 n
√
t√

i(t−1)
≤ log3 n/(i− 1).

Lemma 10. W.h.p, for any pair of nodes u, v of degree
< log3 n, |N(u) ∩N(v)| ≤ 8.

Proof. From Lemma 7, nodes u and v must have arrived
after time t = n0.3. Let a, b be constants such that 0.3 <
a < b < 1 and b ≤ 3/2a − ε for some constant ε > 0. We
first show that the probability that any two nodes u, v with
degree less than log3 n and arriving before time nb have 3
or more common neighbors between na and nb is at most
n−ε. This implies that, setting a to 0.3, nodes u and v
have at most 2 neighbors between na and n3a/2−ε, at most
2 between n3a/2−ε and n9a/4, and at most 2 between n9a/4

and n27a/8 > n, for a total of 6 overall. Similarly, we show
that u and v have at most 2 neighbors arriving before n0.3,
which completes the lemma.

From Lemma 9 above, the probability that a node arriving
at time i is incident to u and v is at most (log3 n/(i− 1))2.
(The events are not independent, but they are negatively
correlated.) The probability that 3 nodes i, j, k are all inci-
dent to both u and v, then, is at most (log3 n)6/((i− 1)(j−
1)(k − 1))2. Therefore, for a fixed u, v, the probability that
some 3 nodes are adjacent to u and v is at most:

log18 n

nb∑
i=na

nb∑
j=na

nb∑
k=na

1

((i− 1)(j − 1)(k − 1))2

≤ log18 n

(
1

na
− 1

nb

)3

There are at most nb choices for each of u and v; taking
the union bound, the probability that any pair u, v have 3
or more neighbors in common is at most n2b−3a log18 n =
n−2ε log18 n.

So, by setting the matching threshold to 9, the algorithm
never makes errors; we now prove that it actually detects a
lot of good new links.

Lemma 11. The algorithm successfully identifies any node
of degree ≥ 4 log2 n/(s2l).

Proof. For any node v of degree d(v) ≥ 4 log2 n/(s2l),
the expected number of similarity witnesses it has with its
copy during the first phase is d(v)s2l; using the Chernoff
Bound, the probability that the number is less than 7/8 of its
expectation is at most exp(−d(v)s2l/128) ≤ exp(− log2 n/32) =

1

nlog n/32 . Therefore, with very high probability, every node

v of degree d(v) has at least 7/8·d(v)s2l first-phase similarity
witnesses with its copy.

On the other hand, how many similarity witnesses can
node v have with a copy of a different node u? Fix ε > 0,
and first consider potential similarity witnesses that arrive
before time t = εn; later, we consider those that arrive af-
ter this time. From Lemma 6, we have dt(v) ≤ (2/3 +

ε)d(v). Even if all of these neighbors of v are also inci-
dent to u, the expected number of similarity witnesses for
(u, v) is at most dt(v)s2l. Now consider the neighbors of v
that arrive after time εn. Each of these nodes is a neigh-
bor of u with probability ≤ d(u)/(2mεn). But d(u) ≤
Õ(
√
n), and hence each of the neighbors of v is a neighbor

of u with probability o(1/n1/2−δ). Therefore, the expected
number of similarity witnesses for (u, v) among these nodes

is at most d(v)s2l/n1/2−δ. Therefore, the total expected
number of similarity witnesses is at most (2/3 + ε)d(v)s2l.
Again using the Chernoff Bound, the probability that this
is at least 7/8 · d(v)s2l is at most exp(−3/4d(v)s2l · /64) =
exp(−3 log2 n/64), which is at most 1

n3 log n/64 .
To conclude, we showed that with very high probability, a

high-degree node v has at least 7/8 · d(v)s2l first-phase sim-
ilarity witnesses with its copy, and has fewer than this num-
ber of witnesses to the copy of any other node. Therefore,
our algorithm correctly identifies all high-degree nodes.

From the two preceding lemmas, we identify all the high-
degree nodes, and make no mistakes on the low-degree nodes.
It therefore remains only to show that we have a good suc-
cess probability for the low-degree nodes. In the lemma
below, we show this when ms2 ≥ 22. We note that one still
obtains good results even with a higher or lower value of
ms2, but it appears difficult to obtain a simple closed-form
expression for the fraction of identified nodes. For ease of
exposition, we present the case of ms2 ≥ 22 here, but the
proof generalizes in the obvious way.

Lemma 12. Suppose ms2 ≥ 22. Then, w.h.p., we suc-
cessfully identify at least 97% of the nodes.

Proof. We have already seen that all high-degree nodes
(those arriving before time n0.3) are identified in the first
phase of the algorithm. Note also that it never makes a mis-
take; it therefore remains only to identify the lower-degree
nodes. We describe a sequence of iterations in which we
bound the probability of failing to identify other nodes.

Consider a sequence of roughly n0.75 iterations, in each
of which we analyze n0.25 nodes. In particular, iteration
i contains all nodes that arrived between time n0.3 + (i −
1)n0.25 and time n0.3 + i · n0.25. We argue inductively that
after iteration i, w.h.p. the fraction of nodes belonging to
this iteration that are not identified is less than 0.03, and
the total fraction of degree incident to unidentified nodes is
less than 0.08. Since this is true for each i, we obtain the
lemma.

The base case of nodes arriving before n0.3 has already
been handled. Now, note that during any iteration, the
total degree incident to nodes of this iteration is at most
2mn0.25 � n0.3. Thus, when each node of this iteration,
the probability that any of its m edges is incident to another
node of this iteration is less than 0.01.

Consider any of the m edges incident to a given node of
this iteration. For each edge, we say it is good if it survives
in both copies of the graph, and is incident to an identified
node from a previous iteration. Thus, the probability that
an edge is good is at least s2 · (0.99×0.92). Since ms2 > 22,
the expected number of good edges is greater than 20. The
node will be identified if at least 8 of its edges are good;
applying the Chernoff bound, the probability that a given
node is unidentified is at most exp(−3.606) < 0.02717.

Since this is true for each node of this iteration, regard-
less of the outcomes for previous nodes of the iteration, we
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can apply concentration inequalities even though the events
are not independent. In particular, the number of iden-
tified nodes stochastically dominates the number of suc-
cesses in n0.25 independent Bernoulli trials with probability
1− exp(−3.606) (see, for example, Theorem 1.2.17 of [21]).
Again applying the Chernoff Bound, the probability that
the fraction of unidentified nodes exceeds 0.03 is at most
exp(0.27n0.25 ∗ 0.01/4), which is negligible. To complete
the induction, we need to show that the fraction of total
degree incident to unidentified nodes is at most 0.08. To
observe this, note that the increase in degree is 2mn0.25; the
unidentified fraction increases if the new nodes are uniden-
tified (but we have seen the expected contribution here is
at most 0.02717mn0.25), or if the “other” endpoint is an-
other node of this iteration (at most 0.01mn0.25), or if the
“other” endpoint is an unidentified node (in expectation, at
most 0.08mn0.25). Again, a simple concentration argument
completes the proof.

5. EXPERIMENTS
In this section we analyze the performance of our algo-

rithm in different experimental settings. The main goal of
this section is to answer the following eight questions:

• Are our theorems robust? Do our results depend on
the constants that we use or are they more general?

• How does the algorithm scale on very large graphs?

• Does our algorithm work only for an underlying “real”
network generated by a random process such as Pref-
erential Attachment, or does it work for real social
networks?

• How does the algorithm perform when the two net-
works to be matched are not generated by indepen-
dently deleting edges, but by a different process like a
cascade model?

• How does the algorithm perform when the two net-
works to be matched have different scopes? Is the
algorithm robust to highly correlated edge deletion?

• Does our model capture reality well? In more realistic
scenarios, with distinct but similar graphs, does the
algorithm perform acceptably?

• How does our algorithm perform when the network is
under attack? Can it still have high precision? Is it
easy for an adversary to trick our algorithm?

• How important is it to bucket nodes by degree? How
big is the impact on the algorithm’s precision? How
does our algorithm compare with a simple algorithm
that just counts the number of common neighbors?

To answer these eight questions, we designed 4 different
experiments using 6 different publicly available data sets.
These experiments are increasingly challenging for our algo-
rithm, which performs well in all cases, showing its robust-
ness. Before entering into the details of the experiments, we
describe briefly the basic datasets used in the paper. We
use synthetic random graphs generated by the Preferential
Attachment [5], Affiliation Network [19], and RMAT [7] pro-
cesses; we also consider an early snapshot of the Facebook
graph [30], a snapshot of DBLP [1], the email network of
Enron [16], a snapshot of Gowalla [8] (a social network with
location information), and Wikipedia in two languages [2].
In Table 1 we report some general statistics on the networks.

Network Number of nodes Number of edges
PA [5] 1,000,000 20,000,000

RMAT24 [7] 8,871,645 520,757,402
RMAT26 [7] 32,803,311 2,103,850,648
RMAT28 [7] 121,228,778 8,472,338,793

AN [19] 60,026 8,069,546
Facebook [30] 63,731 1,545,686
DBLP [1] 4,388,906 2,778,941
Enron [16] 36,692 367,662
Gowalla [8] 196,591 950,327

French Wikipedia [2] 4,362,736 141,311,515
German Wikipedia [2] 2,851,252 81,467,497

Table 1: The original 11 datasets.

Figure 2: The number of corrected pairs detected
with different threshold for the preferential attach-
ment model with random deletion. The precision is
not shown in the plot because it is always 100%.

Robustness of our Theorems: To answer the first ques-
tion, we use as an underlying graph the preferential at-
tachment graph described above, with 1,000,000 nodes and
m = 20. We analyze the performance of our algorithm when
we delete edges with probability s = 0.5 and with different
seed link probabilities. The main goal of this experiment is
to show that the values of m, s needed in our proof are only
required for the calculations; the algorithm is effective even
with much lower values. With the specified parameters, for
the majority of nodes, the expected number of neighbors in
the intersection of both graphs is 5. Nevertheless, as shown
in Figure 2, our algorithm performs remarkably well, making
zero errors regardless of the seed link probability. Further,
it recovers almost the entire graph. Unsurprisingly, lower-
ing the threshold for our algorithm increases recall, but it
is interesting to note that in this setting, it does not affect
precision at all.
Efficiency of our algorithms: Here we tested our algo-
rithms with datasets of increasing size. In particular we
generate 3 synthetic random graphs of increasing size using
the RMAT random model. Then we use the three graphs
as the underlying “real” networks and we generate 6 graphs
from them with edges surviving with probability 0.5. Fi-
nally we analyze the running time of our algorithm with
seed link probability equal to 0.10. As shown in Table 2,
using the same amount of resources, the running time of the
algorithm increases by at most a factor 12.544 between the
smallest and the largest graph.
Robustness to other models of the underlying graph:
For our third question, we move away from synthetic graphs,
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Network Number of nodes Relative running time
RMAT24 8871645 1
RMAT26 32803311 1.199
RMAT28 121228778 12.544

Table 2: The relative running time of the algorithm
on three RMAT graphs as a function of numbers of
nodes in the graph.

Pr Threshold 5 Threshold 4 Threshold 2
Good Bad Good Bad Good Bad

20% 23915 0 28527 53 41472 203
10% 23832 49 32105 112 38752 213
5% 11091 43 28602 118 36484 236

Pr Threshold 5 Threshold 4 Threshold 3
Good Bad Good Bad Good Bad

10% 3426 61 3549 90 3666 149

Table 3: Results for Facebook (Top) and Enron
(Bottom) under the random deletion model. Pr de-
notes the seed link probability.

and consider the snapshots of Facebook and the Enron email
networks as our initial underlying networks. For Facebook,
edges survive either with probability s = 0.5 or s = 0.75,
and we analyze performance of our algorithm with different
seed link probabilities. For Enron, which is a much sparser
network, we delete the edges with probability s = 0.5 and
analyze performance of our algorithm with seed link proba-
bility equal to 0.10. The main goal of these experiments is
to show that our algorithm has good performance even out-
side the boundary of our theoretical results even when the
underlying network is not generated by a random model.

In the first experiment with Facebook, when edges survive
with probability 0.75, there are 63584 nodes with degree at
least 1 in both networks.4 In the second, with edges sur-
viving with probability 0.5, there are 62854 nodes with this
property. In this case, the results are also very strong; see
Table 3. Roughly 28% of nodes have extremely low degree
(≤ 5), and so our algorithm cannot obtain recall as high as
in the previous setting. However, we identify a very large
fraction of the roughly 45250 nodes with degree above 5,
and the precision is still remarkably good; in all cases, the
error is well under 1%. Table 2 presents the full results for
the harder case, with edge survival probability 0.5. With
edge survival probability 0.75 (not shown in the table), per-
formance is even better: At threshold 2 and the lowest seed
link probability of 5%, we correctly identify 46626 nodes and
incorrectly identify 20, an error rate of well under 0.05%.
In the case of Enron, the original email network is very
sparse, with an average degree of approximately 20; this
means that each copy has average degree roughly 10, which
is much sparser than real social networks. Of the 36,692
original nodes, only 21,624 exist in the intersection of the
two copies; over 18,000 of these have degree ≤ 5, and the
average degree is just over 4. Still, with matching threshold
5, we identify almost all the nodes of degree 5 and above,
and even in this very sparse graph, the error rate among
newly identified nodes is 4.8%.

4Note that we can only detect nodes which have at least
degree 1 in both networks

Figure 3: The number of corrected pairs detected
with different threshold for the two Facebook graphs
generated by the Independent Cascade Model. The
plot does not show precision, since it is always 100%.

Pr Threshold 4 Threshold 3 Threshold 2
Good Bad Good Bad Good Bad

10% 54770 0 55863 0 55942 0

Table 4: Results for the Affiliation Networks model
under correlated edge deletion probability.

Robustness to different deletion models: We now turn
our attention to the fourth question: How much do our re-
sults depend on the process by which the two copies are
generated? To answer this, we analyze a different model
where we generate the two copies of the underlying graph
using the Independent Cascade Model of [12]. More specif-
ically, we construct a graph starting from one seed node in
the underlying social network and we add to the graph the
neighbors of the node with probability p = 0.05. Subse-
quently, every time we add a node, we consider all its neigh-
bors and add each of them independently with probability
p = 0.05 (note that we can try to add a node to the graph
multiple times).

The results in this cascade model are extremely good; in
fact, for both Facebook and Enron we have 0 errors; as
shown for Facebook in Figure 3, we are able to identify al-
most all the nodes in the intersection of the two graphs (even
at seed link prob. 5%, we identify 16, 273/16533 = 98.4%).
Robustness to correlated edge deletion: We now ana-
lyze one of the most challenging scenarios for our algorithm
where, independently in the two realizations of the social
network, we delete all or none of the edges in a commu-
nity. For this purpose, we consider the Affiliation Networks
model [19] as the underlying real network. In this model, a
bipartite graph of users and interests is constructed using a
preferential attachment-like process and then two users are
connected in the network if and only if they share an inter-
est (for the model details, refer to [19]). To generate the
two copies in our experiment, we delete the interests inde-
pendently in each copy with probability 0.25, and then we
generate the graph using only the surviving interests. Note
that in this setting, the same node in the two realizations
can have very different neighbors. Still, our algorithm has
very high precision and recall, as shown in Table 4.
Real world scenarios: Now we move to the most chal-
lenging case, where the two graphs are no longer generated
by a mathematical process that makes 2 imperfect copies
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of the same underlying network. For this purpose, we con-
duct two types of experiments. First, we use the DBLP
and the Gowalla datasets in which each edge is annotated
with a time, and construct 2 networks by taking edges in
disjoint time intervals. Then we consider the French- and
German-language Wikipedia link graph.

From the co-authorship graph of DBLP, the first network
is generated by considering only the publications written in
even years, and the second is generated by considering only
the publications written in odd years. Gowalla is a social
network where each user could also check-in to a location
(each check-in has an associated timestamp). Using this
information we generate two Gowalla graphs; in the first
graph, we have an edge between nodes if they are friends
and if and only if they check-in to approximately the same
location in an odd month. In the second, we have an edge be-
tween nodes if they are friends and if and only if they check-
in in approximately the same location in an even month.

Note that for both DBLP and Gowalla, the two con-
structed graphs have a different set of nodes and edges, with
correlations different from the previous independent deletion
models. Nevertheless we will see that the intersection is big
enough to retrieve a good part of the networks.

In DBLP, there are 380, 129 nodes in the intersection of
the two graphs, but the considerable majority of them have
extremely low degree. Over 310K have degree less than 5 in
the intersection of the two graphs, and so again we cannot
hope for extremely high recall. However, we do find consid-
erably more nodes than in the input set. We start with a
10% probability of seed links, resulting in 32087 seeds; how-
ever, note that most of these have extremely low degree,
and hence are not very useful. As shown in table 5, we have
nearly 69, 000 nodes identified, with an error rate of under
4.17%. Note that we identify over half the nodes of degree
at least 11, and a considerably larger fraction of those with
higher degree. We include a plot showing precision and re-
call for nodes of various degrees (Figure 4).

For Gowalla, there are 38103 nodes in the intersection of
the two graphs, of which over 32K have degree ≤ 5. We start
with 3800 seeds, of which most are low-degree and hence not
useful. We identify over 4000 of the (nearly 6000) nodes of
degree above 5, with an error rate of 3.75%. See Table 5
and Figure 4 for more details.

Finally for a still more challenging scenario, we consider a
case where the 2 networks do not have any common source,
but yet may have some similarity in their structure. In par-
ticular, we consider the case of the French- and German-
language Wikipedia sites, which have 4.36M and 2.85M nodes
respectively. Wikipedia also maintains a set of inter-language
links, which connect corresponding articles in a pair of lan-
guages; for French and German, there are 531710 links, cor-
responding to only 12.19% of the French articles. The rel-
atively small number of links illustrates the extent of the
difference between the French and German networks. Start-
ing with 10% of the inter-language links as seeds, we are
able to nearly triple the number of links (including finding
a number of new links not in the input inter-language set),
with an error rate of 17.5% in new links. However, some
of these mistakes are due to human errors in Wikipedia’s
inter-language links, while others mistake French articles to
closely connected German ones; for instance, we link the
French article for Lee Harvey Oswald (the assassin of Pres-
ident Kennedy) to the German article on the assassination.

Pr Threshold 5 Threshold 4 Threshold 2
Good Bad Good Bad Good Bad

10 42797 58 53026 641 68641 2985

Pr Threshold 5 Threshold 4 Threshold 2
Good Bad Good Bad Good Bad

10 5520 29 5917 48 7931 155

Pr Threshold 5 Threshold 3
Good Bad Good Bad

10 108343 9441 122740 14373

Table 5: Results for DBLP (Top), Gowala (Middle),
and Wikipedia (Bottom)

Figure 4: Precision and Recall vs. Degree Distribution

for Gowala (left) and DBLP (right).

Robustness to attack: We now turn our attention to a
very challenging question: what is the performance of our
algorithm when the network is under attack? In order to an-
swer this question, we again consider the Facebook network
as the underlying social network, and from it we generate
two realizations with edge probability 0.75. Then, in order
to simulate an attack, in each network for each node v we
create a malicious copy of it, w, and for each node u con-
nected to v in the network (that is, u ∈ N(v)), we add the
edge (u,w) independently with probability 0.5. Note that
this is a very strong attack model (it assumes that users will
accept a friend request from a ’fake’ friend with probability
0.5), and is designed to circumvent our matching algorithm.
Nevertheless when we run our algorithm with seed link prob-
ability equal to 0.1, and with threshold equal to 2 we notice
that we are still able to align a very large fraction of the two
networks with just a few errors (46955 correct matches and
114 wrong matches, out of 63731 possible good matches).
Importance of degree bucketing, comparison with
straightforward algorithm: We now consider our last
question: How important is it to bucket nodes by degree?
How big is the impact on the algorithm’s precision? How
does our algorithm compare with a straightforward algo-
rithm that just counts the number of common neighbors?
To answer this question, we run a few experiments. First,
we consider the Facebook graph with edge survival proba-
bility 0.5 and seed link probability 5%, and we repeat the
experiments again without using the degree bucketing and
with threshold equal 1. In this case we observe that the
number of bad matching increases by a factor of 50% with-
out any significant change in the number of good matchings.

Then we consider other two interesting scenarios: How
does this simple algorithm perform on Facebook under at-
tack? And how does it perform on matching Wikipedia
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pages? Those two experiments show two weaknesses of this
simple algorithm. More precisely, in the first case the simple
algorithm obtains 100% precision but its recall is very low.
It is indeed able to reconstruct less than half of the number
of matches found by our algorithm (22346 vs 46955). On the
other hand, the second setting shows that the precision of
this simple algorithm can be very low. Specifically, the error
rate of the algorithm is 27.87%, while our algorithm has er-
ror rate only 17.31%. In this second setting (for Wikipedia)
the recall is also very low, less than 13.52%; there are 71854
correct matches, of which most (53174) are seed links, and
7216 wrong matches.

6. CONCLUSIONS
In this paper, we present the first provably good algo-

rithm for social network reconciliation. We show that in
well-studied models of social networks, we can identify al-
most the entire network, with no errors. Surprisingly, the
perfect precision of our algorithm holds even experimentally
in synthetic networks. For the more realistic data sets, we
still identify a very large fraction of the nodes with very low
error rates. Interesting directions for future work include
extending our theoretical results to more network models
and validating the algorithm on different and more realistic
data sets.
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