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An Efficient Reverse Converter for the 4-Moduli Set
2n 1, 2n, 2n + 1, 22n + 1 Based on the New

Chinese Remainder Theorem
Bin Cao, Chip-Hong Chang, Senior Member, IEEE, and Thambipillai Srikanthan, Senior Member, IEEE

Abstract—The inherent properties of carry-free operations,
parallelism and fault-tolerance have made the residue number
system a promising candidate for high-speed arithmetic and
specialized high-precision digital signal-processing applications.
However, the reverse conversion from the residues to the weighted
binary number has long been the performance bottleneck, par-
ticularly when the number of moduli set increases beyond 3. In
this paper, we present an elegant residue-to-binary conversion
algorithm for a new 4-moduli set 2 1 2 2 +1 22 +1 .
The new Chinese remainder theorem introduced recently has
been employed to exploit the special properties of the proposed
moduli set where modulo corrections are done without resorting
to the costly and time consuming modulo operations. The resulting
architecture is notably simple and can be realized in hardware
with only bit reorientation and one multioperand modular adder.
The new reverse converter has superior area-time complexity in
comparison with the reverse converters for several other 4-moduli
sets.

Index Terms—New Chinese remainder theorem (CRT), residue
arithmetic, residue number system (RNS), residue-to-binary con-
verter.

I. INTRODUCTION

T HE RESIDUE number system (RNS) is a means of
representing number in a nonweighted form in order to

heighten the parallelism and modularity that can be exploited
by the very large-scale integration (VLSI) technology [1], [2].
By decomposing large binary numbers into smaller residues,
addition and subtraction in RNS arithmetic have no inter-digit
carries or borrows, and multiplication can be performed without
the need to generate partial products. With the ever increasing
bus width for high-precision computation, and the demand for
digital signal processors to deliver reliable and giga operations
per second (GOPS)-like performance with microwatts-like
power budget, the elimination of carry chain coupled with the
advantages offered by VLSI fabrication technology makes
RNS-based arithmetic attractive for many important applica-
tions, especially those that have to deal with a lot of high-speed
vector processing [1]–[5]. As the peripheral interfaces of most
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digital systems are still based on the weighted number system,
the overhead incurred in the conversions into and out of the RNS
has been the major critique limiting the diffusion of RNS-based
processors. It is well acknowledged that the forward conversion
from the binary number to residues is conceivably simple and
efficient architectures have been devised for residue generator
based on special moduli of the -type (i.e., expressible in
the form or ) [6]. However, the reverse conversion
from residue-to-binary number presents a significantly higher
hurdle that offsets the performance gained in the RNS. During
the past several decades, the reverse conversion algorithms
are based primarily on the Chinese remainder theorem (CRT)
[7]–[10] or mixed-radix conversion (MRC) [11], [12]. The use
of CRT often involves a large modulo adder where is the
product of all moduli, whereas MRC is a sequential process
that often requires a number of lookup tables. Both of them are
not efficient for practical systems with large dynamic range.

Special moduli sets have been used extensively to reduce
the hardware complexity in the implementation of reverse con-
verters. Among which the triple moduli set,
has gained unprecedented popularity by feat of its inherent
number theoretic properties in the CRT algorithm. Several
researchers have proposed different kinds of residue-to-binary
converters using CRT. Andraos and Ahmad [13] derived the
closed-form expressions of the moduli inverses, and used
them to reduce the conversion complexity. Carry save adders
(CSAs) with end-around carry (EAC) were introduced by
Piestrak [14] to allow a very efficient implementation of the
residue-to-binary converters based on CRT. Recently, Wang
[15], [16] proposed the revolutionary New CRT theorems,
which have inherited the merits of the classical CRT and MRC
algorithms. With general moduli sets, the reverse converters
based on the New CRT are still relatively complex. On the
other hand, if the New CRT I and II are applied to the special
triple moduli set, the algorithm of the reverse conversion can
be simplified, and reduced hardware complexity and improved
speed are achieved compared with the converters designed with
the celebrated traditional CRT [17].

Inspired by the performance gain of the reverse converter for
triple moduli set and the potential simplification made possible
by the number theoretic interaction of the New CRT, we explore
new moduli set which would take advantage of the New CRT to
increase the parallelism and extend the dynamic range of the
RNS. We have derived a new 4-moduli set

that retains the efficient forward conversion and
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residue arithmetic. Its ensuing residue-to-binary converter de-
signed using the New CRT is as efficient as that of the triple
moduli set, while the dynamic range has raised from bits
to bits. Techniques exploiting the special properties of
power of two modulo are employed to simplify the final
modulo correction and allow for an efficient circuit realization
of a memoryless reverse converter. One of the newest reverse
converters based on the 4-moduli set was proposed by Bhardwaj
et al.[18] which used the moduli set

for odd number . The dynamic range is bits and the
converter is based on linear ROM and modular adders. The total
delay is approximately 10 full adder (FA) delays, and the
area cost is quadratic in. An improved memoryless reverse
converter for 4-moduli set of
with an overall delay of FA delays was recently pro-
posed by Vinod and Premkumar [19]. This 4-moduli set is valid
only for even values of , which restricts its dynamic range fur-
ther.

The remaining sections of this paper are organized as follows.
In Section II, an overview of RNSs and the new CRT theorems
is provided. In Section III, the new 4-moduli set is proposed.
The proof of its relatively prime postulation is established fol-
lowed by the derivation of a novel algorithm for the reverse con-
version based on the new CRT. Its hardware implementation is
presented in Section IV. The architectural cost and performance
of the proposed reverse converter are evaluated and compared
with other converters in Section V, before the conclusion.

II. BACKGROUND

In an RNS, an integer can be represented by an-tuple of
residues, ( , , , ) defined over a set of relatively prime
moduli , , , , where , for ,

, and . The residue is a smaller weighted binary
number expressible as

(1)

where is a simplified notation for mod . The term
forward and reverse conversions are commonly used to describe
the conversions of the weighted binary representationto and
from its residue set ( , , , ), respectively. The bottle-
neck operation in a RNS is the reverse conversion, which can
be calculated using the CRT [1] as follows:

(2)

where , and .
The weighted binary number can be also calculated by the

new CRT-I [15]

(3)

where

(4)

The product of all moduli, , is called the dynamic range.
For any integer within the dynamic range, i.e., ,
its residue representation is canonical. The dynamic range of
an RNS is also expressible inbits, where .
Therefore, the RNS is said to have a dynamic range of bits
with the moduli set , , , (for )
bits with the moduli set , , , , and

, with the moduli set , , .
In what follows, we will establish the number theoretic prop-

erties of the proposed 4-moduli set , , ,
and derive the closed-form expressions for the inverses under
the New CRT-I that forms the basis of our algorithm for the re-
verse converter.

III. REVERSECONVERTER FOR4-MODULI SET , ,
,

Before we can apply the New CRT-I to derive the algorithm
for the reverse converter of the proposed 4-moduli set ,

, , , we need to prove that these moduli are in
fact pairwise relatively prime for the validity of the RNS. The
following theorem is useful for this purpose.

Theorem 1: For natural number, , and , if and
, then .

Proof: If , and , then , and
for some integers and where and . Since

, . Let the nature number , then
. Therefore, .

Theorem 2: The moduli from the 4-moduli set , ,
, are pairwise relatively prime for any natural

number .
Proof: It has been established that the moduli ,

and are pairwise relatively prime [1]. Hence, we only need
to prove that is relatively prime to the other moduli.

Assume is divisible by , then , for
some natural number . Rearranging the above equation,
we have . Since

and is an even natural number, the identity
is invalid. By contradiction, is not

divisible by . Hence, is prime to .
Assume that is not prime to , there exists a

natural number such that .
Thus, we have and .

Since , implies
that . According toTheorem 1and
the assumption, . The divisibility property [20]
suggests that either i) or ii) . i) If , based on
the above assumption that , is the common divisor
of and . This contradicts the well-established fact that

is relatively prime to . ii) if , based on the
assumption, and is the common divisor of
and . This is, again, a contradiction to the proven fact that
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is relatively prime to . Since both cases cannot be
established, the assumption that is not prime to
is invalid. Therefore, is relatively prime to .

Assume that is not prime to , there exists a
natural number such that . So,
we have .

Since , implies
that . According toTheorem 1and the
assumption, we have , so is the common divisor of

and . This is in contradiction with the fact that
and are relatively prime. Hence, we rule out the

assumption and conclude that is prime to .
Since is pairwise relatively prime to all the other

moduli in the set , , , , the relative
primality of the proposed 4-moduli set is established.

With the 4-moduli set , , , , the
reverse conversion algorithm from the residues (, , , )
to the weighted binary number is derived in the sequel based
on the New CRT-I.

Let , , and .
By (4), we have

(5)

(6)

(7)

The three multiplicative inverses , , and are given as
follows:

(8a)

(8b)

(8c)

Proof of (8a):

Proof of (8b):

Proof of (8c): It is trivial to show that . Using
the identities and , we

have ,
. Thus

Theorem 3: In an RNS defined by the 4-moduli set ,
, , and , the weighted binary number can

be calculated from the residues (, , , and ) by

(9)

where

(10a)

(10b)

(10c)

(10d)

Proof: By substituting , ,
, , and the values of to from (8a)–(8c)

into (3), we have

It should be noted that the residues corresponding to, P ,
and are, respectively, , , , and of (3). The result

follows directly by expanding the terms and grouping the coef-
ficients of , , and .

IV. HARDWARE REALIZATION OF REVERSECONVERTER

We useTheorem 3as the basis to devise a VLSI efficient re-
verse converter. Before developing it into a hardware architec-
ture, the closed-form expressions of (9) and (10) can be further
simplified to reduce the hardware complexity by exploiting the
special properties of the modular operation.

Let the residues , , , and be represented by binary
strings of different length

Furthermore, let
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where

According toTheorem 3, can be calculated by
.

The following property can be used to evaluate.
Property 1: Multiplying an integer, by modulo ( )

can be accomplished by expressingin a bits binary repre-
sentation and then shifting it circularly bybits to the left.

Property 1is proposed in [1]. As an example, let ,
and , then, we have

where the function is used to denote a circular shift
of the binary number by bits to the left. In the sequel, we
applyProperty 1recursively to replace by the arrangement
of bits from the residues interleaving with strings of binary con-
stants “0” and “1.”

Evaluating

(11)

Evaluating

(12)

Evaluating

Define

so that .

Now, and can be evaluated by recursive applica-
tions ofProperty 1

where

Eventually, we have

(13)

(14)

Evaluating

where

(15)

(16)

Now can be expressed as the sum of the binary strings given
by (11)–(16)

(17)

From (9) and (17), it can be seen that the calculation of
is magically simple and elegant. It involves only multioperand
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Fig. 1. Hardware realization of the proposed reverse converter.

modulo adder, which can be implemented as efficiently
as the algorithm of triple moduli set , , . The
complicated arithmetics in the algorithm of [18], [19] have been
eliminated with the aid ofProperty 1. Similarly, efficient archi-
tecture as that used in the triple moduli set can be employed to
realize our new reverse converter. With larger dynamic range
and higher parallelism, more promising avenues for optimiza-
tion at the CSA tree than that of the triple moduli set are envis-
aged.

Example 1: For , the moduli set is 7, 8, 9,
65 . Let . In binary string notation,

, , , .
Based on (11)–(16),

, ,
,

, ,
. From (17),

.
From (9), .
The causality is verified by , ,

and .
Fig. 1 shows the architecture of our reverse converter for the

4-moduli set , , , . The bits orientation
block generates , , , , , by simply manip-
ulating the routings of the bits from the input residue numbers
of , , and . The summation can be done by (6, )
multioperand modular adder (MOMA) [6], which consists of a
4 -bit 3-level CSA with EAC, and a 4 -bit 1’s complement
adder [21]. It should be noted that asis weighted by , the
addition of in (9) incurs no additional hardware and compu-
tation cost as it can be directly wired to the right of.

V. PERFORMANCEEVALUATION

In this section, we will estimate the hardware costs and eval-
uate the delay of the reverse converter. For ease of reference to

relevant reverse converters, the standard practice of measuring
complexity in terms of the number and delay of fundamental
logic units like FA, standard logic gates, etc., is adopted for the
reverse converters with generic. The wire loads are normally
neglected.

From Section IV, we know that , , , , , and
are all 4 -bit wide, they can be obtained by hardwiring

of the bits from the residue , , , and and the supply
(logic 1) and ground (logic 0). In the bits orientation block of
Fig. 1, there are inverters used for , for and 2

for . The total number of inverters is . The delay
of this block is equal to , which is the delay of an inverter.

It is also observed that there are strings of consecutive “1”s
and “0”s embedded in the binary expressions of, , ,

, and . Without annihilating the basic simplistic archi-
tecture of Fig. 1, a first cut simplification of the Carry-Save-
Adders can be accomplished by manipulating those embedded
constant strings. The fundamental idea is: a FA with a constant
input “1” can be reduced to a pair of two-inputXNOR andOR

gates, a FA with a constant input “0” can be reduced to a pair of
two-inputXOR andAND gates, and a FA with an input “0” and
an input “1” can be reduced to an inverter. One straightforward
way to take advantage of the constant strings is to regroup each
of , and into five asymmetrical segments as follows:

If , and are the chosen addends in the first level
of the CSA tree, FAs can be eliminated from the rightmost
(last) segment as they perform only the constant additions of “1”

“0” “1” and their sum and carry outputs can be anticipated a
priori without any computation. The “0”s in the generated
sum and “1”s in the generated carry can be used to further
reduce some FAs in Adder3 and Adder4 in the succeeding layer.
In summing the fourth segments of, and from the
left, one input of each of these FAs is a “1,” so these FAs
can be reduced to pairs of two-inputXNOR andOR gates.
To add the third segments of these binary strings from the left,
the FAs can be replaced by inverters as each adder
has a constant “1” and a constant “0” inputs. For the first two
segments from the left, the FAs can be substituted by
pairs ofXNOR andOR gates as each adder has one of its inputs
equals “1.” In summary, the number of FAs in Adder1 is 0, the
number ofXNOR andOR gates is 2 each, and the number
of inverters is .
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Similarly, and can be segmented as follows:

Let , , and be added together in Adder2. The
FAs for summing the fourth segments can be replaced by
inverters due to the constant inputs of “0” and “1” to the adders.
The FAs for adding the third segments are reduced into

pairs ofXOR andAND gates, because of the “0” input to
each adder. The FAs for adding the second segments can
be replaced by pairs ofXNOR andOR gates, since one of
every adder’s inputs is a “1.” Thus, the number of FAs in Adder2
is , the number ofXNOR andOR gates is each, the
number ofXOR andAND gates is each, and the number of
inverters is .

The number of FAs for the Adder3 and Adder4 in Fig. 1 is
each. As the sums and

carries from Adder1 are all “0”s and all “1”s, respectively, the
FAs are reduced to pairs of XOR/AND gates and

XNOR/OR gates, accordingly.
As a result, the total number of FAs of the CSA with EAC

is , the number of pairs of two-inputXOR/AND gates is
, the number of pairs of two-inputXNOR/OR gates is ,

and the number of inverters is . The maximum delay of
the CSA with EAC is , where is the delay of a FA.

Overall, the hardware cost of our residue-to-binary converter
for the proposed 4-moduli set is equivalent to FAs,

pairs of two-inputXOR/AND gates, pairs of two-input
XNOR/OR gates, inverters, and one -bit carry propa-
gate adder (CPA). It should be noted that further reduction in
hardware complexity is possible if similarly weighted bits are
swapped across to optimize the use of constant inputs. The
total delay of this reverse converter is ,
if the method in [14] is adopted for the CPA, and this version of
reverse converter is called the cost-effective (CE) version. The
delay can be lowered to
at the expense of increasing hardware cost when the method in
[21] for CPA is adopted, which is called as the high-speed (HS)
version of the converter.

It is obvious that the total delay of the reverse converter
strongly depends on the delay of the CPA. If the fast ripple carry
adder (RCA) proposed in [22] is used for the CPA, the delay
of the -bit CPA will be . If a carry
lookahead adder (CLA) is used for the CPA, then for ,
a two-level CLA is needed, and unit delay; for

, higher level CLA is needed, and each additional level
of CLA will contribute 4-unit delay, where a 1-unit delay is the
delay of a two-inputNAND gate [23].

In [18], a residue-to-binary converter for moduli set ,
, , is proposed. For this 4-moduli set, the

TABLE I
COMPARISONS OFHARDWARE REQUIREMENTS FORREVERSECONVERTERS OF

4-MODULI SETS

total dynamic range is only bits. Furthermore, its moduli
are pairwise relatively prime only when where
is a positive integer. To represent some weighted binary number
with the dynamic range just exceeding , the next value of
will have to be increased by 2, resulting in unnecessary wastage
of the extended dynamic range and the associated computa-
tional cost. Excluding the delay of multiplexer, ROM lookup ta-
bles, andXOR gates, the delay of this converter is approximately

FAs delay. Even if the CPA of our proposed converter
uses the slower traditional RCA [23], the total delay is estimated
to be and for CE version and HS ver-
sion, respectively, which is still faster than the converter of [18].
In comparing the area complexity of our proposed design, the
size of the reduced FA cells must be taken into consideration.
A reduced FA consists of either a pair ofXOR/AND gates or a
pair of XNOR/ORgates and a FA consists of twoXORs and some
NAND gates. Therefore, a reduced FA can be considered as com-
patible in area to half of the normal FA. The hardware cost of

pairs of two-inputXOR/AND gates, pairs of two-input
XNOR/ORgates and inverters is equivalent to FAs, thus
the area complexity of our new converter is for CE ver-
sion and for HS version, which is more cost effective
than the converter of [18], which is .

A different 4-moduli set , , , reverse
converter has been proposed in [19] with a dynamic range of
bits. This time has to be even, and it suffers from the same
disadvantages as the moduli set , , ,
in the choice of for a fixed dynamic range. The total delay is

, and the design consists of 13 adders/subtractors
with bit width ranging from to bits.

Table I summarizes the hardware requirements of the reverse
converters for these 4-moduli sets. Only the number of adders
and their operand width are considered for the converter of [19]
and ours. This is because for these two converters, the total hard-
ware costs are contributed predominantly by the adders. The
simplification method of FAs is also adopted for evaluation of
the area complexity of [19]. Furthermore, we assume that the
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TABLE II
DELAY COMPARISONS OFTHE REVERSECONVERTERS FOR4-MODULI SETS

modular adder proposed in [24] will be used for the modular
adder/subtractor in [19]. Due to heterogeneous operand width
and varying types of adders and subtractors used in [19], it is
conjectured that the scalability and modularity of [19] are infe-
rior to ours. The reverse converter in [18] is implemented with
ROM and modular adders, the area complexity of is re-
ported as the equivalent area occupied by FAs from the fabri-
cated circuits.

Table II compares the latencies of these four-moduli set re-
verse converters. It should be noted that for a specified dynamic
range, the value of for our new converter is generally smaller
than the for the other converters.

VI. CONCLUSION

In the past decade, the triple moduli set , ,
has been the perpetual focus of study in simplifying the compu-
tationally intensive residue arithmetics for the reverse converter
design of RNS. The revolutionary New CRT I have painted a
completely different landscape for the RNS and strengthened
the resurgence of interest for new moduli sets that have never
been thought of before. In an earnest attempt to leverage on the
strength of the new CRT, we have discovered a new 4-moduli set

, , , . We show that this new moduli set
possesses a number of interesting characteristics that make its
reverse conversion algorithm under the New CRT I amenable
to efficient VLSI implementation. The new reverse converter
completely eliminates the need for modulo multiplication and
allows further optimization opportunity in a simple MOMA re-
alization. With an area complexity of and a delay of
approximately 2 FAs for HS version, and with an area
complexity of and a delay of approximately
FAs for CE version, they are more efficient than the reverse con-
verter for the celebrated triple moduli set , ,
for applications requiring a large dynamic range and high par-
allelism. The area time complexity analysis also indicates that
our reverse converters are more efficient than the converters for
the 4-moduli sets , , , and ,

, , , both in hardware area and computation
delay.
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