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Abstract—In this paper, we propose an efficient rule-based heuristic to

solve asset-based dynamic weapon-target assignment (DWTA) problems.
The main idea of the proposed heuristic is to utilize the domain knowledge
of DWTA problems to directly achieve weapon assignment, without large
number of function evaluations. We update the saturation states of con-

straints in the assignment process to guarantee the feasibility of generated
solutions. For the purpose of testing the performance of the proposed
heuristic, we build a general Monte Carlo simulation-based DWTA frame-

work. For comparison, we also employ a Monte Carlo method (MCM) to
make DWTA decisions in different defense scenarios. From simulations
with DWTA instances under different scales, the heuristic has obvious
advantages over the MCM with regard to solution quality and computation

time. The proposed method can solve large-scale DWTA problems (e.g.,
those including 100 weapons, 100 targets, and four defense stages) within
only a few seconds.

Index Terms—Combinatorial optimization, constraint handling,

decision making, dynamic weapon-target assignment (DWTA), heuristic,
military operations.

I. INTRODUCTION

The weapon-target assignment (WTA) problem mainly stems from

the requirement of command and control (C2) automation [1]. It

is a fundamental subject in defense-related applications of military

operations research. Its objective is to minimize the expected damage

of own-force assets by assigning weapons to offensive targets at appro-

priate occasions. This problem can be categorized as a combinatorial

optimization problem proved to be nondeterministic polynomial time-

complete [2]. There are two versions of the WTA problem, namely:

static WTA (SWTA) and dynamic WTA (DWTA) [3], [4]. In SWTA,

all weapons engage targets at a single stage, and decision makers know

all parameters of the problem. Thus, the goal of solving the SWTA

problem is to find the optimal assignment for a temporary defense task.

In contrast, DWTA is a multistage problem, and decision makers assess

the outcome of each engagement for subsequent decisions. In a sense,

DWTA is regarded as a repetition of SWTA which will terminate if the

defender has destroyed all targets or used up all weapons. However,

DWTA is much more complicated than SWTA. On one hand, this

is due to the increase of actual constraints in DWTA (e.g., the time

windows of weapons and targets [5]). Complicated constraints tend to

make it harder to generate feasible solutions. On the other hand, an-

terior decisions have chain reactions on posterior decisions in DWTA.

Typically, the number of available missiles or shells decreases with

engagement times. If a weapon, for example, can be used only once,

the defender has to consider its engagement occasion carefully in order
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to make the best of the weapon. In other words, a logical DWTA model

should incorporate the choice of the engagement occasion of weapons.

Most of the previous researches on WTA focus on SWTA [5]–

[19]. With respect to SWTA models, Hosein and Athans [3] proposed

an asset-based SWTA model which was also used in [6] and [7].

Karasakal [8] used the probability of shooting down all incoming

targets as the objective function of the air defense WTA model for

a naval task group. Some scholars adopted target-based SWTA models

which do not employ the value of assets directly [9]–[18]. In this case,

researchers often assume each target to have certain value of threat, and

the objective is to minimize the total threat of all targets. In fact, the

probability model in [8] and the target-based models are just special

cases of the asset-based model established by Hosein and Athans [3].

Besides, some WTA models also take into account the cost of weapons.

For examples, Kwon et al. [19] employed the overall firing cost as the

objective function for optimization. Interested readers can find a more

complicated model which considers the function of special assets in

the work of Hosein et al. [20].

Based on the aforementioned models, various algorithms have been

proposed to solve SWTA problems since the middle of the last century.

At early stages, solving SWTA problems depends on traditional ap-

proaches, such as implicit enumeration algorithms, branch-and-bound

algorithms, and dynamic programming [5]. With the evolution of

computer technology, some novel algorithms, such as neural networks

[9], genetic algorithms (GAs) [6], [10], [11], tabu search [12], simu-

lated annealing (SA) [13], ant colony optimization [14], and particle

swarm optimization [15], have been developed. Some scholars also

tried hybrid algorithms [7], [16], [17]. For example, Lee et al. [16]

designed a memetic algorithm which combines the advantages of

global search (GA) and local search (greedy eugenics) to solve target-

based SWTA problems. Besides, Ahuja et al. [18] developed several

branch-and-bound algorithms and a very-large-scale neighborhood

search algorithm to solve target-based SWTA problems.

Although nearly two decades has passed since Hosein and Athans

put forward the DWTA problem [4], there are fewer research results on

DWTA reported in the literature in contrast to SWTA [5], [20]–[24].

Cai et al. [5] introduced some basic concepts regarding DWTA and

provided a systematic survey on WTA problem. Hosein and Athans

[4] completed an early research on a two-stage asset-based DWTA

problem and proposed a suboptimal algorithm for finding a good

solution. Hosein et al. also considered the special function of C2 nodes

in the formulation of WTA problems and provided analytical solutions

to several simple cases of DWTA [20], [21]. Khosla [22] used a hybrid

GA which incorporates an SA-type heuristic to solve a target-based

DWTA problem. In particular, the objective function of this DWTA

model employs a weighted combination of threat value and option

weight. Havens [23] models DWTA by means of simulation. However,

it is in fact the repetition of SWTA [5]. Li et al. [24] proposed a target-

based DWTA model, with the objective of minimizing the total threat

of the targets which survive the final stage of air defense operation.

As far as we know, no algorithm has been proposed in the literature

to solve asset-based DWTA problems incorporating complicated con-

straints caused by the issue of engagement feasibility (e.g., the limit of

time windows).

The goal of this paper is to develop an efficient algorithm to solve

asset-based DWTA problems incorporating engagement feasibility.

This paper is structured as follows. In Section II, we present a for-

mulation of the mathematical model for asset-based DWTA problem.

In order to solve the problem, we propose a rule-based heuristic

in Section III with its computational complexity being analyzed.

Section IV includes a simulation framework to verify the performance

of the proposed algorithm. Accordingly, we compare the heuristic

1083-4427/$26.00 © 2010 IEEE
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TABLE I
NOTATION DECLARATION

algorithm with the Monte Carlo method (MCM) with regard to dif-

ferent performance indexes. Some important issues which have impact

on the effectiveness of DWTA model and decision making are also

discussed in this section. Section V concludes the paper.

II. PROBLEM FORMULATION

DWTA models depend on many factors, such as defense strategies,

features of targets and weapons, as well as actual combat situations.

Different defense scenarios may require different models. The scenario

considered in this paper is narrated as follows. At certain time, the

defender detects T offensive targets, with their attack aims exposed,

which threaten K assets of the defender. There are W weapons

available for the defender to intercept the targets. Before these targets

break through the defense, there are at most S stages in which the

defender can use its weapons to strike the targets. The value of

S depends on the distance between targets and their aims, target’s

flight speed, weapon’s regulation, launch and flight time, the delay

of data analysis and decision making, and so on [8]. In the DWTA

literature, most researchers often adopt a “Shoot-Look-Shoot (SLS)”

engagement policy which is a tradeoff between defense effect and cost

[4], [8], [20]–[22]. In fact, this engagement policy fits very well with

the well-known Observe-Orient-Decide-Act information processing

loop [25], [26]. It is widely employed in practical combating scenarios

like air-defense-oriented naval group combating [8].

The notation employed in the context is listed in Table I.

A. Objective Function

We employ the total expected value of surviving assets after the final

stage as the objective of WTA for the current stage. This objective

is somewhat similar to the one in [24], taking into account the opti-

mization of the whole defense effect. The formulation of the objective

function for stage t is shown as follows:

Jt(X
t) =

K(t)
∑

k=1

vk

T (t)
∏

j=1

[

1− qjk

S
∏

h=t

W (t)
∏

i=1

(1− pij(h))
xij(h)

]

with t ∈ {1, 2, . . . , S} (1)

where Jt(·) is the objective function (see Table I); Xt =
[Xt,Xt+1, . . . ,XS ] with Xt = [xij(t)]W×T is the decision matrix at

stage t (xij(t) = 1 if weapon i is assigned to target j at stage t and

xij(t) = 0 otherwise); and h is an index of stages.

Note that the defender only carries out the decision component Xt

for the current stage t. If the defender observes that one or more targets

have been destroyed at stage t, then it is necessary to reevaluate the

objective for stage t+ 1. This is due to the alleviation of defense

pressure and the requirement of economizing the use of weapons.

In this case, the weapons preassigned to destroyed targets have to

be reassigned. Without destruction of the targets, the defender can

directly execute the decision component Xt+1 at the new stage. In

order to distinguish these notions, we provide three crucial concepts as

follows.

Definition 1: Global Decision—The complete decision matrix

Xt (t ∈ {1, 2, . . . , S}) is termed as global decision at stage t.
Definition 2: Local Decision—Any decision component Xs (t ≤

s ≤ S) in global decision is termed as local decision at stage t.
Definition 3: Executive Decision—The first component of global

decision Xt (t ∈ {1, 2, . . . , S}), i.e., Xt, is termed as executive

decision at stage t. Obviously, executive decisions are special cases

of local decisions.
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B. Constraints

The following four categories of constraints are included in the

DWTA model:

T
∑

j=1

xij(t)≤ni, ∀t∈{1, 2, . . . , S}, ∀i∈{1, 2, . . . ,W} (2)

W
∑

i=1

xij(t)≤mj , ∀t∈{1, 2, . . . , S}, ∀j∈{1, 2, . . . , T} (3)

S
∑

t=1

T
∑

j=1

xij(t)≤Ni, ∀i∈{1, 2, . . . ,W} (4)

xij(t)≤ fij(t), ∀t∈{1, 2, . . . , S}, ∀i∈{1, 2, . . . ,W},

∀j∈{1, 2, . . . , T}. (5)

Constraint set (2) reflects the capability of weapons of firing at

multiple targets at the same time. Most of actual weapons can shoot

only one target at a time. Besides, a special weapon that is capable of

engaging multiple targets simultaneously can be viewed as multiple

separate weapons. In view of these facts, we set ni = 1 for ∀i ∈
{1, 2, . . . ,W}. Constraint set (3) limits the weapon cost for each target

at each stage. The setting of mj (j = 1, 2, . . . , T ) usually depends

on the combat performance of available weapons. In this paper, we

assume that mj = 1 for ∀j ∈ {1, 2, . . . , T}. This is a reasonable

setting for missile-based defense systems and the SLS engagement

policy [8], [24]. For artillery-based defense systems, the value of

mj (j = 1, 2, . . . , T ) may increase greatly under the same demand

on defense strength. Constraint set (4) reflects in essence the amount of

ammunition equipped for weapons. Constraint set (5) is very important

to actual dynamic WTA problems since it takes into account the

influence of time windows on the engagement feasibility of weapons.

Besides, it also increases the complexity of DWTA problems and the

difficulty of generating feasible solutions. In this case, it is hard to

design a desirable operator, which can generate new solutions and

guarantee their feasibility at the same time.

C. Optimization Model for DWTA

The optimization model for the dynamic WTA problem aforemen-

tioned can be formulated as follows:

maxJt(X
t), s.t. (2), (3), (4) and (5), with t ∈ {1, 2, . . . , S}. (6)

The DWTA model here is a typical constrained nonlinear 0–1

programming problem. The dynamic characteristics of this model are

mainly embodied by the choice of engagement stages, the change of

engagement feasibility, and the uncertainty of the damage of targets

and assets at each stage before it is confirmed by observation.

In contrast to target-based DWTA models [22], [24], this asset-based

model stresses on the protection of own-force assets. Besides, this

model directly embodies the threats of all targets while target-based

models depend on the evaluation of the threats of targets.

III. RULE-BASED HEURISTIC FOR DWTA

A. Rules for DWTA Problem Solver

The use of domain knowledge can reduce the complexity of prob-

lems to be solved, which is one of the main reasons for the pop-

ularity of heuristics. Problem-specific heuristics, for example, have

been successfully applied to solve the optimization problems in the

field of public transport management [27], grid computing [28], stock

market forecasting [29], and so forth. Here, we try to make the best

of available knowledge contained in the structure and parameters of

DWTA problems. We incorporate the following knowledge into the

proposed heuristic algorithm.

• The more damage a target can cause to assets, the higher priority

it should be given in terms of interception.

• The more threat a weapon can reduce at certain stage, the higher

priority it should be given to be used at that stage.

• If any effective weapon is assigned to a target, the target’s threat

(i.e., the potential damage it may cause) will be reduced.

The threat of a target can be expressed by vk(j)qjk(j)p̂j where p̂j
denotes the surviving probability of target j, and k(j) the index of

the asset aimed by the target. The probability p̂j (j = 1, 2, . . . , T )
will change in the process of weapon assignment. It is clear that

p̂j = 1 (j = 1, 2, . . . , T ) if no weapons are assigned.

Denote by VQP the value of a weapon-target-stage pair. We can

determine VQP by multiplying the threat value of the target and the

probability that the weapon destroys the target at the stage. The VQP

value of assignment pairs is a crucial factor that determines the final

decision scheme.

B. Constraints Handling

In order to guarantee the feasibility of the solution generated by

the heuristic algorithm, we make some preliminary treatment to the

constraint sets (2)–(5). First, we utilize the engagement feasibility

matrices Ft (t = 1, 2, . . . , S) to obtain the sets of available weapons

Uj(t) (j = 1, 2, . . . , T ; t = 1, 2, . . . , S). The weapon assignment will

be implemented within the confines of these sets. Thus, those unusable

weapons will not be considered, and the constraints in (5) are satisfied.

For constraints in (2)–(4), we use the corresponding variables C2#F ,

C3#F , and C4#F to mark whether these constraints are saturated

or not. Note that a constraint c(X) ≤ 0 is said to be saturated if

c(X) = 0. The following are the instructions for C2#F , C3#F , and

C4#F , namely:

C2#F = [c2it]W×S c2it = 1 if the constraint in (2) corresponding

to weapon i and stage t is saturated, c2it = 0
otherwise;

C3#F = [c3jt]T×S c3jt = 1 if the constraint in (3) corresponding

to target j and stage t is saturated, c3jt = 0
otherwise; and

C4#F = [c4i]1×W c4i = 1 if the constraint in (4) corresponding

to weapon i is saturated, c4i = 0 otherwise.

Each time a weapon is assigned to a target, their corresponding

variables in the aforementioned three matrices are updated. The rules

for handling the constraint sets (2)–(4) in the process of weapon

assignment are presented later.

• If c2it = 1, weapon i will not be used again at stage t;
• If c3jt = 1, no more weapons will be assigned to target j at stage

t;
• If c4i = 1, weapon i will not be used later.

C. Processing Procedure

The processing procedure of the rule-based heuristic is presented

in Fig. 1. At each stage, the DWTA problem solver runs to find a

global WTA decision, and the defender carries out the corresponding

executive decision. If no target is destroyed at the previous stage,

the defender will use the global decision made at the previous stage,

and take the second component (local decision) in it as the executive

decision for the current stage. In this case, the main part of the

algorithm, that is, the process of sorting all available assignment pairs,
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Fig. 1. Rule-based heuristic for DWTA decision making.

will not be executed. Once any target is confirmed to be destroyed at

the previous stage, the decision maker will make a new sorting-based

decision to reassign all available weapons to surviving targets.

All available assignment pairs are sorted according to their VQP

values. The bigger the VQP value of an assignment pair is, the earlier

the corresponding assignment is performed, which is consistent with
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the anterior two crucial assignment rules presented in Section III-A.

In a sense, such a constructive heuristic is much similar to a greedy

strategy. Following each assignment, the decision maker will update

the VQP values of all unassigned pairs which share the same target

with the performed assignment. This agrees with the last rule presented

in Section III-A.

D. Computational Complexity

The time complexity of the proposed algorithm can be approximated

by that of the sorting algorithm embedded in the heuristic. A desirable

sorting algorithm has the complexity of O(n logn), where n is the

size of the array to be sorted [30]. In the worst case, n is equal to

W · T · S in the proposed algorithm. Since the sorting algorithm runs

at most W · T · S times, the worst time complexity of the heuristic can

be expressed by O(L2 logL) with L = W · T · S. Besides, it is easy

to see that the worst space complexity of the heuristic is O(W · T · S).

IV. DWTA SIMULATIONS

A. Test-Case Generator

1) Parameters’ Generator: Given W , T , K, and S, the generator

will provide the essential parameters for a DWTA instance which in-

clude V, Q, Pt (t = 1, 2, . . . , S), Ft (t = 1, 2, . . . , S), and Ni (i =
1, 2, . . . ,W ). The value of assets is randomly generated in the interval

(10,100). Since the number of targets is not less than that of threatened

assets, that is to say T ≥ K, we assume that the aim of the kth

target is the kth asset (k = 1, 2, . . . ,K) to ensure that each asset is

threatened by at least one target. The aims of the remaining targets

will be randomly selected from K assets. Any target has no threat to

the assets which are not its aim. We divide the generation of Q into

two steps as follows.

Step 1: qjk := qL + (qH − qL) · rand for j ∈ Gk (j =
1, 2, . . . , T ; k = 1, 2, . . . ,K) where qL and qH are predefined

constants with 0 < qL < qH < 1, and Gk is the set of

targets aiming at asset k, k = 1, 2, . . . ,K; qjk := 0 for

j �∈ Gk (j = 1, 2, . . . , T ; k = 1, 2, . . . ,K);
Step 2: r := aL + (aH − aL) · rand, qjk := qjk · r (j =

1, 2, . . . , T ; k = 1, 2, . . . ,K) where aL and aH are predefined

constants with 0 < aL < aH < 1.

Remark 1: qL and qH reflect the lower and upper limits of targets’

performance, respectively. aL and aH reflect the upper and lower

limits of assets’ tolerance, respectively. Note that a smaller tolerance

value (r) corresponds to a better tolerance performance. The first

step provides the performance parameters of targets. The second

step provides the tolerance parameters of assets and finally generates

composite probabilities that targets kill their aims.

The probabilities that weapons kill targets at different stages (i.e.,

Pt (t = 1, 2, . . . , S)) are generated in a similar but simpler way as

follows:

pij(t) := pL + (pH − pL) · rand

for i = 1, 2, . . . ,W. ; j = 1, 2, . . . , T ; t = 1, 2, . . . , S

where pL and pH are predefined constants with 0 < pL < pH < 1
which reflect the lower and upper limits of weapons’ performance,

respectively.

The engagement feasibility parameters Ft (t = 1, 2, . . . , S) are

also generated in a similar way. However, more zeros will appear in

Ft corresponding to later stages, which accords with the fact that

fewer weapons can be used at later stages. Note that fij(t) = 0 implies

weapon i cannot engage target j at stage t. The generation of Ft (t =
1, 2, . . . , S) is shown as follows:

ratio(t) := fL + (fH − fL) · (t− 1)/(S − 1)

for t = 1, 2, . . . , S;

fij(t) := [sign (rand− ratio(t)) + 1] /2;

for i = 1, 2, . . . ,W ; j = 1, 2, . . . , T ;

t = 1, 2, . . . , S

where ratio(t) is the probability that fij(t) is set to 0; fL and fH are

predefined constants with 0 < fL < fH < 1 which reflect the lower

and upper limits of ratio(t), respectively; and the function sign(·) is

equal to 1 if its argument is positive and −1 otherwise.

Remark 2: It can be expected that Ft will include more zero

elements as t increases.

In order to simplify the operations of the heuristic algorithm,

we utilize the engagement feasibility matrices Ft (t = 1, 2, . . . , S)
to obtain the sets of available weapons Uj(t) (j = 1, 2, . . . , T ; t =
1, 2, . . . , S). Besides, we categorize the generation of Ni (i =
1, 2, . . . ,W ) into the following four cases so as to cover different

defense scenarios:

Case 1: One weapon, one shot. Ni := 1 for i = 1, 2, . . . ,W ;

Case 2: No weapon can be used at all stages

Ni := ⌈S · rand/2⌉ for i = 1, 2, . . . ,W ;

Case 3: All weapons are available at all stages

Ni := S for i = 1, 2, . . . ,W

Case 4: A hybrid case

Ni := ⌈2S · rand⌉ for i = 1, 2, . . . ,W.

2) Damage’s Generator: This generator follows DWTA decision

making to determine whether a target or an asset is destroyed. If a

target survives the final stage or it breaks through the defense at certain

stage, its damage to aimed asset comes into effect, and the target will

not be considered at subsequent stages. A target is confirmed to break

through the defense if no weapons can be used to intercept it at current

stage due to the restriction of engagement feasibility. We regard the

destruction of targets as a random event and employ Monte Carlo

Simulation to simulate it. For each target, its destruction probability

denoted by pD is computed first according to the corresponding

weapon assignment scheme. Then, a pseudorandom number denoted

by r and distributed in the interval (0,1) is generated by MCM. If

r < pD , then the target is confirmed to be destroyed. We simulate the

destruction of assets in the same way.

B. Simulation Procedure and Parameter Setting

The loop of DWTA simulation process includes the following four

steps:

Step 1. Initialization. All parameters for a DWTA instance are gen-

erated by DWTA parameters’ generator and loaded to a DWTA

problem solver. The states of assets, targets and targets’ attacks,

denoted by SAS , STA and SAT , respectively (see Table I), are

initialized. Set the stage index t = 1.

Step 2. Global decision-making and local decision execution. The

DWTA problem solver produces a global decision about weapon
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assignment, and the defender implements the corresponding ex-

ecutive decision.

Step 3. Damage generation. The Monte Carlo simulation generates the

damage of assets and targets according to the damage probabil-

ities in response to decision-making. Accordingly, the states of

targets and assets are updated.

Step 4. Termination Criteria. A composite termination criterion con-

stituted by two components C1 and C2 is executed. The instruc-

tions for C1 and C2 are stated as follows:

C1 = 1 if all targets are destroyed or complete their attacks;

C1 = 0 otherwise;

C2 = 1 if all weapons available are used out; C2 = 0 otherwise.

If the value of at least one of the two components becomes 1, the

decision maker will terminate the DWTA loop and evaluate the defense

results; otherwise, let t = t+ 1 and go to Step 2.

Remark 3: The evaluation includes asset damage evaluation (ADE),

target damage evaluation (TDE), and weapon cost evaluation (WCE).

In ADE, the proportion of the total value of surviving assets in that of

all assets (PTVSA) is evaluated. In TDE, the ratio of destroyed targets

to all targets [i.e., interception ratio (IR)] is analyzed. In WCE, we

measure the defense cost (DC) of generated WTA decisions by the

average engagement times for destroying one target.

In the simulation, we fixed the number of stages (S) at four. The

setting of the other three primary parameters W , T , and K includes

the following cases:

W10T10K10(No.1), W10T10K5(No.2),

W50T50K50(No.3), W50T50K20(No.4),

W100T50K50(No.5), W100T50K20(No.6),

W50T100K100(No.7), W50T100K50(No.8),

W100T100K100(No.9), W100T100K50(No.10),

W100T200K200(No.11),W100T200K100(No.12),

W200T200K200(No.13).

The setting of the first generator’s parameters is shown as follows:

qL =0.6, qH = 0.99 aL = 0.6, aH = 0.99

pL =0.4, pH = 0.9 fL = 0.1, fH = 0.9.

For comparison, we also employed a MCM to solve each DWTA

instance. The technique of constraint handling in MCM is the same

as that used in the proposed heuristic algorithm. In MCM, 10 000

random samplings were implemented at each stage, and the best

solution among these samplings was selected as the global decision

at corresponding DWTA stage. At the first stage, we recorded the

expected total value of assets surviving after the final stage (ETVSA),

that is, the objective value of the global decision made at the first stage.

Its proportion in the total value of all assets (PETVSA) is used as

another index for performance comparisons. In each case, both MCM

and the heuristic algorithm run 30 times, and corresponding results are

statistically analyzed. All programs were compiled by the well-known

mathematical software—MATLAB (version 6.5.0). Particularly, we

employed, for convenience, the built-in sorting algorithm in MATLAB

[31]. All experiments described in this paper were performed on a PC

with Pentium M 1.5-GHz CPU and 512-MB internal memory.

C. Results and Analysis

Experimental results are presented in Figs. 2 and 3 and Table II

with the mean and standard deviation (s.t.d.) of the results of 30 runs

provided. Figs. 2 and 3 show that the proposed heuristic can produce

better global decisions in almost all test cases. From case 1 to 4,

the PETVSA index of the rule-based heuristic is on average 34.0%,

24.6%, 5.7%, and 8.6% better than that of MCM, respectively. Besides,

the results produced by the heuristic are stable since it is in nature a

deterministic algorithm. Regarding the PTVSA index, the advantages

of the heuristic over MCM in four cases are 18.9%, 12.2%, 0.8%, and

1.4%, respectively. On the whole, the results indicated by PETVSA

are consistent with those by PTVSA. However, the values of PTVSA

in most cases are a little larger than those of PETVSA. This is because

the global decision made at the first stage, corresponding to PETVSA,

has to consider the threats of all targets. In other words, all targets have

potential damage to assets at this time. In contrast, the destruction of

targets prior to the final stage eliminates the corresponding threats to

assets and thus reduces defense pressure. In fact, as it is in the process

of DWTA simulations earlier, the global decision w.r.t. PETVSA will

be discarded on the occasion of the destruction of targets, and a new

one will be produced at the subsequent stage. Therefore, it is not

unusual to see that more assets will survive through all stages than

expected.

As shown in Fig. 3, the heuristic also results in higher IR in almost

all cases. The use of the proposed heuristic, compared with MCM,

increases the IR from Case 1 to 4 by 20.7%, 11.3%, 0.9%, and 1.5%,

respectively. Besides, the DCs of the DWTA decisions made by the

heuristic in all cases are less than those corresponding to MCM (see

Fig. 3). The heuristic reduces the DCs in the four cases by 20.1%,

20.7%, 18.9%, and 20.1%, respectively.

It should be noted that the aforementioned better results are achieved

with less computation cost, as shown in Table II. The computation

time of the heuristic averaged on all cases is about 114 times less than

that of MCM. Even when solving the time-consuming DWTA instance

No.13Case3, the heuristic runs about 24 times faster than MCM. In

addition, the heuristic can solve small-scale DWTA instances almost

instantly. Even for DWTA problems with larger scale, e.g., those in

the cases of No.11 and No.12 (W = 100, T = 200, S = 4), it can

achieve efficient weapon assignment within only a few seconds. It can

be expected that, with the support of advanced computing systems,

the actual computation time of the proposed heuristic will be further

reduced.

It was also observed that the decisions produced by the heuris-

tic have obviously higher quality in severe defense scenarios

where weapon resources are insufficient. For example, the scenar-

ios corresponding to No.7Case1, No.7Case2, No.8Case1, No.8Case2,

No.11Case1, No.11Case2, No.12Case1, and No.12Case2 are severe

for the defender, since the number of weapons in these instances is

only half of the number of targets, and weapons cannot be adequately

used. Although the IRs in these scenarios seem to be relatively low, the

generated decisions under high defense pressure have saved as many

assets as possible.

D. Discussion

One of the most prominent advantages of the proposed heuristic is

its saving of decision-making time with guaranteed solution quality,

which is the primary demand of real-time military decision making.

The statistical results of the running time of random sampling (MCM)

demonstrate that the function evaluation in DWTA with the satisfaction

of all constraints is very time consuming. In contrast, the constructive

heuristic proposed in this paper can solve larger scale problems within

a few seconds. Therefore, the heuristic provides a viable and efficient

way to solve DWTA problems.

In the aforementioned simulation, we only consider, for simplicity, a

special defense scenario in which all information contained in DWTA

model is reliable. In practice, information accuracy has a great impact
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Fig. 2. Comparative results of rule-based heuristic and MCM w.r.t. the mean and s.t.d. of PETVSA and PTVSA. (a) PETVSA (Case 1). (b) PETVSA (Case 2).
(c) PETVSA (Case 3). (d) PETVSA (Case 4). (e) PTVSA (Case 1). (f) PTVSA (Case 2). (g) PTVSA (Case 3). (h) PTVSA (Case 4).

on the effectiveness of DWTA decisions. If the aims of targets, for

example, are not clear, a notable adjustment is usually essential in the

use of domain knowledge. In this case, all potential aims of a target

may be considered, which will result in a more complicated DWTA

model and further a different decision scheme. Besides, the prediction

of targets’ movement also plays an important role in DWTA as its

precision affects the analysis of weapons’ combat effects and even

engagement feasibility. An elaborate model should also have a careful
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Fig. 3. Comparative results of rule-based heuristic and MCM w.r.t. the mean and s.t.d. of IR and DC. (a) IR (Case 1). (b) IR (Case 2). (c) IR (Case 3). (d) IR
(Case 4). (e) DC (Case 1). (f) DC (Case 2). (g) DC (Case 3). (h) DC (Case 4).

evaluation of assets’ values since an improper evaluation may lead to

a bad decision. From an all-sided consideration of military operations,

the aforementioned issues are also significant and worth devotion from

researchers for reliable DWTA decision making.

V. CONCLUSION

The rule-based constructive heuristic we have proposed is an ef-

ficient straightforward solution to DWTA problems, and it benefits

from the use of domain knowledge in the form of three crucial rules.
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TABLE II
COMPARATIVE RESULTS W.R.T. COMPUTATION TIME (S)

The algorithm can directly obtain desirable solutions without function

evaluations. In order to guarantee the feasibility of generated solutions,

we achieve constraint satisfaction in the process of weapon assignment

by validating the saturation states of different constraints dynamically.

A DWTA simulation framework is built to investigate the performance

of the heuristic. The framework can also serve as a test suite to compare

the performances of different DWTA algorithms in future. Besides,

the heuristic can also be taken as a reference for comparison. The

experiments with DWTA instances under different scales validate the

effectiveness of the heuristic including its decision-making quality and

computation efficiency. It can efficiently solve DWTA instances under

larger scales (e.g., W100T100S4) with guaranteed decision quality.

For the sake of enhancing the algorithm’s scalability and solving

DWTA problems more efficiently, a further research on the reduction

of its time complexity is significant. Some advanced heuristics or

metaheuristics are also worth investigation.
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