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	e 
ngerprint identi
cation is an e�cient biometric technique to authenticate human beings in real-time Big Data Analytics. In
this paper, we propose an e�cient Finite State Machine (FSM) based recon
gurable architecture for 
ngerprint recognition. 	e

ngerprint image is resized, and Compound Linear Binary Pattern (CLBP) is applied on 
ngerprint, followed by histogram to
obtain histogram CLBP features. Discrete Wavelet Transform (DWT) Level 2 features are obtained by the same methodology. 	e
novel matching score of CLBP is computed using histogram CLBP features of test image and 
ngerprint images in the database.
Similarly, the DWTmatching score is computed using DWT features of test image and 
ngerprint images in the database. Further,
thematching scores of CLBP andDWT are fused with arithmetic equation using improvement factor.	e performance parameters
such as TSR (Total Success Rate), FAR (False Acceptance Rate), and FRR (False Rejection Rate) are computed using fusion scores
with correlation matching technique for FVC2004 DB3 Database. 	e proposed fusion based VLSI architecture is synthesized on
Virtex xc5vlx30T-3 FPGA board using Finite State Machine resulting in optimized parameters.

1. Introduction

	e reliable personnel authentication [1, 2] based on bio-
metrics has signi
cant importance in the present digital
world and can be achieved by human and computer interface
activities. 	e evolution of biometrics in recent years from
single mode to multiple mode closed systems has made
it possible to consider for Big Data processing [3, 4]. 	e
development of new algorithms andparallel processing archi-
tectures has an impact for Big Data processing response time.
	e interoperable feature and many sources and avenues for
collection of biometric samples have made the biometric
evolution of Big Data possible. 	e biometric physiologi-
cal or behavioural samples are captured using sensors or
devices, which are further processed in the next level of
vetting through O�ce for Personal Management (OPM)
which can be either veri
cation or identi
cation. Fingerprint
based identi
cation is one of the most important biometric

technologies, which have drawn a substantial amount of
attention recently since the process of acquiring 
ngerprint
samples are easy and simple. A 
ngerprint is seen as a set of
interleaved ridges and valleys on the surface of the 
nger.	e
most 
ngerprintmatching approach relies on the fact that the
uniqueness of a 
ngerprint can be determined by minutiae,
which are represented by either bifurcation or termination
of ridges. 	e quality and enhanced minutiae [5–7], which
in�uence recognition rates are discussed in literature.

	e features of a 
ngerprint can be derived using the
following: (i) Spatial domain: the features of an image are
carried out directly on pixel value. Examples are Local Binary
Pattern [8], Complete Linear Binary Pattern [9], and Singular
Value Decomposition [10]. (ii) Transform domain: in this any
transform is applied to an original image to get a transformed
image on which further processing is done. Examples are
Fast Fourier Transform [11], Discrete Cosine Transform [12],
Discrete Wavelet Transform [13], and Dual Tree Complex
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Wavelet Transform [14]. (iii) Fusion: in this technique [15, 16]
it combines the advantages of both spatial and transform
domain.

	e automated 
ngerprint recognition system is used
for both identi
cation and veri
cation against standard
database law enforcement agencies to identify the suspect
for committing crime or for attendance veri
cation process
to verify the claimed identity. 	e performance speed of

ngerprint system is a critical factor to be addressed while
dealing with large databases. 	e real-time processing of a

ngerprint recognition system is its ability to process the large
data and produce the results within certain time constraints
in the order of milliseconds and sometimes microseconds
depending on the application and the user requirements.
In this category, Field Programmable Gate Array (FPGA)
outperforms other processors. 	e FPGAs are specially built
hardware optimized for speed and are suitable for real-time
biometric data processing. Multicores and HPC clusters have
reasonable real-time processing capabilities, but not e�cient
as FPGA with many processing cores and high bandwidth
memory.

In real time, speed of the algorithm becomes crucial
which in turn de
nes the throughput. 	e e�cient FPGA
architectures [17–20] for 
ngerprint processing and existing
algorithms to identify a 
ngerprint based on minutiae [21],
ridge, multiresolution features, and Hough transform were
discussed.

Vatsa et al. [22] proposed Redundant Discrete Wavelet
Transformbased on local image quality assessment algorithm
followed by extraction algorithm using Level 3 features.
	ese features are combined with Level 1 and Level 2 in
the 
ngerprint identi
cation scheme. Finally, the matching
performance was improved by using quality based likelihood
ratios. Govan and Buggy [23] proposed e�ective matching
solution that addresses security and privacy issues.	is tech-
nique eliminates the requirement to release biometric tem-
plate data into an open environment which uses embedded
applications such as smart cards. 	e e�ective disturbance
rejection methodology which is able to di�erentiate between
equivalent and insigni
cant structure models was discussed.

Nain et al. [24] proposed an algorithm to classify 
n-
gerprint images into four di�erent classes using High Ridge
Curvature (HRC) algorithm involving two stages. In the 
rst
stage, HRC region was extracted, which avoids core point
detection. In the second stage, ridges inside HRC region were
considered for matching. 	e global distribution structure
and the local matching similarities [25] between 
ngerprints
were considered for matching using Hidden Markov Model
(HMM) [26]. Nikam and Agarwal [27] proposed spoof 
n-
gerprint detection using ridge let transform.	e comparisons
of individual ridgelet energy and cooccurrence signatures
were analysed and also testing was done using diverse
classi
ers.Masmoudi et al. [28] proposed an algorithmwhich
used the rotation invariant measured as local phase and was
combined with Linear Binary Pattern Features to improve
the performance accuracy. Stewart et al. [29] proposed the
test technique to determine the e�ects of outdoor and cold
weather e�ects on chip versus optical 
ngerprint scanner,

ngerprint recognition quality, and device interaction. 	e

results suggested that performance has no dependence on
temperature and humidity. Cao andDai [30] proposed 
nger-
print segmentation for online process using frame di�erence
technique. Further the segmented foreground was used for
identi
cation.

Umamaheswari et al. [31] proposed 
ngerprint classi
ca-
tion and recognition using neuro-nearest neighbour based
method which improves classi
cation rate. 	is consists of
di�erent stages such as image enhancement, line detector
base feature extraction, and neural network classi
cation
using back propagation networks. 	e results have shown
the accurate estimation of orientation and ridge frequency
which helps in better recognition. Conti et al. [32] proposed
pseudo-singularity points based 
ngerprint recognition.	is
technique uses additional parameters such as their relative
distance and orientation around standard singularity points
(core and delta) which enhances the matching performance.
Ahmed et al. [33] proposed Compound Local Binary Pattern
(CLBP) for rotation invariant texture classi
cation.	is com-
bines magnitude information of the di�erence between two
grey values with original LBP pattern and provides robust-
ness. Paulino et al. [34] proposed an alignment algorithm
(descriptor-based Hough transform) for latent 
ngerprint
matching. 	is technique measures similarity between 
n-
gerprints by considering both minutiae and orientation 
eld
information. 	e comparison was done between proposed
and generalized Hough transform for large database.

Feng et al. [35] proposed a technique using orientation

eld estimation based on prior knowledge of 
ngerprint
structure. 	e dictionary of reference for orientation patches
was constructed using a true set of orientation 
elds. 	e
approach was applied to the overlapped latent 
ngerprint
database to achieve better performance compared to conven-
tional algorithms.

Contribution. 	e contribution and novel aspects of the
proposed techniques are listed as follows: (i) the computation
of the novel matching score for CLBP and DWT features; (ii)
the matching score values which are varied based on char-
acteristics of images, that is, the values which are computed
adaptively based on characteristics of the images; (iii) the
fusion of matching scores with improvement factor; (iv) the
implementation of FSM based VLSI architecture to improve
the hardware performance.

2. Proposed Fingerprint Recognition System

An e�cient 
ngerprint recognitionmodel using histogramof
CLBP scores, DWT feature scores, and fusion of both scores
is given in Figure 1.

2.1. Fingerprint Database. 	e DB3 of FVC2004 
ngerprint
database [36] is considered for performance analysis. 	e
size of each 
ngerprint image is 300 × 480 with 512 dpi. 	e

ngerprint samples of ten di�erent persons are shown in
Figure 2.
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Figure 1: Block diagram of the proposed 
ngerprint recognition system.

2.2. Preprocessing. 	e original 
ngerprint image of size 300× 480 is resized to 256 × 256, which is suitable for hardware
implementation.

2.3. Complete Local Binary Pattern (CLBP). It is an extension
of the Local Binary Pattern (LBP) [37] texture operator.
	e CLBP operator gives both sign CLBP � and magnitude
components CLBP � for each pixel from its neighbouring
pixels. If � is the number of neighbours of a centre pixel, then
CLBP operator uses 2� bits to code centre pixel. 	e 
rst �
MSB bits represent sign and the next � LSB bits represent
magnitude.

	e binary bit patterns are generated for sign and mag-
nitude components for each pixel. 	e 
ngerprint image is
scanned from le� to right and top to bottom and considering
each pixel which is surrounded by 8 neighbouring pixels, that
is, 3 × 3 matrix. 	e centre pixel intensity value is �� and
surrounded neighbouring pixel intensity values, say, ��. 	e
sign bit patterns for 3 × 3 matrices are generated using

� (�) = {{{
0, �� − �� ≤ 0
1, �� − �� > 0. (1)

	e magnitude bit pattern is generated using

�(�) = {{{
0, �� − �� ≤ �avg

1, �� − �� > �avg, (2)

where �avg = |
1| + |
2| ⋅ ⋅ ⋅ |
8|/8 and 
1 to 
8 are the
magnitude values of the di�erence between respective �� and��.

Each neighbourhood pixel is represented by two bits;
that is, MSB bit represents sign and the LSB bit represents
magnitude. Each centre pixel is represented by eight sign
bits and eight magnitude bits. 	e example for CLBP is as
shown in Figure 3. 	e arbitrary values for 3 × 3 matrix
are considered in Figure 3(a). 	e values of neighbouring
pixels are subtracted from centre pixel value and are given
in Figure 3(b). 	e sign of each coe�cient in Figure 3(b) is
represented in Figure 3(c) as sign component of CLBP. 	e
magnitude components of CLBP are shown in Figure 3(d)
by considering only magnitude of Figure 3(b). 	e average
value of the CLBP magnitude component is computed and
is compared with neighbouring CLBP magnitude coe�cient
values and assigns binary values using (2) to generate CLBP
magnitude pattern given in Figure 3(f). 	e numbers of
centre pixels available for image size 256 × 256 are 64516
using 3 × 3 window matrix. 	e binary eight bits of sign and
magnitude of each pixel are converted into decimal values for
feature extraction. If theCLBP sign andmagnitude coe�cient
features are considered directly for an image size of 256 ×
256, the algorithm requires 64516 for sign and 64516 for
magnitude; that is, total number of features are 129032.

2.3.1. Histogram of CLBP Features. 	e features obtained
directly fromCLBP are large in number and hence increase in
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Figure 2: Sample images of ten di�erent persons of FVC2004 database.

matching processing time and are a disadvantage in hardware
implementation. 	e histogram on CLBP produces only 256
features for each sign and magnitude. Hence the number of
features is reduced from 129032 to 512, that is, approximately
0.4% features compared to CLBP.	e advantage of histogram
on CLBP is that the number of features reduces and also
features are more unique. 	e histograms of original 
nger-
print, sign, and magnitude components of CLBP are shown
in Figure 4.

2.3.2. Proposed CLBP Matching Score. 	e CLBP histograms
of test and database images are compared componentwise to
compute CLBP match score �. 	e absolute sign component
di�erenceCLBP � � between sign componentCLBP � �� of
test 
ngerprint and sign component CLBP � �� of 
nger-
print images in the database is computed using

CLBP � � = �����CLBP � �� − CLBP � ������� , (3)

where � is intensity values (0 to 255); � = number of persons
in the database × number of images per person.

	e CLBP sign histogram coe�cients match �� is com-
puted based on threshold sign di�erence value (14 for best
match) given in

�� = {{{
1, CLBP � � < 14
0, otherwise. (4)

	e absolute magnitude component di�erence
CLBP � � between magnitude component CLBP � �� of
test 
ngerprint and magnitude component CLBP � �� of

ngerprint images in the database is computed using

CLBP � � = �����CLBP � �� − CLBP � ������� , (5)

where � is intensity values (0 to 255); � = number of persons
in the database × number of images per person.

	e CLBP magnitude histogram coe�cient match �� is
computed based on threshold magnitude di�erence value (18
for best match) given in

�� = {{{
1, CLBP ��� < 18
0, otherwise. (6)
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Figure 3: CLBP operator: (a) 3 × 3 sample block; (b) local di�erence; (c) sign components; (d) magnitude components; (e) original matrix;
(f) CLBP matrix.

	e overall CLBP match count by considering both sign and
magnitude histogram coe�cients is

CLBP Match count

= {{{
Match count + 1, if �� ⋅ �� = 1
Match count, otherwise.

(7)

	e CLBPmatch score is computed using CLBPmatch count
and number of histogram levels using

% CLBP Match score �
= CLBP Match count ∗ 100
Number of Histogram Levels

. (8)

	e 	rst and eighth samples of same person are considered
as database and test image. 	e original 
ngerprint, CLBP
magnitude component, and CLBP sign component images of
database and test image are shown in Figures 5(a)–5(c) and
5(d)–5(f) respectively. 	e CLBP Match score is computed
between database image and test image of the same person,
which yields high value, that is, 67.9%.

	e 	rst and eighth samples of di�erent person are con-
sidered as database and test image. 	e original 
ngerprint,
CLBP magnitude component and CLBP sign component
images of the database and test image are shown in Figures
6(a)–6(c) and 6(d)–6(f) respectively.	e CLBP Match score
is computed between the database image and test image of the
di�erent person, which yields low value, that is, 51.9531%.

2.4. DWT Algorithm. 	e DWT [38] provides spatial and
frequency characteristics of an image. It has an advantage
over Fourier transform in terms of temporal resolutionwhere
it captures both frequency and location information. 	e
signal is translated into shi�ed and scaled versions of the
mother wavelet to generate DWT bands. 	e 
ngerprint
image is decomposed into multiresolution representation
using DWT. 	e LL subband gives overall information of
the original 
ngerprint image, the LH subband represents
horizontal information of the 
ngerprint image, HL gives
vertical characteristics of the 
ngerprint image, andHHgives
diagonal details.

	e Haar wavelets are orthogonal and have simplest
useful energy compression process.	e Haar transformation
on one-dimension inputs leads to a 2-element vector using

(� (1) , � (2)) = � (� (1) , � (2)) , (9)

where � = (1/√2) ( 1 11 −1 ) is the Haar operator and �(1)
and �(2) are the sum and di�erence of �(1) and �(2) which
produce low pass and high pass 
ltering, respectively, scaled
by 1/√2 to preserve energy. 	e Haar operator � is an
orthonormal matrix since its rows are orthogonal to each
other (their dot products are zero) and have unit lengths;

therefore �−1 = ��. Hence we may recover � from � using

(� (1) , � (2)) = �� (� (1) , � (2)) . (10)

For 2D image, Let � be 2 × 2 matrix of an image; the
transformation � is obtained by multiplying columns of � by
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Figure 4: Histograms of original 
ngerprint and CLBP features.

�, and then the rows of the result are by multiplying by ��
using

� = � ∗ � ∗ ��. (11)

	e original values are recovered using

� = �� ∗ � ∗ �. (12)

An example of DWT is as follows.
If � = ( � 	� 
 ) is the original matrix, then DWT is given

in (13).
	en

� = 1
2 (

� + � + � + � � − � + � − �
� + � − � − � � − � − � + �) . (13)

	e level 2 DWT features can be obtained by applying
Haar wavelet on LL subband of Level 1. 	e decomposition
of 
ngerprint using DWT at two levels is shown in Figure 7.

	e DWT bands correspond to the following 
ltering
processes:

(i) LL (� + � + � + �): low pass 
ltering in horizontal as
well as vertical direction.

(ii) HL (� − � + � − �): high pass 
ltering in horizontal
direction and low pass 
ltering in vertical direction.

(iii) LH (� + � − � − �): low pass 
ltering in horizontal and
high pass 
ltering in vertical direction.

(iv) HH (�−�−�+�): high pass 
ltering in both horizontal
and vertical direction.

To use this transform to a complete image, the pixels are
grouped into 2 × 2 blocks and transformations are obtained
using (13) for each block. 	e 2-level DWT is applied to
the 
ngerprint image of size 256 × 256 to obtain 128 × 128
coe�cients a�er 
rst level and 64 × 64 coe�cients a�er
second-level stage. 	e 64 × 64 LL subband coe�cients are
considered as DWT features.
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Figure 5: CLBP images of same person with matching score 67.9%.

2.4.1. Proposed DWT Matching Score. 	e LL subband coef-

cients of Level 2 DWT of the test 
ngerprint are compared
with LL band coe�cients of 
ngerprint images present in the
database using di�erence formula between coe�cients using

DWT � = �����DWT �� − DWT ������� , (14)

where � is the number of second-level subband coe�cients,
that is, 4096 for original image size of 256 × 256.

	e DWT coe�cient match �� is given by

�� = {{{
1, DWT � < 45
0, otherwise. (15)

	e DWT Match count by considering Level 2 coe�cients is
given in

DWT Match count

= {{{
Match count + 1, if �� = 1
Match count, otherwise.

(16)

	e DWT Match score is computed using DWT match
count and total number of DWT coe�cients using

% DWT Match score 
= DWT Match count ∗ 100
Total No. of Level 2 DWT coe�cients

. (17)

	e 	rst and eighth samples of same person are considered
as database image and the test image. 	e corresponding
LL subband images of DWT database image and test image
are shown in Figures 8(a)-8(b) and 8(c)-8(d) respectively.
	e matching score of 21.6768% is high, since the score is
computed between two samples of the same person.

	e	rst and eighth samples of di�erent person are consid-
ered as database image and the test image.	e corresponding
LL subband images of DWT database image and test image
are shown in Figures 9(a)-9(b) and 9(c)-9(d) respectively.	e
matching score of 14.2129% is low, since the score is computed
between two samples of di�erent person.

2.5. Fusion. 	e percentage CLBP match score is fused with
percentage DWT matching score [39] to improve perfor-
mance of the proposed algorithm using

Final Score  = � ∗  + (1 − �) ∗ �, (18)

where � is an improvement factor which varies from 0 to 1.
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Figure 6: CLBP images of di�erent persons with matching score 51.9531%.

(a) Original 
ngerprint
image

(b) One-level decomposition (c) Two-level decom-
position

Figure 7: DWT decomposition.
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(a) Sample image of database (b) DWT Level 2 LL subband image of
database

(c) Sample of test image (d) DWT Level 2 LL subband image of
test image

Figure 8: DWT images of same person with matching score 21.6768%.

3. Algorithm

	e proposed e�cient algorithm is shown as follows.

Proposed Algorithm

Input. 	is includes 
ngerprint database and test image.

Output. 	is includes 
ngerprint authentication.

(i) 	e DB3 of FVC2004 
ngerprint database is consid-
ered.

(ii) Resize to 256 × 256.

(iii) 	e CLBP is applied on 
ngerprints to obtain CLBP
sign and magnitude coe�cient.

(iv) 	e histogram of CLBP sign and magnitude are
obtained to form features.

(v) 	e 2-level DWT is applied on the 
ngerprint and
second-level LL band coe�cients are considered as
features.

(vi) 	e CLBP sign and magnitude histogram of the test
and database 
ngerprint images are compared using
di�erence formula to compute CLBP match score.

(vii) 	e LL subband coe�cient test and 
ngerprint
images are compared using di�erence formula to
compute DWT score.

(viii) 	e matching scores of CLBP and DWT are fused
using an arithmetic equation

 = � ∗  + (1 − �) ∗ �. (19)

(ix) 	e performances parameters are computed using
fused matching scores.

	e 
ngerprint identi
cation to authenticate a person e�ec-
tively on FPGA with optimized parameters is discussed.
	e spatial domain CLBP and transform domain DWT are
used to extract features. 	e arithmetic fusion is employed
on CLBP and DWT match score to compute performance
parameters.	e algorithm is implemented on Virtex 5 FPGA
board. 	e main objective is to increase TSR, decrease FRR
and FAR, and improve hardware optimization parameters.
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(a) Sample image of database (b) DWT Level 2 LL subband image of
database

(c) Sample of test image (d) DWT Level 2 LL subband image of test
image

Figure 9: DWT images of di�erent person with matching score 14.2129%.

4. Performance Analysis and Results

In this section, the de
nitions of performance parameters and
performance analysis are discussed.

4.1. De	nitions of Performance Parameters

4.1.1. False Rejection Rate (FRR). False Rejection Rate (FRR)
is the measure of the number of authorized persons rejected.
It is computed using

% FRR

= No. of authorized persons rejected × 100
Total No. of persons in database

. (20)

4.1.2. False Acceptance Rate (FAR). False Acceptance Rate
(FAR) is the measure of the number of unauthorized persons
accepted and is computed using

% FAR

= No. of unauthorized persons accepted × 100
Total No. of persons outside the database

. (21)

4.1.3. Total Success Rate (TSR). Total Success Rate (TSR) is
the number of authorized persons successfullymatched in the
database and is computed using

% TSR

= No. of authorized persons correctly matched × 100
Total No. of persons in the database

. (22)

4.1.4. Equal Error Rate (EER). Equal error rate (EER) is the
point of intersection of FRR and FAR values at particular
threshold value. 	e EER is the tradeo� between FRR and
FAR. 	e value of EER must be low for better performance
of an algorithm.

4.2. MATLAB Experimental Results. 	e performance
parameters are computed by running a computer simulation
usingMATLAB 12.1 version.	e performance improvements
are explained in this section.	eDB3 of FVC2004 
ngerprint
database is considered for performance analysis. 	e DB3 A
database has one hundred persons with eight samples per
person. 	e size of each 
ngerprint image is 300 × 480
with 512 dpi. 	e database is created by considering the
number of persons inside database varied from 30 to 50
with 7 
ngerprint samples per person in the database;
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Figure 10: FAR and FRR versus threshold for various PID : POD.

that is, number of images varies between 210 and 350 to
compute FRR and TSR. 	e eighth sample of each person is
considered as test 
ngerprint.

4.2.1. CLBP Algorithm. In this section the performance anal-
ysis is discussed for features extracted using only CLBP by
substituting power factor � = 0 in (18). Consider

 = �. (23)

	e variations of FRR and FAR with a threshold for
PID : POD combinations of 30 : 30, 40 : 30, 45 : 35, and 50 : 40
are shown in Figure 10. It is observed that for lower threshold
values FAR is high and FRR is low. As threshold value
increases, FAR decreases from higher values, whereas FRR
increases from lower to higher values. 	e computed values
of EERs for di�erent PID and POD combinations of 30 : 30,

40 : 30, 45 : 35, and 50 : 40 are 13.33, 10, 14.29, and 22.5,
respectively.

	e variations of percentage TSR with threshold for
di�erent combinations of PID and POD are given in Table 1.
	e value of % TSR decreases from higher values to zero
as threshold increases. 	e value of TSR is zero for higher
threshold value since the correlation technique is used for
matching. It is also observed that as PID increases, the % TSR
decreases.

4.2.2. DWT Algorithm. 	e performance parameters are
computed by considering only DWT features by substituting
power factor � = 1 in (18) to obtain

 = . (24)

	e variations of FRR and FAR with a threshold for
PID : POD of 30 : 30, 40 : 30, 45 : 35, and 50 : 40 are shown
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Figure 11: FAR and FRR versus threshold for various PID : POD.

Table 1: Variations of TSR with threshold for di�erent values of PID
and POD.

	reshold

% TSR

PID : POD

30 : 30 40 : 30 45 : 35 50 : 40

40 96.7 90 88.9 88

50 96.7 90 88.9 88

60 96.7 90 88.9 88

65 86.67 80 80 68

70 53.3 42.5 37.8 34

80 0 0 0 0

in Figure 11. It is observed that for lower threshold values
FAR is high and FRR is low. As threshold value increases,
FAR decreases from higher values, whereas FRR increases

from lower to higher values. 	e computed values of EERs
in percentage for di�erent PID and POD combinations of
30 : 30, 40 : 30, 45 : 35, and 50 : 40 are 33.33, 33.33, 37.14, and
42.5, respectively. 	e variations of percentage TSR with
threshold for di�erent combinations of PID and POD are
given in Table 2. 	e value of % TSR decreases from higher
values to zero as threshold increases.	e value of TSR is zero
for higher threshold value since the correlation technique is
used for matching. It is also observed that as PID increases
the percentage TSR value decreases.

4.2.3. Fusion of CLBP and DWT. 	e performance parame-
ters are computed considering fusion based given by (18).

	e variations of FRR and FAR with a threshold for
PID : POD of 30 : 30, 40 : 30, 45 : 35, and 50 : 40 are shown
in Figure 12. It is observed that for lower threshold values
FAR is high and FRR is low. As threshold value increases,
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Figure 12: FAR and FRR versus threshold for various PID : POD.

Table 2: Variations of TSRwith threshold for di�erent values of PID
and POD.

	reshold

% TSR

PID : POD

30 : 30 40 : 30 45 : 35 50 : 40

20 36.7 27.5 24.44 26

30 23.33 27.5 20 20

40 13.33 12.5 11.11 10

50 0 0 0 0

60 0 0 0 0

FAR decreases from higher values, whereas FRR increases
from lower to higher values. 	e computed values of EERs
in percentage for di�erent PID and POD combinations
of 30 : 30, 40 : 30, 45 : 35, and 50 : 40 are 0, 0, 0, and 20,
respectively.

Table 3: Variations of TSRwith threshold for di�erent values of PID
and POD.

	reshold

% TSR

PID : POD

30 : 30 40 : 30 45 : 35 50 : 40

40 100 100 97.7 98

50 100 100 97.7 98

55 100 100 97.7 78

60 40 32.5 28.3 26

70 0 0 0 0

80 0 0 0 0

	e variations of percentage TSR with threshold for
di�erent combinations of PID and POD are given in Table 3.
	e values of % TSR decrease from higher values to zero
as threshold increases. 	e value of TSR is zero for higher
threshold value since the correlation technique is used for
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Table 4: Variations of EER and TSR for CLBP, DWT, and proposed model.

PID POD
CLBP DWT Proposed model

EER (%) TSR (%) EER (%) TSR (%) EER (%) TSR (%)

30 30 13.3 86.67 33.33 23.33 0 100

40 30 13.5 80 33.33 22.5 0 100

45 35 14.29 80 37.14 20 0 97.78

50 40 22 68 42.5 20 20 80

Table 5: Comparison of percentage EER and TSR existing tech-
niques with proposed fusion based method.

Author Techniques % EER % TSR

Karki and
Sethu Selvi
[40]

Curvelet-Euclidean — 95.02

Bartunek et
al. [41]

Adaptive 
ngerprint
enhancement

6.2 —

Ouzounoglou
et al. [42]

Self-Organizing Maps
(SOM) algorithm

5.86 —

Medina-
Pérez et al.
[43]

Minutiae triplets 5.1 —

Proposed
method

Fusion of CLBP and
DWT

0 97.78

matching. It is also observed that as PID increases the
percentage TSR value decreases.

4.2.4. Comparison between CLBP, DWT, and Proposed Model.
	e values of EER and TSR with di�erent combinations of
PID and POD are tabulated in Table 4. 	e value of %TSR
decreases and EER increases with increase in PID and POD.
	e proposed model achieves reduced EER and increased
TSR compared to individual technique of CLBP and DWT
implementation. 	e performance parameters such as EER
and TSR are compared with existing techniques published by
Karki and Sethu Selvi [40], Bartunek et al. [41], Ouzounoglou
et al. [42], and Medina-Pérez et al. [43] for FVC2004 DB3
Database given in Table 5. 	e proposed model achieves
reduced EER and increased TSR.

5. FPGA Implementation of Proposed Model

	eproposed architectures are implemented on FPGAdevice
using Virtex xc5vlx30T [44] with speed grade 3 and designed
to work with external SRAM memory [45] which is used
to store the database and test images. 	is SRAM has been
required since the on-chip memory of FPGA is small to store
the database and test images during algorithm execution.

5.1. CLBP Architecture. 	e CLBP algorithm is synthesized
using CLBP VLSI architecture shown in Figure 13. 	e nine
shi� registers of eight bits along with two shi� registers each
of length 2008 bits are used to form First In First Out (FIFO)
architecture to implement 3 × 3 matrix. 	e outputs p0, p1,
and p2 are three pixels of 	rst row, p3, p4, and p5 are three

pixels of second row, that is, exactly below 
rst three pixels,
and p6, p7, and p8 are three pixels of third row, that is, exactly
below second row three pixels to form 3 × 3 matrix for sign
and magnitude computations with CLBP. In the next rising
edge of the clock, pixels are shi�ed to the right by one to
form a new 3 × 3 matrix. 	e control unit along with 10-
bit and 8-bit counters is used to create new matrices which
are sent to compute CLBP S and CLBP M blocks to obtain
CLBP sign and magnitude components. 	ese components
are further used to obtain the histogram magnitude and sign
CLBP features using two counter banks of 16 × 256.
5.1.1. Finite State Machine (FSM) of CLBP. 	e MODELSIM
FSM view window is used to display state diagram. 	e FSM
of control unit to compute CLBP � and CLBP � is shown
in Figure 14. 	e st0 is the initial state of control unit and is
continued in this state until 10-bit counter counts 515 clock
cycles to allow the FIFO architecture to store pixel values of
the 	rst row, second row, and 
rst three pixels of third row.	e
st0 state shi�s to st1 state a�er 515 clock cycles. In st1 state 
rst
3 × 3 matrices of 	rst, second, and third rows are considered,
sending q1 from 10-bit counter to control unit to activate s1
to compute CLBP � and s2 to compute CLBP �. 	e sign
and magnitudes of CLBP for successive 3 × 3 matrices of the

rst three rows are computed in st1 till 8-bit counter count
reaches 253 and shi�s to st2. 	e 8-bit counter count is reset
and 10-bit counter count is incremented in state st2 to store
fourth row by eliminating 
rst row and shi�s to st3 to create
clock cycles delay before shi�s to st1.	e processes of CLBP �
and CLBP � for every 3 × 3 matrix for all rows of an image
are computed in st1, st2, and st3 states. Once all rows are
processed state shi�s st0 to read next image.

5.2. DWT Architecture. 	e DWT algorithm is synthesized
using DWT architecture as shown in Figure 15. In case of
DWT, 2 × 2 nonoverlapping matrix is required.	e four shi�
registers of eight bits along with one shi� register of length
254 bits are used for FIFO architecture to form 2 × 2 matrix.
	e outputs p0 and p1 are two pixels of the 	rst row and p2
and p3 are pixels exactly below the 	rst row to form 2 × 2
matrix for DWT computation. 	e control unit controls all
the timing issues using a 9-bit counter. Its operation is based
on the state diagram shown in Figure 16. In st0, the entire 	rst
row and two pixels of the second row of an image are read
using 9-bit counter and shi�s to st1. 	e LL of 2 × 2 matrix
is computed in st1 and continued to compute LL coe�cient
with nonoverlapping pixels of the second row. Once 	rst and
second rows were completed, then st1 shi�s to st2 and back
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Figure 13: VLSI architecture of CLBP.
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Figure 14: FSM of CLBP control unit.
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Figure 16: FSM of DWT Level 1 control unit.

to st1 a�er two clock cycles’ delay to compute LL coe�cients
for third and fourth rows and is continued till all rows are
completed in an image. 	e entire image of 256 × 256 will
give rise to 128 × 128 DWT coe�cients for 65536 clock cycles.

	e algorithm for DWT Level 2 remains the same as
DWT Level 1 but is applied only on the LL component of
DWT Level 1 coe�cients. 	e 128 × 128 LL coe�cients
generated by Level 1 are again processed here to generate 64×64 coe�cients. Now, instead of waiting for Level 1 to complete
its processing and then executing Level 2, the pipelining has
been done in both the stages to achieve better speed. 	e LL

coe�cients for every overlapping and nonoverlapping 2 × 2
matrix in an image are generated in Level 1 using moving
window architecture and are connected to registers of Level
2 architecture shown in Figure 17. 	e LL coe�cients of a
nonoverlap 2× 2matrix of Level 1 are considered in Level 2 for
further decomposition.	e architecture uses a 10-bit counter,
11-bit adder, and 1 right shi� register. 	e controller uses the
counter to keep track of time and all the LL coe�cient values
P0, P1, P2, and P3 are added using 11-bit adder since all the
values are about 9 bits. 	e result of the addition is scaled
down by 2 by using one-bit right shi� operation.

	e FSM of Level 2 DWT to generate LL coe�cients is
shown in Figure 18. In state st0, the 2 × 2 LL coe�cients of
Level 1 are read and jump to st1. 	e LL coe�cients of Level
2 are computed in st1 by adding and shi� technique. 	e
states st2, st3, and st4 are used to create a delay to compute
Level 2 coe�cient of next nonoverlapped 2 × 2 windows.	e
process is continued until all nonoverlapped 2 × 2 windows
are exhausted.

5.3. Matching Score Architecture for CLBP and DWT. 	e
architecture for computation of the matching score in per-
centage for both CLBP and DWT is shown in Figure 19. 	e
feature of the test image is subtracted from that of database
feature and if the di�erence is less than the threshold, then
it is considered to be a match and the counter is updated.
Similarly, a�er comparing all the features, the control unit
asserts cnt out signal to use the content of counter to calculate
the match score; also this signal is used to reset the counter to
zero. 	e match score in percentage is obtained by multiply-
ing the number of matched features by 100 and then dividing
it by the total number of features as given in (8) and (17).	is



VLSI Design 17

p3

DFF DFF DFF

DFF DFF DFF

DFFDFFDFF

p2

p1 p0

SR_0 (253)

SR_1 (253)

Pixel_in

clk

rst

rstc1
cnt

p0

p1

p2

p3

en

Pixel_out

Control unit

counter
10-bit

11-bit adder and 
1-bit right shi�er

Figure 17: VLSI architecture of Level 2 DWT.

Cond: 1

Cond: 1

Cond: 1

Cond: (cnt == 773) Cond: (cnt == 126)

st4 st1

st0

st2

st3

Cond: !(cnt == 126)
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requires a dedicated multiplier and divider which consumes
more hardware and decreases the speed. In our architecture
multiplication anddivision operation can be performedusing
shi� registers reducing the area and increasing the speed.	e
numbers of matched features are shi�ed le� by 6, 5, and 2 bits
and then add to achieve multiplication by 100. Similarly the

division is performed by shi�ing right by 9 bits and 14 bits for
CLBP score and DWT score, respectively.

5.4. Architecture for Fusion of CLBP and DWT Match Scores.
	e architecture for fusion of CLBP and DWT match scores
using improvement factor using (18) is as shown in Figure 20.
	e process of multiplication with a fractional part like 0.7
and 0.3 is carried-out shi� operation in three steps. To obtain
0.7, the parallel combination of 1 bit, 3 bits, and 4 bits right
shi� registers, this yields a value of 0.5 + 0.125 + 0.0625 =
0.6875 resulting in an error of 1.8%. Similarly to obtain 0.3,
the parallel combination of 2 bits, 5 bits, and 6 bits right shi�
registers, this yields a value of 0.25 + 0.0313 + 0.016 = 0.2969
resulting in an error of 2.3%.	ese errors are negligible since
the threshold used for decision circuit is not hard. Finally,
the fusion match score is compared with a threshold and the
decision is made whether the test sample is matched with
database or not. 	is method of implementation eliminates
the use of dedicated �oating point and 
xed point multiplier
and divider circuits consuming more clock cycles and area.

5.5. Hardware Results. 	e performance parameters based
on FPGA for CLBP, DWT, and fusion based architectures
are given in Table 6. 	e limitation of fusion technique is
that it requires more number of slice registers and LUTs as
compared to individual technique.

	e RTL schematics of the proposed fusion based design
with CLBP and DWT architecture, run in parallel, is shown
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in Figure 21. 	e CLBP system consists of CLBP module and
CLBPmatching with its output CLBPmatch score.	eDWT
system consists of 2-level decomposition modules and 
nally
DWT matching module with its output DWT match score.
	e two levels of DWT decomposition are pipelined in order
to achieve high speed. Finally, using fusion module, both

the match scores are combined using strength factors and
the fusion match score is computed upon which threshold is
applied to decide whether a match has occurred or not.

	e routing design on the FPGA connecting several CLBs
and block RAM is shown in Figure 22. 	e blue streaks
indicate the connection between the logical blocks. Similarly,



VLSI Design 19

Table 6: Performance parameters on FPGA.

Block CLBP system DWT system Fusion

Number of slice registers 8435 359 8776

Number of slice LUTs 20243 440 20706

Max freq (MHz) 68.036 298.77 68.004

Figure 21: RTL schematic of the entire system.

Figure 22: Routed design view.

a schematic showing all interconnections between the LUTs,
BLOCK RAM, and IOBs (input/output bu�ers) is shown in
Figure 23.

	e schematic �oor of our proposed design using Virtex
5 device is as shown in Figure 24.	is snapshot is taken from
a tool know as Xilinx PlanAhead.	e small violet rectangular
boxes represent CLBs (combinational logic block). 	e CLB
consists of two slices and each slice has 4 LUTs, 3multiplexers,
1 dedicated arithmetic logic (two 1-bit adders and a carry
chain), and four 1-bit registers that can be con
gured either
as �ip-�ops or as latches shown in Figure 25. 	is technique
of hardware implementation does not require dedicated

Figure 23: Schematic of the proposed design.

Figure 24: Floor plan of the design.

multiplier and divider; hence it consumes less hardware to
build and it is faster.

5.5.1. Comparison between Existing Fingerprint Architectures
and Proposed Architecture. 	e area and total execution
time estimated using FPGA for the proposed algorithm
and existing algorithm are presented in Table 7. In case of
comparing the proposed results with previous related work,
it is better with respect to di�erent aspects.

(a) In [46] authors presented a hardware-so�ware code-
sign of 
ngerprint recognition system. 	e coproces-
sors were used to speed up the execution time of algo-
rithm resulting in 988ms. 	e microblaze so� core
processor along with coprocessor limits the speed
of the entire system. In our proposed method the
implementation of full �exible parallel and pipelined
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Table 7: Comparison of area and execution time of existing method with proposed method on FPGA.

Author Board Slices (% utilization) Total execution time

Lopez and Canto [46] Spartan 3 XC3S2000 3507/20480 (17.12%) 987.8ms at 40MHz

Fons et al. [47]
Altera ARM + FPGA

EPXA10 DDR
29327/38400 (76.37%) 955.842ms

Conti et al. [48] Xilinx Virtex II XC2V3000 12,863/14,336 (89.72%) 183.32ms at 22.5MHz

Proposed method
Xilinx Virtex
xc5vlx30T

8776/19200 (45.70%) 1.644ms at 68MHz

Figure 25: CLB consisting of two slices.

architecture using on-chip slices of FPGA improves
the system matching speed.

(b) In [47] authors proposed a solution of 
ngerprint
recognition using a combination of ARM and FPGA.
	e use of full FPGA recon
guration in our proposed
method using Virtex 5 with SRAM is better in speed
compared to recon
guration latencies achieved using
a combination of ARM and FPGA (EPXA10 DDR).

(c) In [48] a sensor has been prototyped via FPGA to
improve the speed of the system with best elabo-
ration time of 183.32ms and a working frequency
of 22.5MHz. In our method the elaboration time
of 1.644ms is achieved at the working frequency of
68MHz, since the external SRAM is used to port via
FPGA.

Limitations. 	ere exist some limitations in the proposed
method despite the improvement of speed as it requires more
area since the CLBP and DWT fused technique is used.
	e on-chip moving window FIFO architecture designed has
initial clock latencies.

6. Conclusion

In this paper, e�cient FSM based recon
gurable architec-
ture for 
ngerprint recognition implemented using Virtex

5 FPGA board is proposed. 	e novel matching score of
CLBP is computed using histogram CLBP features of test
image 
ngerprint images in the database. Similarly the DWT
matching score is computed usingDWT features of test image
and 
ngerprint images in the database.	e arithmetic fusion
equation with improvement factor is used to combine the
matching scores generated by histogram CLBP features and
DWT features. 	e performance parameters are computed
using fusion scores with correlation technique. It is observed
that the values of EER, FAR, FRR, TSR, and hardware
parameters such as area and delay are better in the case of
proposed method compared to existing methods.
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