
Received February 11, 2021, accepted March 1, 2021, date of publication March 4, 2021, date of current version March 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3063929

An Efficient Rolling Bearing Fault Diagnosis
Method Based on Spark and Improved
Random Forest Algorithm

LANJUN WAN 1,2, KUN GONG1,2, GEN ZHANG1,2, XINPAN YUAN1,2, CHANGYUN LI2,
AND XIAOJUN DENG1
1School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China
2Hunan Key Laboratory of Intelligent Information Perception and Processing Technology, Hunan University of Technology, Zhuzhou 412007, China

Corresponding author: Xinpan Yuan (yuanxinpan@hut.edu.cn)

This work was supported in part by the National Natural Science Foundation for Young Scientists of China under Grant 61702177, in part

by the Natural Science Foundation of Hunan Province, China, under Grant 2019JJ60048 and Grant 2019JJ60054, in part by the Major

Project for New Generation under Grant 2018AAA0100400, in part by the National Key Research and Development Project under Grant

2018YFB1700204 and Grant 2018YFB1003401, and in part by the Key Research and Development Project of Hunan Province under

Grant 2019GK2133.

ABSTRACT The random forest (RF) algorithm is a typical representative of ensemble learning, which is

widely used in rolling bearing fault diagnosis. In order to solve the problems of slower diagnosis speed and

repeated voting of traditional RF algorithm in rolling bearing fault diagnosis under the big data environment,

an efficient rolling bearing fault diagnosis method based on Spark and improved random forest (IRF)

algorithm is proposed. By eliminating the decision trees with low classification accuracy and those prone

to repeated voting in the original RF, an improved RF with faster diagnosis speed and higher classification

accuracy is constructed. For the massive rolling bearing vibration data, in order to improve the training

speed and diagnosis speed of the rolling bearing fault diagnosis model, the IRF algorithm is parallelized on

the Spark platform. First, an original RF model is obtained by training multiple decision trees in parallel.

Second, the decision trees with low classification accuracy in the original RF model are filtered. Third, all

path information of the reserved decision trees is obtained in parallel. Fourth, a decision tree similarity matrix

is constructed in parallel to eliminate the decision trees which are prone to repeated voting. Finally, an IRF

model which can diagnose rolling bearing faults quickly and effectively is obtained. A series of experiments

are carried out to evaluate the effectiveness of the proposed rolling bearing fault diagnosis method based

on Spark and IRF algorithm. The results show that the proposed method can not only achieve good fault

diagnosis accuracy, but also have fast model training speed and fault diagnosis speed for large-scale rolling

bearing datasets.

INDEX TERMS Fault diagnosis, random forest, rolling bearing, spark platform, sub-forest optimization.

I. INTRODUCTION

Rolling bearings are the most critical and easily damaged

components in rotating machinery, the availability, reliability,

and productivity of rotating machinery depend on the health

state of rolling bearings, therefore the rolling bearing fault

diagnosis is very vital to the stable, reliable, and efficient

operation of rotating machinery [1], [2]. In a production

environment, rolling bearings usually operate in complicated

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaowen Chu .

and various working conditions, and the vibration signals col-

lected by sensors are increasing rapidly during the operation

of rolling bearings, how to accurately and quickly perform

rolling bearing fault diagnosis is an important issue to be

solved.

In recent years, with the rapid development of machine

learning algorithms and deep learning algorithms, the

data-driven fault diagnosis methods have been paid more and

more attention. Li et al. [3] used hierarchical symbol dynamic

entropy and binary tree support vector machine for rolling

bearing fault diagnosis. Zhou et al. [4] proposed a rolling

37866 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0001-7236-3589
https://orcid.org/0000-0001-9745-4372

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

bearing fault diagnosis method based on K-Means clustering

algorithm and k-nearest neighbor algorithm. Chen et al. [5]

combined permutation entropy of variational mode decom-

position (VMD) and decision tree to diagnose rolling bear-

ing faults. Wan et al. [6] combined back-propagation neural

network (BPNN) optimized by quantum particle swarm opti-

mization (QPSO) algorithm and Dempster-Shafer evidence

theory to diagnose rolling bearing faults. Xie et al. [7] devel-

oped a rolling bearing fault diagnosis method based on deep

belief network optimized by Nesterov momentum. Wen et

al. [8]–[10] improved three two-dimensional convolutional

neural networks (CNN) including LeNet-5 [11], VGG-19

[12], and ResNet-50 [13], and applied them to rolling bearing

fault diagnosis. Wang et al. [14] transferred a well-known

AlexNet model [15] into rolling bearing fault diagnosis, and

adopted eight different time-frequency images to validate the

effectiveness of the fault diagnosis model. Liu et al. [16]

applied the improved auto-encoder based on recurrent neural

network to fault diagnosis of rolling bearing. The above

researches built rolling bearing fault classifiers with high

precision based on traditional machine learning algorithms

or deep learning algorithms, while ensemble learning can

combine multiple base classifiers into an ensemble classifier

with higher precision and stronger generalization ability.

RF is the most popular ensemble learning algorithm in

recent years [17] and has been widely used in the field of

fault diagnosis. Wang et al. [18] extracted fault features of

rolling bearing through wavelet packet decomposition and

conducted dimensionless processing, and five best features

are selected to construct the feature subspace of RF, which

achieves good diagnosis accuracy and robustness under noise

environment. Xu et al. [19] adopted the continuous wavelet

transform to convert vibration signals into two-dimensional

gray images, and the features extracted from gray images

by CNN are input into RF to effectively diagnose rolling

bearing faults. Tang et al. [20] extracted fault features by

improved fast spectral correlation method and optimized

the super-parameters of RF with PSO algorithm, which

improves the fault diagnosis accuracy of rolling bearing.

Han and Jiang [21] utilized VMD to decompose vibration

signals to build an autoregressive (AR)model, and the param-

eters and residuals of ARmodel are used as the input of RF to

obtain a rolling bearing fault diagnosis model with high diag-

nosis accuracy. Kundu et al. [22] proposed a RF regression

method based on ensemble decision tree for remaining useful

life prediction (RUL), and the correlation coefficient values

obtained from the vibration signals collected by multiple

sensors are fused to improve the prediction accuracy. The

results show that the proposed method can effectively predict

the RUL of spur gears under natural pitting progression.

Pang et al. [23] developed a generalized multi-scale dynamic

time warping algorithm to extract fault features from vibra-

tion signals of wind turbine gearbox (WTGB), the Laplace

Score method is used to select the sensitive features to con-

struct the eigenvector, and RF is adopted to perform fault state

classification. The results prove that the proposed method

can not only accurately and efficiently identify different fault

states ofWTGB, but also provide a higher accuracy compared

with the other fault state classification methods.

With the improvements of automation and intelligent lev-

els of mechanical equipment and the expansion of produc-

tion scale, the amount of data generated by using sensors

to monitor the operation states of mechanical equipment is

growing explosively, and fault diagnosis in the industrial big

data environment has become a research hot issue [24], [25].

In recent years, the researches related to fault diagnosis under

the background of industrial big data [26]–[31] mostly use

MapReduce [32] or Spark [33] to parallelize fault diagnosis

models, which greatly improve the training speed and fault

diagnosis speed of fault diagnosis models. Spark is a big

data parallel processing platform based on memory comput-

ing, which has faster computing speed than MapReduce and

is more suitable for rapid processing of large-scale rolling

bearing vibration data. At present, many researchers have

studied the parallelization of RF algorithm based on Spark,

and have successfully applied them in clinical service guiding

[34], weather forecast [35], credit classification [36], insur-

ance data analysis [37], and recommendation system [38].

These works show that Spark can effectively parallelize RF

algorithm and improve the training speed of RF models.

RF as an ensemble classifier usually combines more base

classifiers to obtain better fault diagnosis accuracy, but it must

wait for all base classifiers in random forest to complete the

diagnosis before getting the final diagnosis results. When

processing large-scale rolling bearing datasets, toomany base

classifiers will seriously affect the fault diagnosis speed and

more easily lead to repeated voting. To solve the problems

of slower diagnosis speed and repeated voting of traditional

RF algorithm in rolling bearing fault diagnosis under the big

data environment, an efficient rolling bearing fault diagnosis

method based on Spark and IRF algorithm is proposed in this

paper, which can not only significantly improve the speed of

fault diagnosis, but also improve the fault diagnosis accuracy

to a certain extent.

The main contributions of this paper are as follows.

• An IRF algorithm based on sub-forest optimization is

proposed. By eliminating the decision trees with low

classification accuracy and those prone to repeated vot-

ing in the original RF, an improved RF with faster

diagnosis speed and higher classification accuracy is

constructed.

• A method to construct a decision tree similarity matrix

quickly and parallelly based on Spark is proposed. This

method not only is suitable for large-scale data, but

also effectively reduces the time spent on sub-forest

optimization.

• A rolling bearing fault diagnosis method based on

Spark and IRF algorithm is designed and implemented.

By executing IRF algorithm efficiently and parallelly

on the Spark platform, the training speed and diag-

nosis speed of fault diagnosis model are significantly

improved.

VOLUME 9, 2021 37867

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

• A series of experiments are conducted to evaluate the

effectiveness of the proposed method. The experimental

results show that the proposed method can not only

obtain good fault diagnosis accuracy, but also has fast

model training speed and fault diagnosis speed for

large-scale rolling bearing datasets.

The rest of this paper is organized as follows. Section II

introduces the basic theory used in this paper. Section III

describes the proposed IRF algorithm. Section IV discusses

the rolling bearing fault diagnosis method based on Spark and

IRF algorithm. Section V presents the experimental results

and analysis. Section VI gives the conclusion of this paper.

II. BASIC THEORY

This section introduces the principle of RF algorithm and that

of Spark parallel computing.

A. THE PRINCIPLE OF RF ALGORITHM

RF [39] is a classical algorithm in ensemble learning, which

trains multiple decision trees to build an ensemble classifier,

as shown in Fig. 1. Several different training subsets are

obtained by sampling with replacement from the training set.

Each training subset is used to train a decision tree, and mul-

tiple trained decision trees can form an ensemble classifier.

When one sample is input into the ensemble classifier, each

decision tree will output a classification result, and the final

classification result can be obtained by the majority voting.

The basic steps of RF algorithm are as follows.

Step 1. k training subsets D = {D1,D2, . . . ,Dk} with the

same size as the training set are obtained by sampling with

replacement from the training set.

Step 2. Each sample of a training subset contains n features.

First, m (m ≤ n) features are randomly selected from n

features to construct a feature subspace S. Second, the best

splitting point of decision tree nodes is calculated to gen-

erate a node according to S. The above process is repeated

until the stop criterion is satisfied, and then the training of

a decision tree is completed. After completing the training

of k training subsets in this way, k decision trees DT =

{DT1,DT2, . . . ,DTk} can be obtained.

Step 3. Each decision tree is tested by each sample of the

test set and k classification results R = {R1,R2, . . . ,Rk} are

obtained.

Step 4. The final classification result is obtained by voting

on k classification results according to the majority voting.

The classification accuracy of RF algorithm is determined

by the classification accuracy of each base classifier and the

similarity between base classifiers, which is positively corre-

lated with the classification accuracy of each base classifier

and negatively correlated with the similarity between base

classifiers [40]. The higher the classification accuracy of each

base classifier is, the higher the confidence degree of voting

is, and the higher the classification accuracy of RF algo-

rithm is. The higher the similarity between base classifiers,

the higher the probability of repeated voting, and the lower

FIGURE 1. The flowchart of RF algorithm.

the classification accuracy of RF algorithm. The similarity

between base classifiers is determined by m, and the base

classifiers with lower similarity can be obtained by selecting

the appropriate m.

B. THE PRINCIPLE OF SPARK PARALLEL COMPUTING

Spark [33] is a big data parallel computing framework based

on memory computing developed by the AMP Laboratory of

the University of California, Berkeley, and the core of which

is the resilient distributed dataset (RDD) [41]. An RDD has

multiple partitions, and each of them is a dataset fragment.

Different partitions of an RDD can be saved on different

nodes of the cluster, so that the parallel computing of a Spark

application can be realized by calculating each partition of

RDD. The RDD provides abundant transformation operators,

and a Spark application can be expressed as a series of

RDD transformation operations. The transformation opera-

tions between different RDDs with narrow dependencies can

be pipelined to avoid the storage of intermediate results, thus

significantly reducing the disk read/write, data replication,

and serialization overheads.

The running process of RDD is shown in Fig. 2. First, RDD

objects are created and performed a series of transformation

operations. Second, SparkContext is responsible for calcu-

lating the dependency relationship between different RDD

objects and building a directed acyclic graph (DAG). Third,

the DAG scheduler (DAGScheduler) decomposes DAG into

multiple stages. Each stage, also called a task set, contains

multiple tasks. Finally, tasks are distributed to executors of

each worker node through the cluster manager.

37868 VOLUME 9, 2021

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

FIGURE 2. The running process of RDD.

III. THE PROPOSED IRF ALGORITHM

This section presents the IRF algorithm proposed in this

paper, mainly including the sub-forest optimization and the

construction of a similarity matrix.

A. THE SUB-FOREST OPTIMIZATION

Aiming at the problems of slower diagnosis speed and

repeated voting of traditional RF algorithm in rolling bearing

fault diagnosis under the big data environment, the IRF algo-

rithm based on sub-forest optimization is proposed. By elimi-

nating the decision trees with low classification accuracy and

those prone to repeated voting in the original RF, an improved

RFwith faster diagnosis speed and higher classification accu-

racy is constructed. The basic process of IRF algorithm is

shown in Fig. 3, including the following steps.

Step 1. Train an original RF model. First, k training

subsets are obtained by sampling with replacement from

the training set. Second, for each training subset, sev-

eral feature subspaces are constructed by randomly select-

ing features, and the training is conducted according to

CART decision tree algorithm. Finally, k decision trees

DT = {DT1,DT2, . . . ,DTk} are obtained and combined into

an original RF model.

Step 2. Filter decision trees according to the classification

accuracy. The classification accuracy of each decision tree is

evaluated by the validation set, and the sub-forest containing

w decision trees is obtained after decision trees with low

classification accuracy are eliminated.

Step 3. Traverse decision trees of the sub-forest. All path

information of the sub-forest is obtained by traversing w

decision trees.

Step 4. Construct a similarity matrix. The similarity

between decision trees of the sub-forest is calculated accord-

ing to Algorithm 1, and the following similarity matrix is

obtained, where treeSimi,j denotes the similarity betweenDTi
and DTj (1 ≤ i, j ≤ w).











1 treeSim1,2 . . . treeSim1,w

treeSim2,1 1 . . . treeSim2,w

...
...

. . .
...

treeSimw,1 treeSimw,2 . . . 1











FIGURE 3. The flowchart of IRF algorithm.

Step 5. Classify decision trees by the similarity. Firstly,

the decision tree classification is performed according to the

first row of the similarity matrix. These decision trees whose

similarity with DT1 exceeds the specified threshold value are

classified into one class. Secondly, the decision tree classifi-

cation is performed according to the i-th (2 ≤ i ≤ w) row

of the similarity matrix. Determining whether DTi has been

classified into one certain class, if so, skip the row; if not,

these decision trees whose similarity with DTi exceeds the

specified threshold value are classified into one class. Finally,

w decision trees can be classified into m classes according to

the similarity matrix.

VOLUME 9, 2021 37869

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

Step 6. Select the decision tree with the highest classifi-

cation accuracy from each class. When classifying decision

trees by the similarity, it is possible that one decision tree is

classified into several classes and its classification accuracy

is the highest among these classes, then it would be repeat-

edly selected, which will result in repeated voting. In order

to avoid selecting duplicate decision trees and ensure the

diversity of the decision trees of RF model, when selecting

the decision tree with the highest classification accuracy

from each class, it needs to be compared with the selected

decision trees. If the selected decision trees contain a decision

tree whose similarity with it exceeds the specified threshold

value or a decision tree which is same as it, according to

the descending order of classification accuracy, the decision

trees in this class will be compared with the selected decision

trees in turn until the decision tree whose similarity with each

selected decision tree is lower than the specified threshold

value is found.

Step 7. Combine m decision trees into an IRF model.

B. THE CONSTRUCTION OF A SIMILARITY MATRIX

This subsection describes in detail how to construct a similar-

ity matrix. First, each path of each decision tree is traversed

to obtain all path information. Second, the similarity between

nodes is calculated. Third, the similarity between paths is

calculated. Finally, the similarity between decision trees is

calculated to construct a similarity matrix, as shown in

Algorithm 1.

1) THE CALCULATION OF NODE SIMILARITY

Determining whether the features selected by two nodes are

the same, if they are different, the similarity of the two nodes

is 0; if they are the same, the similarity of the two nodes is

calculated by

nodeSimr,s =

{

1, if |nr − ns|/nr ≤ α,

0, otherwise;
(1)

where nodeSimr,s represents the similarity between node r

and node s, nr and ns are the threshold values of node r and

node s respectively, and α can be adjusted by the user and is

usually set to 0.2.

2) THE CALCULATION OF PATH SIMILARITY

The prerequisite of calculating the similarity between the path

of a decision tree and that of another decision tree is the root

nodes of the two trees must be similar. When calculating the

path similarity, determining whether the leaf nodes (i.e., fault

diagnosis results) of the two paths are the same, if they are

different, the similarity of the two paths is 0; if they are the

same, the weighted similarity of the two paths is calculated

by

pathSimi,j =
1 +

∑n
m=2 nodeSimi.m,j.m + 1

min(pathLengthi, pathLengthj)

×pathLengthi, (2)

Algorithm 1 The Construction of a Similarity Matrix

Require: The number of decision trees w and all path infor-

mation of the sub-forest

Ensure: A similarity matrix

1: for a = 1 to w do

2: for b = 1 to w do

3: if a = b then

4: treeSima,b = 1;

5: continue;

6: else

7: if the root node of DTa and that of DTb are

similar then

8: γ = 0;

9: δ = 0;

10: for i = 1 to the number of paths of DTa do

11: pathMaxSimi = 0;

12: for j = 1 to the number of paths of DTb do

13: if the leaf node of the i-th path and that of

the j-th path are the same then

14: ξ = 0;

15: ϕ = min(pathLengthi,pathLengthj);

16: for m = 1 to ϕ do

17: Calculate the node similarity

nodeSimi.m,j.m by (1);

18: ξ + = nodeSimi.m,j.m;

19: end for

20: pathSimi,j = ξ / ϕ × pathLengthi;

21: else

22: pathSimi,j = 0;

23: end if

24: pathMaxSimi = max(pathMaxSimi,

pathSimi,j);

25: end for

26: γ + = pathMaxSimi;

27: δ + = pathLengthi;

28: end for

29: treeSima,b = γ / δ;

30: else

31: treeSima,b = 0;

32: end if

33: end if

34: end for

35: end for

where pathSimi,j denotes the similarity between path i of a

decision tree and path j of another decision tree, pathLengthi
and pathLengthj represent the number of nodes in path i and

path j respectively, and nodeSimi.m,j.m (2 ≤ m ≤ n) is the

similarity between the m-th node in path i and the m-th node

in path j, where n = min(pathLengthi, pathLengthj) − 1.

When calculating the path similarity according to (2), it is

required that the root nodes of the two paths are similar and

the leaf nodes of the two paths are the same, thus the sum of

node similarity is at least 2. When calculating the similarity

pathSimi,j between path i and path j, the number of nodes

pathLengthi in path i is taken as the weight.

37870 VOLUME 9, 2021

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

3) THE CALCULATION OF DECISION TREE SIMILARITY

For brevity, the calculation of the similarity between DTa
and DTb is taken as an example. Firstly, determining whether

the root nodes of DTa and DTb are similar according to (1),

if not, the similarity of the two trees is 0. Secondly, the

similarity between the i-th path of DTa and each path of

DTb is calculated according to (2), and the maximum value

of them is taken as the maximum similarity pathMaxSimi of

path i. Finally, the similarity treeSima,b betweenDTa andDTb
is calculated by

treeSima,b =

∑l
i=1 pathMaxSimi

∑l
i=1 pathLengthi

, (3)

where l represents the number of paths of DTa.

4) TIME COMPLEXITY ANALYSIS OF SUB-FOREST

OPTIMIZATION

The most time consuming step in the sub-forest optimization

is the construction of a similarity matrix. As can be seen

from Algorithm 1, the outermost for-loop is repeated w times

(line 1). The second for-loop is repeated w times (line 2).

The third for-loop is repeated l times (line 10), where l is

the number of paths of DTa. The fourth for-loop is repeated

u times (line 12), where u is the number of paths of DTb. The

innermost for-loop is repeated ϕ times (line 16). The loop

body in lines 17-18 takes constant time. Therefore, the overall

time complexity of the sub-forest optimization is O(w2luϕ).

IV. THE FAULT DIAGNOSIS METHOD BASED ON SPARK

AND IRF ALGORITHM

This section first discusses the parallel design and implemen-

tation of IRF algorithm based on Spark platform, and then

gives the overall process of rolling bearing fault diagnosis

based on Spark and IRF algorithm.

A. THE PARALLEL DESIGN OF IRF ALGORITHM BASED ON

SPARK PLATFORM

The training of IRF model can be divided into two stages: the

training of original RF model and the optimization of sub-

forest. Due to the huge computational costs of the two stages,

if they can be parallelized using Spark, which will greatly

improve the training speed of IRF model.

It can be seen from Fig. 1 that the construction of different

decision trees in the random forest are independent of each

other, and therefore the training of original RF model can be

parallelized. The tasks of constructing decision trees in the

original RF can be reasonably assigned to each worker node

of a Spark platform, and the construction of decision trees can

be executed in parallel on different worker nodes.

The sub-forest optimization mainly includes the following

two procedures. One is that each path of each decision tree in

the sub-forest is traversed to get all path information. Another

is that the similarity between decision trees in the sub-forest is

calculated to construct a similarity matrix, which has a huge

computational cost. Therefore, the sub-forest optimization

FIGURE 4. The schematic diagram of method A for constructing a
similarity matrix in parallel.

can be parallelized from the following two aspects. The first

aspect is that the traversals of decision trees are parallelized.

Suppose that the sub-forest includes w decision trees, these

w decision trees can be evenly distributed to each worker

node of a Spark platform. The traversals of w decision trees

are executed in parallel on different worker nodes, and the

obtained path information is collected to themaster node. The

second aspect is that the construction of a similarity matrix

is parallelized. As shown in Algorithm 1, the construction

of a similarity matrix contains a five-layer nested for-loop,

and each layer can be parallelized. Therefore, the similarity

matrix can be constructed in parallel using the following four

different ways.

The basic idea of method A for constructing a similarity

matrix in parallel is as follows: the outermost for-loop (see

line 1 in Algorithm 1) is parallelized, i.e., the construction of

a w × w similarity matrix is divided into w computational

tasks which can be executed in parallel, and one row of

the similarity matrix will be constructed after finishing each

computational task, as shown in Fig. 4. The time complexity

and space complexity of each computational task inmethodA

are high.When there is a large amount of data to be processed,

a lot of computing resources are required to execute each

computational task, which results in that method A is not suit-

able for processing large-scale datasets. It is found that when

the size of a dataset is more than 5 GB, an out-of-memory

exception will occur if the similarity matrix is constructed

according to method A on the experimental platform adopted

in this paper.

The basic idea of method B for constructing a similar-

ity matrix in parallel is as follows: the fourth for-loop (see

line 12 in Algorithm 1) is parallelized, i.e., the calculations

of the similarity between one path of DTa and each path of

DTb are divided into several computational tasks which can

be executed in parallel, where 1 ≤ a ≤ w and 1 ≤ b ≤ w.

If DTa has la paths, each computational task needs to be

executed w
∑w

a=1 la iteratively to complete the construction

of a similarity matrix. Although the time complexity of each

computational task of method B is low, w
∑w

a=1 la RDDs

are needed to be created to complete the construction of a

similarity matrix. The creations of a large number of RDDs

will bring huge extra overheads, thus method B is not suitable

to construct a similarity matrix.

The basic idea of method C for constructing a similarity

matrix in parallel is as follows: the second for-loop (see

line 2 in Algorithm 1) is parallelized, i.e., the construction

of a 1 × w similarity matrix is divided into w independent

VOLUME 9, 2021 37871

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

FIGURE 5. The schematic diagram of method C for constructing a
similarity matrix in parallel.

FIGURE 6. The schematic diagram of method D for constructing a
similarity matrix in parallel.

decision tree similarity calculation tasks, and one element of

the 1 × w similarity matrix will be obtained after finishing

each calculation task, as shown in Fig. 5. The w decision

tree similarity calculation tasks are evenly distributed to each

worker node of a Spark platform, and one row of the w × w

similarity matrix will be constructed by executing these w

tasks in parallel on different worker nodes. Through w iter-

ations, a w × w similarity matrix can be constructed. The

method C overcomes the shortcomings of method A and

method B. It not only is suitable for processing large-scale

datasets, but also can avoid excessive extra overheads caused

by creating a large number of RDDs.

According to the principles that the value of each diagonal

element in the similarity matrix is 1 and the similarity of two

decision trees whose root node similarity is lower than the

specified threshold value is 0, the method D for constructing

a similarity matrix in parallel makes some improvements to

method C, as shown in Fig. 6. At first, the similarity between

the root node of one decision tree and that of another decision

tree is calculated quickly, and the elements whose values

are 0 in the 1×w similarity matrix are obtained preliminarily.

Then, the construction of a 1×w similaritymatrixwithout ele-

ments whose values are 1 and 0 is divided into n (n ≤ w− 1)

independent decision tree similarity calculation tasks, and the

value and position of one element in the 1 × w similarity

matrix will be obtained after finishing each calculation task.

Through w iterations, a w × w similarity matrix can be

constructed. Compared with method C, method D not only

reduces the unnecessary communication overhead, but also

avoids the load imbalance between worker nodes. Therefore,

method D is adopted to construct a similarity matrix.

The time complexity of method D for constructing a simi-

larity matrix in parallel is O(w(w/(pvt))luϕ), where p, v, and

t are the number of worker nodes of a Spark platform, the

number of executors in each worker node, and the number

of tasks assigned to each executor, respectively. It is easy to

see that the parallel sub-forest optimization can bring a sig-

nificant performance improvement than the serial sub-forest

optimization.

B. THE PARALLEL IMPLEMENTATION OF IRF ALGORITHM

BASED ON SPARK PLATFORM

The process of parallel implementation of IRF algorithm

based on Spark platform is shown in Fig. 7, and the specific

steps are as follows.

Step 1. Initialize the Spark environment, and the eigenvec-

tors are read fromHadoop Distributed File System (HDFS) to

create an initial RDD. According to a certain proportion, the

RDD is divided into three RDDs: trainRDD, validationRDD,

and testRDD.

Step 2. Train an original RF model in parallel. The sam-

pling with replacement is performed in parallel from all

eigenvectors of trainRDD to generate k training subsets, and

k decision trees are trained in parallel to obtain the original

RF model.

Step 3. Traverse decision trees of the sub-forest in parallel

to get all path information. First, validationRDD is used to

evaluate all decision trees of the original RF model, and

the classification accuracy of each decision tree is obtained.

Second, k decision trees are filtered according to the classi-

fication accuracy, and w decision trees are obtained. Third,

a sub-forest RDD subforestRDD with w decision trees is

created. Fourth, all decision trees of subforestRDD are evenly

distributed to each worker node, and the path information

of each decision tree is obtained by traversing w decision

trees in parallel using the map operator. Finally, all path

information of the sub-forest is obtained by collecting the

path information of each decision tree from each worker node

using the collect operator.

Step 4. Construct a similarity matrix in parallel. First, the

a-th (1 ≤ a ≤ w) row of the similarity matrix is preliminarily

constructed as follows. The value of the element in the a-th

row and a-th column is set to 1. The similarity between the

root node of DTa and that of DTb is calculated according

to (1), if the similarity is 0, then treeSima,b = 0, where

1 ≤ b ≤ w and b 6= a. Second, a decision tree similarity

calculation RDD treeSimCalRDD with n (n ≤ w− 1) tuples

is constructed according to the obtained path information.

Each tuple includes the path information of DTa and DTb
and the serial number b of DTb, which will be used to cal-

culate the similarity betweenDTa andDTb. Third, n tuples of

treeSimCalRDD are evenly distributed to each worker node,

and n decision tree similarity calculation tasks are executed

in parallel. Each calculation task processes one tuple, and

the value and position of one element in the a-th row of

the similarity matrix will be obtained after finishing each

calculation task. Finally, the calculation results from each

worker node are collected by the collect operator to complete

the a-th row of the similaritymatrix. Aw×w similaritymatrix

can be constructed by repeating the above process w times.

37872 VOLUME 9, 2021

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

FIGURE 7. The process of parallel implementation of IRF algorithm based on Spark platform.

Step 5. Classify w decision trees by the similarity, and

the decision tree with the highest classification accuracy is

selected from each class to combine an IRF model. The

effectiveness of the model is evaluated by testRDD.

C. THE OVERALL PROCESS OF FAULT DIAGNOSIS

The overall process of rolling bearing fault diagnosis based

on Spark and IRF algorithm is depicted in Fig. 8. Firstly,

multiple group sensors are used to collect the vibration sig-

nals of rolling bearings in real time. Secondly, during the

data preprocessing stage, the original vibration signals are

divided into many samples, and these standardized samples

are decomposed by wavelet packet transform [42] to get

eigenvectors, which are stored in HDFS. Thirdly, a part of

eigenvectors are randomly chosen as the training sample data,

which are divided into the training set, validation set, and test

set according to a certain proportion. Fourthly, the original RF

model is built by executing RF algorithm in parallel with the

training set on a Spark platform. Fifthly, an IRF model (i.e.,

the rolling bearing fault diagnosis model) is obtained from the

original RF model by executing the sub-forest optimization

procedure in parallel with the validation set, and the effective-

ness of IRF model is evaluated with the test set. Finally, the

rolling bearing fault diagnosis model is executed in parallel

FIGURE 8. The overall process of rolling bearing fault diagnosis.

to diagnose the data to be diagnosed on a Spark platform, and

the fault diagnosis results are obtained.

VOLUME 9, 2021 37873

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

TABLE 1. Description of working conditions.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. EXPERIMENTAL DATASET

In order to verify the effectiveness of the proposed rolling

bearing fault diagnosis method based on Spark and IRF algo-

rithm, a series of experiments are carried out on the rolling

bearing dataset [43] provided by Case Western Reserve Uni-

versity bearing data center. The dataset includes normal state

data and fault state data, and all of them are collected by

sensors deployed at the base end, drive end, and fan end

at 12 kHz and 48 kHz sampling frequencies under different

working conditions listed in Table 1. The test rig of rolling

bearing is displayed in Fig. 9.

FIGURE 9. The test rig of rolling bearing.

Since the original rolling bearing dataset is small,

it is difficult to effectively evaluate the parallel perfor-

mance of the proposed rolling bearing fault diagnosis

method. Therefore, the overlapping sampling method [44] is

exploited to enhance the original vibration data, as shown

in Fig. 10. After preprocessing the enhanced vibration

data, three different size datasets are obtained, as listed in

Table 2.

TABLE 2. Experimental datasets.

Considering the training efficiency of the model and

the limitation of hardware resources of the experimental

platform used in this paper, the size of the dataset that

can be effectively supported can reach up to 20.4 GB.

To support a larger dataset, the hardware resources of the

experimental platform need to be increased, or a large

dataset is sampled to get a small similar subset for model

training.

B. EXPERIMENTAL SETTINGS

The experimental platform includes one master node and four

worker nodes. The master node consists of a quad-core Intel

Xeon E3-1225 v5 CPU at 3.3 GHz and 32 GB main memory,

and each worker node consists of an eight-core Intel Core

i7-9700K CPU at 3.6 GHz and 32 GB main memory. The

software configurations of the experimental platform are as

follows: CentOS 8.1 operating system, Hadoop 3.2, Spark

3.0, and Python 3.7.

In the training of the rolling bearing fault diagnosis model

based on Spark and IRF algorithm, the parameter settings of

IRF algorithm are listed in Table 3.

TABLE 3. Parameter settings of IRF algorithm.

The parameter of maxDepth represents the maximum

depth of a decision tree. The larger the value of maxDepth

is, the stronger the diagnosis ability of the fault diagnosis

model is, but the longer the model training time is. Since

rolling bearings usually operate in complicated and various

working conditions, it is difficult to accurately distinguish

different types of rolling bearing faults, thus a larger value of

maxDepth should be adopted to get a fault diagnosis model

with stronger diagnosis ability.

The parameter of maxBins denotes the maximum num-

ber of boxes when feature boxing is used for decision tree

training. For themassive data or high-dimensional categorical

features, if the value ofmaxBins is too large, the computation

and communication overheads of model training will be high.

The parameter of impurity is used to specify the impurity

function adopted in decision tree training. The commonly

used impurity functions include entropy and Gini index. Dif-

ferent decision tree algorithms use different impurity func-

tions: ID3 and C4.5 generally use entropy, whereas CART

generally uses Gini index or entropy. The selection of impu-

rity functions should be done by analyzing the actual data and

the underlying decision tree algorithm. In this experiment,

entropy is chosen as the impurity function, which can achieve

a better classification effect.

The parameter of similarityFilter is used to specify the

similarity threshold value, which generally ranges from 0.5 to

0.9. The value of similarityFilter can be determined accord-

ing to the decision tree similarity matrix, if the similarities

of decision trees are high, a larger value of similarityFilter

can be selected; otherwise, a smaller value is more suitable.

Since the vibration signals of rolling bearing collected under

complex working conditions usually are complicated, the

similarities of decision trees are relatively low, and therefore

a smaller value of similarityFilter should be set to eliminate

the decision trees which are prone to repeated voting.

37874 VOLUME 9, 2021

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

FIGURE 10. The schematic diagram of overlapping sampling.

The parameter of minInstancesPerNode represents the

minimum number of instances each child node must have

after the decision tree is split. If the number of training sam-

ples is large, a larger value of minInstancesPerNode should

be set to avoid over-fitting and reduce the model training

time. If the number of training samples is small, a smaller

value of minInstancesPerNode should be set to avoid under-

fitting. Since a large-scale vibration data would usually be

produced during the long-term operation of rolling bearings,

it is necessary to set this parameter reasonably to avoid too

much computational overhead for model training and ensure

a good generalization ability and high diagnosis accuracy.

C. MODEL TRAINING AND VERIFICATION

In this experiment, firstly, the proposed rolling bearing fault

diagnosis model based on Spark and IRF algorithm (Spark-

IRFA) is trained and tested. Secondly, the rolling bearing fault

diagnosis model implemented by RF algorithm provided by

Spark MLlib [45] (Spark-RFA) is trained and tested. Finally,

the rolling bearing fault diagnosis model implemented by

serial RF algorithm provided by Python sklearn library [46]

(Python-RFA) is trained and tested. Dataset 1 is used in the

training and test of three models, and it is divided into the

training set, validation set, and test set according to the ratio

of 6:2:2.

Fig. 11 presents the comparison of fault diagnosis accu-

racies obtained by different methods under different scale

forests. As can be seen from Fig. 11, with the number of deci-

sion trees in the random forest increasing from 20 to 200, the

fault diagnosis accuracies obtained by Python-RFA, Spark-

RFA, and Spark-IRFA are increased from 95.85%, 95.69%,

and 95.66% to 96.43%, 96.51%, and 97.22%, respectively.

The results demonstrate that the increase of forest scale plays

an important role in improving the fault diagnosis accuracy.

However, when the number of decision trees in the random

forest is increased to 100, the fault diagnosis accuracies

obtained by the threemethods tend to be stable, thus an appro-

priate increase in the number of trees is helpful to improve the

fault diagnosis accuracy.

As shown in Fig. 11, Spark-IRFA achieves higher fault

diagnosis accuracy when the forest scale is large. For exam-

ple, when the number of decision trees is 200, compared with

Python-RFA and Spark-RFA, the fault diagnosis accuracy

of Spark-IRFA is increased by 0.79% and 0.71%, respec-

tively. This is because the proposed IRF algorithm based on

FIGURE 11. Comparison of fault diagnosis accuracies obtained by
different methods under different scale forests.

sub-forest optimization can eliminate the decision trees with

low classification accuracy and those prone to repeated voting

in the original RF, which effectively reduces the probabilities

of wrong classification and repeated voting of decision trees

in the random forest. It can also be seen from Fig. 11, when

the number of decision trees is 20, the fault diagnosis accu-

racy of Spark-IRFA is lower than that of Python-RFA and

Spark-RFA. This is because the sub-forest optimization has

a certain impact on the generalization of the model when the

forest scale is small, thus the recommended number of deci-

sion trees is set to more than 60 when Spark-IRFA is adopted.

In order to evaluate the effect of different size datasets

on the diagnosis accuracy of the proposed rolling bearing

fault diagnosis method, the three datasets listed in Table 2

are utilized to test Spark-IRFA respectively, and the num-

ber of decision trees is set to 100. As depicted in Fig. 12,

for Dataset 1, Dataset 2, and Dataset 3, the fault diagnosis

accuracies obtained by Spark-IRFA are 97.09%, 97.38%, and

98.12%, respectively. With the increase of dataset size, the

fault diagnosis accuracy is also increased. Specifically, the

diagnosis accuracy obtained with Dataset 3 of 20.4 GB is

1.03% and 0.74% higher than that obtained with Dataset 1 of

5.6 GB and that obtained with Dataset 2 of 11.2 GB, respec-

tively. This is because the larger-scale dataset contains more

different kinds of training samples, and Spark-IRFA can uti-

lize more abundant features to construct feature subspaces,

so as to train a model with higher fault diagnosis accuracy.

D. PERFORMANCE ANALYSIS OF MODEL TRAINING

In order to effectively evaluate the performance of parallel

training of the proposed rolling bearing fault diagnosismodel,

VOLUME 9, 2021 37875

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

FIGURE 12. The fault diagnosis accuracies obtained by Spark-IRFA and
different size datasets.

TABLE 4. The time spent on training the fault diagnosis model using
Spark-IRFA.

Spark-RFA and Spark-IRFA are used to train the rolling

bearing fault diagnosis models for Dataset 1, Dataset 2, and

Dataset 3 on the Spark platforms with different number of

worker nodes, respectively, where the number of decision

trees is set to 100 and the training set accounts for 60% of

the dataset.

Table 4 presents the time spent on training fault diagno-

sis models with Spark-IRFA and different size datasets on

different scale clusters. For three different size datasets, the

training time of fault diagnosis models obtained with 2, 3,

and 4 worker nodes is 51.48%, 66.08%, and 73.26% lower

than that obtained with a single worker node, respectively.

The results suggest that the performance of fault diagnosis

model training is gradually improved with the expansion of

Spark cluster scale. This is because the increase of the num-

ber of worker nodes can not only provide more computing

resources to train the model in parallel, but also provide

more memory resources to store intermediate results to speed

up the computation. Therefore, when processing large-scale

rolling bearing data, the speed of parallel training of fault

diagnosis model can be effectively improved by increasing

the number of worker nodes.

When 4 worker nodes are used on the Spark plat-

form, the time spent on training fault diagnosis models

using Spark-RFA and Spark-IRFA under three different size

datasets is shown in Fig. 13. For Dataset 1, Dataset 2, and

Dataset 3, the time spent on training fault diagnosis models

using Spark-IRFA is 85.98%, 40.01%, and 29.99% higher

than that using Spark-RFA, respectively. For these three dif-

ferent datasets, Spark-IRFA has a longer model training time

than Spark-RFA. The reason is that Spark-IRFA needs to

FIGURE 13. Comparison of the time spent on training fault diagnosis
models using Spark-RFA and Spark-IRFA under different size datasets.

TABLE 5. The time spent on sub-forest optimization in the process of
training the fault diagnosis model using Spark-IRFA.

train an original RF model and then conducts the sub-forest

optimization on this model. In other words, compared with

Spark-RFA, Spark-IRFA adds the extra sub-forest optimiza-

tion time.

Table 5 shows the time spent on sub-forest optimiza-

tion in the process of training fault diagnosis models with

Spark-IRFA and different size datasets on different scale clus-

ters. For three different size datasets, the time consumed by

sub-forest optimization when using 2, 3, and 4 worker nodes

is reduced by 49.23%, 65.41%, and 72.36% on average com-

paredwith that when using a single worker node, respectively.

The results demonstrate that the more worker nodes are used,

the less time is needed for sub-forest optimization, because

the Spark platform can provide more computing resources for

parallel execution of sub-forest optimization.

Fig. 14 presents the percentage of the time spent on original

RF model training and sub-forest optimization in the process

of training fault diagnosis models with Spark-IRFA and three

different size datasets on the Spark platform with 4 worker

nodes. Obviously, with the increase of dataset size, the per-

centage of sub-forest optimization in the total model training

time decreases gradually, which means that the impact of

sub-forest optimization on the performance of model training

decreases gradually. Therefore, the larger the dataset size,

the smaller the performance gap of model training between

Spark-IRFA and Spark-RFA.

When a large-scale dataset is used for fault diagnosismodel

training, the memory space requirement of sub-forest opti-

mization is small. In the process of executing the sub-forest

optimization, the intermediate results are stored in memory,

and there is no disk I/O overhead. However, the training of

37876 VOLUME 9, 2021

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

FIGURE 14. The percentage of the time spent on original RF model
training and sub-forest optimization in the process of training the fault
diagnosis model using Spark-IRFA.

original RFmodel requires more memory space. If the cluster

scale is small, most of the intermediate results might be

spilled onto disk, which will greatly reduce the training speed

of original RF model. For example, most of the intermediate

results produced during the training of original RF model

have been spilled onto disk for Dataset 2 and Dataset 3 on

the Spark platform with a single worker node. Therefore,

for large-scale datasets, the scale of the Spark cluster can be

expanded to increase the available memory space, so as to

reduce the impact of a large amount of disk I/O on the speed

of model training.

In this paper, the model training time consists of the com-

putation time and runtime overhead. In order to make a more

comprehensive performance evaluation of model training,

the runtime overhead of model training is analyzed. In this

experiment, the runtime overhead mainly includes the com-

munication overhead, scheduling overhead, and serialization

overhead. Fig. 15 presents the computation time and run-

time overhead of Spark-IRFA for training the fault diagnosis

model using Dataset 3 on the Spark platform with 4 worker

nodes. It can be seen from Fig. 15 that the runtime overhead

accounts for 5.70% of themodel training time of Spark-IRFA.

Specifically, the communication overhead, scheduling over-

head, and serialization overhead account for 1.69%, 1.13%,

and 2.88% of themodel training time respectively. The results

show that the runtime overhead of Spark-IRFA is only a tiny

part of the model training time. The low runtime overhead is

mainly attributed to the following two points. The first point,

the communication optimization problem and the number and

size of RDDs are considered in the design of Spark-IRFA,

thus the communication overhead and serialization overhead

are greatly reduced. The second point, Spark provides the

efficient task scheduling and resource management mecha-

nism, thus the scheduling overhead is very low.

As shown in Fig. 15, the runtime overheads of Spark-RFA

and Spark-IRFA are 8.7 minutes and 11.1 minutes

FIGURE 15. The computation time and runtime overheads of Spark-RFA
and Spark-IRFA for training the fault diagnosis models using Dataset 3 on
the Spark platform with 4 worker nodes.

respectively. Compared with Spark-RFA, the runtime over-

head of Spark-IRFA is increased by 27.59%. The reason is

that Spark-RFA only needs to perform the RF model training,

but Spark-IRFA needs to conduct the sub-forest optimization

in addition to the original RF model training. For Spark-

IRFA, the runtime overhead generated from the original

RF model training and that generated from the sub-forest

optimization account for 4.47% and 1.23% of the model

training time respectively. The results show that the runtime

overhead brought by the sub-forest optimization has only a

marginal effect on the performance of model training.

E. PERFORMANCE ANALYSIS OF FAULT DIAGNOSIS

In order to effectively analyze the diagnosis performance of

the proposed rolling bearing fault diagnosis method, Python-

RFA, Spark-RFA, and Spark-IRFA are adopted to train

rolling bearing fault diagnosis models on the Spark platform

for three different size datasets, and then the trained models

are used for fault diagnosis, where Python-RFA only runs

on a single worker node of the Spark platform. In addition,

to better analyze the impact of large-scale datasets on the

performance of fault diagnosis, all the data in each dataset

will be diagnosed.

Table 6 presents the time spent on diagnosing three dif-

ferent size datasets using the fault diagnosis model based on

Spark-IRFA on the Spark platforms with different number

of worker nodes. As shown in Table 6, the more the worker

nodes employed on a Spark platform, the less the diagnosis

time of Spark-IRFA. For example, for Dataset 3, the fault

diagnosis time obtained with 2, 3, and 4 worker nodes is

reduced by 44.07%, 70.34%, and 73.73% than that obtained

with a single worker node, respectively. The results reveal

that Spark-IRFA can effectively improve the diagnosis perfor-

mance by employing multiple worker nodes to perform fault

diagnosis in parallel.

VOLUME 9, 2021 37877

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

TABLE 6. The fault diagnosis time of Spark-IRFA.

FIGURE 16. Comparison of the fault diagnosis time of Python-RFA,
Spark-RFA, and Spark-IRFA under different size datasets.

Fig. 16 illustrates the fault diagnosis time of Python-

RFA, Spark-RFA, and Spark-IRFA under three different

size datasets. Compared with Python-RFA, both Spark-RFA

and Spark-IRFA achieve better performance. For example,

when the size of the data to be diagnosed reaches up to

20.4 GB (i.e., the size of Dataset 3), the diagnosis time of

Python-RFA is 24.3 minutes while that of Spark-IRFA is

only 3.1 minutes. This is because Python-RFA can only use

a single CPU core to perform fault diagnosis serially, while

both Spark-RFA and Spark-IRFA can utilize multiple CPU

cores of multiple worker nodes to perform fault diagnosis

in parallel. As shown in Fig. 16, the fault diagnosis time of

Spark-IRFA is significantly shorter than that of Spark-RFA.

For Dataset 1, Dataset 2, and Dataset 3, the fault diagnosis

time of Spark-IRFA is reduced by 74.29%, 76.00%, and

78.01% than that of Spark-RFA, respectively. This is mainly

due to the sub-forest optimization is performed on the original

RF model in Spark-IRFA, and the computational complexity

of the final obtained RF model (i.e., IRF model) is far less

than that of the original RF model. Thus, the proposed fault

diagnosis method can quickly diagnose a large-scale rolling

bearing vibration data.

To further analyze the effect of the number of decision

trees on the performance of fault diagnosis, Spark-RFA and

Spark-IRFA are adopted to train rolling bearing fault diag-

nosis models for Dataset 3 under different scale forests, and

then the trained models are used to diagnose 20.4 GB of data.

Fig. 17 shows the fault diagnosis time of Spark-RFA and

Spark-IRFA under five different scale forests. As the number

of decision trees increases from 20 to 100, the diagnosis time

of Spark-RFA increases from 1.3 minutes to 14.1 minutes,

while the diagnosis time of Spark-IRFA increases from 1.0

FIGURE 17. Comparison of the fault diagnosis time of Spark-RFA and
Spark-IRFA under different scale forests.

minutes to 3.1 minutes, which reveals that the number of

decision trees has a great impact on the performance of fault

diagnosis. The more the decision trees used in model training

are, the higher the diagnosis accuracy is, and the longer the

training time and diagnosis time are. Therefore, it is necessary

to set the number of decision trees reasonably.

As shown in Fig. 17, with the increase of the number

of decision trees, the diagnosis performance gap between

Spark-RFA and Spark-IRFA becomes larger and larger.When

the number of decision trees is set to 20, 40, 60, 80,

and 100 respectively, the fault diagnosis time of Spark-IRFA

is reduced by 23.08%, 30.77%, 52.94%, 65.00%, and 78.01%

than that of Spark-RFA respectively, which is mainly due to

the sub-forest optimization significantly reduces the number

of decision trees in the original RF model. Generally speak-

ing, the more the decision trees used in the training of original

RF model are, the larger the reduction ratio of forest scale

obtained by sub-forest optimization is.

F. ANALYSIS OF THE IMPACT OF NOISE ON THE FAULT

DIAGNOSIS ACCURACY

In order to analyze the impact of noise on the fault diag-

nosis accuracy, firstly, 20%, 40%, 60%, 80%, and 100%

additive white Gaussian noise are added to the vibration

signals of rolling bearing respectively; secondly, the vibra-

tion signals with different noise intensity are decomposed

by wavelet packet transform to get eigenvectors, and five

different datasets with the same size as Dataset 1 are obtained;

finally, Spark-RFA and Spark-IRFA are used to train and test

the fault diagnosis models for the five different datasets.

Fig. 18 presents the comparison of fault diagnosis accura-

cies obtained under different noise environments. As seen in

Fig. 18, the fault diagnosis accuracy of Spark-IRFA can reach

over 91.15% when the percentage of added noise is less than

or equal to 20%. However, the fault diagnosis accuracy of

Spark-IRFA decreases gradually along with the increase of

the percentage of added noise. When the percentage of added

noise increases from 40% to 100%, the fault diagnosis accu-

racy of Spark-IRFA decreases from 85.13% to 79.56%. The

37878 VOLUME 9, 2021

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

FIGURE 18. Comparison of fault diagnosis accuracies obtained under
different noise environments.

results demonstrate that Spark-IRFA is still effectivewhen the

vibration signals contain a small amount of noise, but the fault

diagnosis accuracy of Spark-IRFA will be greatly affected

when the vibration signals contain a lot of noise. To improve

the anti-noise ability of Spark-IRFA, some feature extraction

methods [18], [47] can be adopted to more accurately extract

fault features under noise environment, and the features and

labels can be treated as probability distribution functions [48]

to improve the robustness of RF.

Compared with Spark-RFA, the fault diagnosis accuracy

of Spark-IRFA is increased by 0.76% on average for five

datasets with different percentages of added noise. The reason

is that the classification accuracies of some decision trees are

lower due to noise interference, and the sub-forest optimiza-

tion can effectively eliminate these decision trees with lower

classification accuracy.

G. DIAGNOSIS EFFECT ANALYSIS FOR IMBALANCED

DATASETS

In order to better analyze the diagnosis effect of the proposed

fault diagnosis method for imbalanced datasets, Spark-RFA

and Spark-IRFA are used to train and test the fault diagnosis

models for four different imbalanced datasets described in

Table 7, and each imbalanced dataset is divided into the

training set, validation set, and test set according to the ratio of

6:2:2. To make a more comprehensive analysis, two different

evaluation indexes are adopted, including the accuracy and

macro AUC.

Table 8 presents the comparison of fault diagnosis effect

of Spark-RFA and Spark-IRFA for four different imbalanced

datasets. As shown in Table 8, Spark-RFA and Spark-IRFA

achieve good diagnosis effect for the dataset with a smaller

imbalanced ratio, but they perform poorly for the dataset

with a larger imbalanced ratio. The results show that the

imbalance degree of a dataset will have a great impact on the

fault diagnosis effect of the proposed fault diagnosis method.

For the dataset with a very few fault samples, it is realistic

to generate the training data being compatible with intrinsic

natural fault features [49], therefore some sampling methods

[50], [51] and generative adversarial networks [52], [53] can

TABLE 7. Four different imbalanced datasets.

be adopted to generatemore fault samples to improve the fault

diagnosis effect. It can also be seen from Table 8 that the fault

diagnosis effect of Spark-IRFA is slightly better than that of

Spark-RFA, which benefits from the sub-forest optimization

adopted in Spark-IRFA.

TABLE 8. Comparison of fault diagnosis effect of Spark-RFA and
Spark-IRFA for different imbalanced datasets.

H. COMPARISON WITH OTHER FAULT DIAGNOSIS

METHODS

In order to further verify the effectiveness of the pro-

posed rolling bearing fault diagnosis method, which is

compared with QPSO-BPNN [6], LeNet-5 [8], VGG-16

[12], ResNet-18 [13], and AlexNet [14]. For the sake of

fairness, QPSO-BPNN, LeNet-5, VGG-16, ResNet-18, and

AlexNet are implemented on the Spark platform using

SparkTorch. In this experiment, Spark-IRFA, Spark-QPSO-

BPNN, Spark-LeNet-5, Spark-VGG-16, Spark-ResNet-18,

and Spark-AlexNet are used to train and test six different

rolling bearing fault diagnosis models on the Spark platform

with 4 worker nodes. For Spark-IRFA and Spark-QPSO-

BPNN, Dataset 3 is used as the experimental dataset and is

divided into training set, validation set, and test set according

to the ratio of 6:2:2. For Spark-LeNet-5, Spark-VGG-16, and

Spark-ResNet-18, the vibration data with the same size as

Dataset 3 are converted into 64 × 64 pixel gray images.

For Spark-AlexNet, the vibration data with the same size

as Dataset 3 are converted into 224 × 224 × 3 pixel

time-frequency images by the continuous wavelet transform.

The dataset composed of gray images or time-frequency

images is also divided into training set, validation set, and

test set according to the ratio of 6:2:2.

During the stage of model training, the network struc-

tures and super-parameter settings of Spark-QPSO-BPNN,

Spark-LeNet-5, Spark-VGG-16, Spark-ResNet-18, and

Spark-AlexNet come from [6], [8], [12], [13], and [14],

respectively. The key super-parameters of neural networks

mainly include batch size, learning rate, and momentum. The

settings of three key super-parameters for different neural net-

works used in this experiment are listed in Table 9. The batch

VOLUME 9, 2021 37879

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

TABLE 9. The settings of key super-parameters for different neural
networks.

TABLE 10. Comparison of different fault diagnosis methods based on
Spark platform.

size is sensitive to the computational time and convergence

speed. With the increases of batch size, the computational

time of each epoch is reduced and the convergence speed is

increased, but the number of epochs needed to achieve the

same accuracy is increased. The learning rate is sensitive to

the convergence performance, if it is too large, the model

may not converge to a global minimum; if it is too small, the

model may converge to a local minimum and the convergence

speed will become very slow. The momentum is sensitive

to the convergence speed, and a larger value of momentum

is helpful to improve the convergence speed. The number

of epochs is set to 70, 60, 50, 50, and 40 for Spark-QPSO-

BPNN, Spark-LeNet-5, Spark-VGG-16, Spark-ResNet-18,

and Spark-AlexNet respectively, which can ensure a higher

fault diagnosis accuracywith a fewer training time.Moreover,

the key parameters of QPSO algorithm adopted in Spark-

QPSO-BPNN include the shrinkage factor and the number

of particles, which are set to 0.8 and 100 respectively.

During the stage of fault diagnosis, Spark-IRFA and Spark-

QPSO-BPNN diagnose all the data of Dataset 3, Spark-

LeNet-5, Spark-VGG-16, and Spark-ResNet-18 diagnose all

the data of the gray image dataset, and Spark-AlexNet diag-

noses all the data of the time-frequency image dataset.

Table 10 presents the diagnosis accuracies, model training

time, and fault diagnosis time of six different fault diagnosis

methods based on Spark platform. From the perspective of

fault diagnosis accuracy, Spark-QPSO-BPNN, Spark-LeNet-

5, Spark-VGG-16, Spark-ResNet-18, and Spark-AlexNet are

better than Spark-IRFA. Specifically, the diagnosis accuracy

of Spark-QPSO-BPNN is 0.53% higher than that of Spark-

IRFA, this is because the initial weights and thresholds

of BPNN are optimized by QPSO algorithm and multiple

well-trained BPNN models are fused by DS evidence the-

ory. The diagnosis accuracy of Spark-LetNet-5 is 1.59%

higher than that of Spark-IRFA, this is because the modified

LetNet-5 with a deep network structure and zero-padding

can effectively extract the features of 2-D gray images.

Spark-VGG-16, Spark-ResNet-18, and Spark-AlexNet also

achieve higher diagnosis accuracies than Spark-IRFA, this is

because they have more powerful feature extraction abilities

by constructing a deeper network structure, thus they can

automatically mine more useful features from the massive

training data, which is helpful to improve the fault diagnosis

accuracy.

As seen in Table 10, Spark-IRFA has the fastest model

training speed and fault diagnosis speed among six differ-

ent fault diagnosis methods. Compared with Spark-QPSO-

BPNN, Spark-LeNet-5, Spark-VGG-16, Spark-ResNet-18,

and Spark-AlexNet, the model training speed of Spark-IRFA

is increased by 0.68×, 2.01×, 27.97×, 8.87×, and 2.54×

respectively, and the fault diagnosis speed of Spark-IRFA

is increased by 0.81×, 4.39×, 13.03×, 8.16×, and

5.74× respectively. Facing the large-scale rolling bear-

ing vibration data, the performance of Spark-QPSO-

BPNN, Spark-LeNet-5, Spark-VGG-16, Spark-ResNet-18,

and Spark-AlexNet can be greatly improved by using GPU

with strong parallel computing ability (such as Tesla V100),

but GPU is a kind of expensive computing resource. There-

fore, the proposed fault diagnosis method not only has good

fault diagnosis accuracy but also has fast model training speed

and fault diagnosis speed on the Spark cluster composed of

cheap computing resources.

VI. CONCLUSION

In this paper, an efficient rolling bearing fault diagnosis

method based on Spark and IRF algorithm is proposed. The

decision trees with low classification accuracy and those

prone to repeated voting in the original RF are effectively

eliminated by sub-forest optimization, and an improved RF

with faster classification speed and higher classification accu-

racy is obtained. The sub-forest optimization significantly

reduces the diagnosis time of rolling bearing fault diagnosis

model based on IRF algorithm, and improves its diagnosis

accuracy to a certain extent. The parallelization of the pro-

posed IRF algorithm is realized on the Spark platform, which

mainly includes the parallelizations of the following three

procedures: the training of original RF model, the traversal

of the sub-forest, and the construction of a decision tree

similarity matrix. In the face of large-scale rolling bearing

datasets, the training speed and diagnosis speed of the fault

diagnosis model are significantly improved by executing IRF

algorithm efficiently and parallelly on the Spark platform.

The effectiveness of the proposed rolling bearing fault diag-

nosis method is verified through a large number of experi-

ments, and the results show that the proposed method not

only achieves a higher model training speed and fault diag-

nosis speed, but also can diagnose multiple different rolling

bearing faults and achieve a better fault diagnosis accuracy.

For a 20.4 GB of rolling bearing dataset, compared with the

non-parallel RF algorithm (i.e., Python-RFA) and the parallel

RF algorithm provided by Spark (i.e., Spark-RFA), the fault

diagnosis speed of the proposed Spark-IRFA is increased by

6.84 times and 3.55 times, and the fault diagnosis accuracy of

Spark-IRFA reaches up to 98.12%.

37880 VOLUME 9, 2021

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

In real-life industrial environments, the collected rolling

bearing vibration data usually contain noise and may be

imbalanced. In order to improve the anti-noise ability of the

proposed fault diagnosis method, the future work will explore

how to effectively combine Spark-IRFA with a new feature

extraction method which can more accurately extract fault

features under noise environment. Facing the imbalanced

dataset with a very few fault samples, how to generate more

fault samples to improve the fault diagnosis accuracy needs

to be explored. In addition, during the training of the fault

diagnosis model, the sub-forest optimization will inevitably

increase the model training time, and it is difficult to find the

optimal sub-forest. Therefore, another important work is to

explore how to find the near-optimal sub-forest and minimize

the time spent on sub-forest optimization by using a suitable

meta-heuristic algorithm in the future.

REFERENCES

[1] I. El-Thalji and E. Jantunen, ‘‘A summary of fault modelling and predictive

health monitoring of rolling element bearings,’’ Mech. Syst. Signal Pro-

cess., vols. 60–61, pp. 252–272, Aug. 2015.

[2] Y. Qin, ‘‘A new family of model-based impulsive wavelets and their

sparse representation for rolling bearing fault diagnosis,’’ IEEE Trans. Ind.

Electron., vol. 65, no. 3, pp. 2716–2726, Mar. 2018.

[3] Y. Li, Y. Yang, X. Wang, B. Liu, and X. Liang, ‘‘Early fault diagnosis

of rolling bearings based on hierarchical symbol dynamic entropy and

binary tree support vector machine,’’ J. Sound Vib., vol. 428, pp. 72–86,

Dec. 2018.

[4] Q. Zhou, Y. Lv, L. Tu, M. Wang, and S. Li, ‘‘Study of fault diagnosis for

rolling bearing based on clustering algorithms,’’ in Proc. 5th Int. Conf.

Control Robot. Eng. (ICCRE), Osaka, Japan, Apr. 2020, pp. 58–62.

[5] X. Chen, Z. Yang, andW. Lou, ‘‘Fault diagnosis of rolling bearing based on

the permutation entropy of VMD and decision tree,’’ in Proc. 3rd Int. Conf.

Electron. Inf. Technol. Comput. Eng. (EITCE), Xiamen, China, Oct. 2019,

pp. 1911–1915.

[6] L. Wan, H. Li, Y. Chen, and C. Li, ‘‘Rolling bearing fault prediction

method based onQPSO-BP neural network andDempster–Shafer evidence

theory,’’ Energies, vol. 13, no. 5, p. 1094, Mar. 2020.

[7] J. Xie, G. Du, C. Shen, N. Chen, L. Chen, and Z. Zhu, ‘‘An end-to-end

model based on improved adaptive deep belief network and its application

to bearing fault diagnosis,’’ IEEE Access, vol. 6, pp. 63584–63596, 2018.

[8] L.Wen, X. Li, L. Gao, andY. Zhang, ‘‘A new convolutional neural network-

based data-driven fault diagnosis method,’’ IEEE Trans. Ind. Electron.,

vol. 65, no. 7, pp. 5990–5998, Jul. 2018.

[9] L. Wen, X. Li, X. Li, and L. Gao, ‘‘A new transfer learning based on VGG-

19 network for fault diagnosis,’’ in Proc. IEEE 23rd Int. Conf. Comput.

Supported Cooperat. Work Design (CSCWD), Porto, Portugal, May 2019,

pp. 205–209.

[10] L. Wen, X. Li, and L. Gao, ‘‘A transfer convolutional neural network

for fault diagnosis based on ResNet-50,’’ Neural Comput. Appl., vol. 32,

no. 10, pp. 6111–6124, May 2020.

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-

ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,

pp. 2278–2324, Dec. 1998.

[12] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ in Proc. Int. Conf. Learn. Represent.

(ICLR). San Diego, CA, USA, 2015, pp. 521–534.

[13] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image

recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[14] J. Wang, Z. Mo, H. Zhang, and Q. Miao, ‘‘A deep learning method for

bearing fault diagnosis based on time-frequency image,’’ IEEE Access,

vol. 7, pp. 42373–42383, 2019.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,

pp. 84–90, May 2017.

[16] H. Liu, J. Zhou, Y. Zheng, W. Jiang, and Y. Zhang, ‘‘Fault diagnosis of

rolling bearings with recurrent neural network-based autoencoders,’’ ISA

Trans., vol. 77, pp. 167–178, Jun. 2018.

[17] O. Sagi and L. Rokach, ‘‘Ensemble learning: A survey,’’Wiley Interdiscip.

Rev. Data Min. Knowl. Discov., vol. 8, no. 4, p. e1249, 2018.

[18] Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, and J. He, ‘‘Fault diagnosis

of a rolling bearing using wavelet packet denoising and random forests,’’

IEEE Sensors J., vol. 17, no. 17, pp. 5581–5588, Sep. 2017.

[19] G. Xu, M. Liu, Z. Jiang, D. Söffker, andW. Shen, ‘‘Bearing fault diagnosis

method based on deep convolutional neural network and random forest

ensemble learning,’’ Sensors, vol. 19, no. 5, p. 1088, Mar. 2019.

[20] G. Tang, B. Pang, T. Tian, and C. Zhou, ‘‘Fault diagnosis of rolling bearings

based on improved fast spectral correlation and optimized random forest,’’

Appl. Sci., vol. 8, no. 10, p. 1859, 2018.

[21] T. Han and D. Jiang, ‘‘Rolling bearing fault diagnostic method based on

VMD-AR model and random forest classifier,’’ Shock Vib., vol. 2016,

Sep. Jun. 2016, Art. no. 5132046.

[22] P. Kundu, A. K. Darpe, and M. S. Kulkarni, ‘‘An ensemble decision tree

methodology for remaining useful life prediction of spur gears under

natural pitting progression,’’ Structural Health Monitor., vol. 19, no. 3,

pp. 854–872, May 2020.

[23] B. Pang, T. Tian, and G.-J. Tang, ‘‘Fault state recognition of wind turbine

gearbox based on generalized multi-scale dynamic time warping,’’ Struct.

Health Monitor., vol. 2020, Dec. 2020, Art. no. 147592172097862, doi:

10.1177/1475921720978622.

[24] Y. Xu, Y. Sun, J. Wan, X. Liu, and Z. Song, ‘‘Industrial big data for

fault diagnosis: Taxonomy, review, and applications,’’ IEEE Access, vol. 5,

pp. 17368–17380, 2017.

[25] H. Yan, J. Wan, C. Zhang, S. Tang, Q. Hua, and Z. Wang, ‘‘Industrial

big data analytics for prediction of remaining useful life based on deep

learning,’’ IEEE Access, vol. 6, pp. 17190–17197, 2018.

[26] A. Alkasem, H. Liu, and M. Shafiq, ‘‘Improving fault diagnosis perfor-

mance using Hadoop MapReduce for efficient classification and analysis

of large data sets,’’ J. Comput., vol. 29, no. 4, pp. 185–202, 2018.

[27] Y. Cao, P. Li, and Y. Zhang, ‘‘Parallel processing algorithm for railway

signal fault diagnosis data based on cloud computing,’’ Future Gener.

Comput. Syst., vol. 88, pp. 279–283, Nov. 2018.

[28] H. Miao, H. Zhang, M. Chen, B. Qi, and J. Li, ‘‘Two-level fault diagnosis

of SF6 electrical equipment based on big data analysis,’’ Big Data Cognit.

Comput., vol. 3, no. 1, p. 4, Jan. 2019.

[29] H. B. Deng, J. Hu, X. S. Wang, and M. Yu, ‘‘Transformer fault diagnosis

based on massive vibration data,’’ in Proc. Chin. Control Decis. Conf.

(CCDC), Nanchang, China, Jun. 2019, pp. 4586–4591.

[30] M. B. Imani, M. Heydarzadeh, L. Khan, and M. Nourani, ‘‘A scalable

spark-based fault diagnosis platform for gearbox fault diagnosis in wind

farms,’’ in Proc. IEEE Int. Conf. Inf. Reuse Integr. (IRI), San Diego, CA,

USA, Aug. 2017, pp. 100–107.

[31] H. Lei, J. Liu, and C. Xian, ‘‘Application of distributed machine learning

model in fault diagnosis of air preheater,’’ in Proc. 4th Int. Conf. Syst. Rel.

Saf. (ICSRS), Rome, Italy, Nov. 2019, pp. 312–317.

[32] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on

large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[33] M. Zaharia, R. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,

J. Rosen, S. Venkataraman, M. Franklinm, and A. Ghodsi, ‘‘Apache spark:

A unified engine for big data processing,’’ Commun. ACM, vol. 59, no. 11,

pp. 56–65, 2016.

[34] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and K. Li, ‘‘A parallel

random forest algorithm for big data in a spark cloud computing environ-

ment,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4, pp. 919–933,

Apr. 2017.

[35] T. T. Swe, P. Phyu, and S. P. P. Thein, ‘‘Weather prediction model using

random forest algorithm and Apache Spark,’’ Int. J. Trend Sci. Res. Dev.,

vol. 3, no. 6, pp. 549–552, 2019.

[36] H. Chen, P. Chang, Z. Hu, H. Fu, and L. Yan, ‘‘A spark-based ant lion

algorithm for parameters optimization of random forest in credit classifi-

cation,’’ in Proc. IEEE Inf. Technol. Netw. Electron. Autom. Control Conf.

(ITNEC). Chengdu, China, Dec. 2019, pp. 992–996.

[37] W. Lin, Z. Wu, L. Lin, A. Wen, and J. Li, ‘‘An ensemble random

forest algorithm for insurance big data analysis,’’ IEEE Access, vol. 5,

pp. 16568–16575, 2017.

[38] B. Ait Hammou, A. Ait Lahcen, and S. Mouline, ‘‘An effective distributed

predictive model with matrix factorization and random forest for big data

recommendation systems,’’ Expert Syst. Appl., vol. 137, pp. 253–265,

Dec. 2019.

VOLUME 9, 2021 37881

http://dx.doi.org/10.1177/1475921720978622

L. Wan et al.: Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

[39] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,

2001.

[40] S. Bharathidason and C. Jothi Venkataeswaran, ‘‘Improving classification

accuracy based on random forest model with uncorrelated high performing

trees,’’ Int. J. Comput. Appl., vol. 101, no. 13, pp. 26–30, Sep. 2014.

[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,

M. J. Franklin, S. Shenker, and I. Stoica, ‘‘Resilient distributed datasets:

A fault-tolerant abstraction for in-memory cluster computing,’’ in Proc.

USENIX Symp. Netw. Syst. Design Implement. San Jose, CA, USA, 2012,

pp. 15–28.

[42] O. P. Yadav and G. Pahuja, ‘‘Bearing fault detection using logarithmic

wavelet packet transform and support vector machine,’’ Int. J. Image

Graph. Signal Process., vol. 11, no. 5, pp. 21–23, 2019.

[43] CWRU Bearing Data Center. CWRU Rolling Bearing Dataset.

Accessed: Jan. 20, 2020. [Online]. Available: http://csegroups.case.

edu/bearingdatacenter/home

[44] S.Ma,W. Cai,W. Liu, Z. Shang, and G. Liu, ‘‘A lighted deep convolutional

neural network based fault diagnosis of rotating machinery,’’ Sensors,

vol. 19, no. 10, p. 2381, May 2019.

[45] X. Meng, J. Bradley, B. Yavuz, and E. Sparks, ‘‘MLLIB: Machine learning

in Apache Spark,’’ J. Mach. Learn. Res., vol. 17, no. 1, pp. 1235–1241,

2016.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,

‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,

pp. 2825–2830, 2011.

[47] L. Zhan, F. Ma, J. Zhang, C. Li, Z. Li, and T. Wang, ‘‘Fault feature extrac-

tion and diagnosis of rolling bearings based on enhanced complementary

empirical mode decomposition with adaptive noise and statistical time-

domain features,’’ Sensors, vol. 19, no. 18, p. 4047, Sep. 2019.

[48] I. Reis, D. Baron, and S. Shahaf, ‘‘Probabilistic random forest: A machine

learning algorithm for noisy data sets,’’ Astronomical J., vol. 157, no. 1,

p. 16, Dec. 2018.

[49] S. Gao, X. Wang, X. Miao, C. Su, and Y. Li, ‘‘ASM1D-GAN: An intelli-

gent fault diagnosis method based on assembled 1D convolutional neural

network and generative adversarial networks,’’ J. Signal Process. Syst.,

vol. 91, no. 10, pp. 1237–1247, Oct. 2019.

[50] Z. Qu, H. Li, Y. Wang, J. Zhang, A. Abu-Siada, and Y. Yao, ‘‘Detection

of electricity theft behavior based on improved synthetic minority over-

sampling technique and random forest classifier,’’ Energies, vol. 13, no. 8,

p. 2039, 2020.

[51] Z. Xu, D. Shen, T. Nie, and Y. Kou, ‘‘A hybrid sampling algorithm combin-

ing M-SMOTE and ENN based on random forest for medical imbalanced

data,’’ J. Biomed. Informat., vol. 107, Jul. 2020, Art. no. 103465.

[52] W. Mao, Y. Liu, L. Ding, and Y. Li, ‘‘Imbalanced fault diagnosis of rolling

bearing based on generative adversarial network: A comparative study,’’

IEEE Access, vol. 7, pp. 9515–9530, 2019.

[53] S. Shao, P. Wang, and R. Yan, ‘‘Generative adversarial networks for

data augmentation in machine fault diagnosis,’’ Comput. Ind., vol. 106,

pp. 85–93, Apr. 2019.

LANJUN WAN was born in Hunan, China,

in 1982. He received the B.S. and M.S. degrees

in computer science and technology from the

Hunan University of Technology, Zhuzhou, China,

in 2005 and 2009, respectively, and the Ph.D.

degree in circuits and systems from Hunan Uni-

versity, Changsha, China, in 2016. He is currently

an Assistant Professor with the School of Com-

puter Science, Hunan University of Technology.

His research interests include industrial big data

analysis, industrial equipment fault diagnosis, high-performance comput-

ing, and parallel computing. He has published many research articles in

international conferences and journals, such as Journal of Parallel and

Distributed Computing (JPDC), Concurrency and Computation: Practice

and Experience (CCPE), Parallel Computing, and Sensors. He serves as a

reviewer for the Journal of Parallel and Distributed Computing (JPDC),

Concurrency and Computation: Practice and Experience (CCPE), and IEEE

ACCESS.

KUN GONG was born in Hunan, China, in 1996.

He received the B.S. degree in mechanical engi-

neering from the Hunan University of Technology,

Zhuzhou, China, in 2019, where he is currently

pursuing the M.S. degree in computer science and

technology. His research interests include indus-

trial big data analysis and industrial equipment

fault diagnosis.

GEN ZHANG was born in Anhui, China, in 1995.

He received the B.S. degree in network engineer-

ing from West Anhui University, Luan, China,

in 2019. He is currently pursuing the M.S. degree

in computer science and technology with the

Hunan University of Technology, Zhuzhou, China.

His research interests include industrial big data

analysis and industrial equipment fault diagnosis.

XINPAN YUAN was born in Hunan, China,

in 1982. He received the B.S., M.S., and Ph.D.

degrees in computer science and technology

from Central South University, Changsha, China,

in 2005, 2008, and 2012, respectively. He is cur-

rently an Associate Professor with the School of

Computer Science, Hunan University of Tech-

nology, Zhuzhou, China. His research interests

include industrial big data analysis, industrial

equipment fault diagnosis, information retrieval,

data mining, and natural language processing. He has published many

research articles in international conferences and journals, such as Interna-

tional Journal of Nursing Studies (IJNS), Journal of Information Processing

Systems (JIPS), and Information.

CHANGYUN LI was born in Hunan, China,

in 1972. He received the Ph.D. degree in com-

puter science and technology from Zhejiang Uni-

versity, Hangzhou, China, in 2007. He is currently

a Full Professor of Computer Science and the

Dean of the Graduate School, Hunan University of

Technology, Zhuzhou, China. His research inter-

ests include industrial big data analysis, industrial

equipment fault diagnosis, intelligent information

perception and processing technology, the Internet

of Things, and software methodology. He has published many research arti-

cles in international conferences and journals, such as Journal of Information

and Communication Technology (JICT), Journal of Software (JSW), and The

Journal of Chemical Physics (JCP).

XIAOJUN DENG was born in Hunan, China,

in 1974. He received the M.S. degree in computer

science and technology from the National Uni-

versity of Defense Technology, Changsha, China,

in 2004. He is currently a Full Professor with the

School of Computer Science, Hunan University of

Technology, Zhuzhou, China. His research inter-

ests include industrial big data analysis, indus-

try equipment health management, the Internet of

Things, and image processing. He has published

many research articles in international conferences and journals, such as

International Journal of Studies in Nursing (IJSN), Journal of Computer

Science and Engineering (JCSE), and IEEE ACCESS.

37882 VOLUME 9, 2021

