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Abstract Super resolution is a method that reconstructs a higher resolution image from single captured image or set of
captured low resolution images. Super resolution imaging is used for several image processing applications like medical
imaging, earth observation systems and surveillance systems. Image interpolation is one of conventional methods used to
enhance resolution of image. Basic linear interpolation methods like bilinear, bicubic give blurred image as a result. Non-
linear interpolation methods like New Edge Directed Interpolation (NEDI), Curvature based interpolation, neural network
based interpolation enhance image but has limitations like several artifacts. In this paper, a novel innovative approach is
proposed in which using dual tree complex wavelet transform (DT-CWT), low and high frequency sub bands are generated.
High frequency sub band images are interpolated using improved NEDI which is NEDI with circular window and dynamic
window. Improved NEDI (INEDI) algorithm proposed in the paper gives better results on high frequency components
which lead to high resolution image without artifacts. Inverse DT-CWT is applied on interpolated sub bands to reconstruct
high resolution image. Registration is applied on both images and shift adaptable bilinear interpolation is applied which
reconstructs image into 4 interpolation factor. The proposed approach is verified for different interpolation factors and for
different satellite images. The accuracy of proposed approach is verified by several contrast features. The algorithm proposed
in this paper outperforms in comparison to state of the art algorithms.
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1. Introduction

In various fields like medical imaging, remote sensing, recognition and computer graphics, high resolution image

is desirable. There is high requirement of a high resolution image that provides better visualization and additional

information details. In remote sensing, a higher resolution image is advantageous to attain better classification

of areas[1, 2, 3, 45, 5]. High resolution image is helpful in medical imaging to make correct diagnosis and

treatment[6, 7, 8, 9, 10]. In video observation system, high resolution videos are useful in identifying object or

person of concern[11, 12, 13, 14].

One major way for acquiring high resolution image is to ameliorate image acquisition device by increasing pixel

density of the sensor. There is a constraint in decreasing pixel size of sensor. The captured image quality will be

naturally reduced as the pixel size of sensor becomes too small[15]. As pixel size of sensor reduces, the power of

signal also decreases. This fact affects the quality of image. Moreover,a higher value is needed to improve chip

size. On base of above stated, the Super Resolution imaging turns out to be good option. Super Resolution imaging

research has emerged really fast after initially described by Tsai and Huang [16] in 1984.
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Figure 1. Structure of Super Resolution Imaging

Image processing involves many images with lost detail due to a situation like improper adjustment of cameras,

lighting defect or camera with low sensor cell. This type of lost detail of image can be retrieved using super

resolution method. Image Super Resolution pertains to image processing algorithms that generate high quality

images from group of low quality input images or from a single input image. A framework of super resolution

imaging is shown in Figure 1.

To understand the super resolution imaging, some basic concepts are needed to be clarified. First, resolution of

an image is different from its physical size. Second, term resolution is used in context of spatial resolution, not the

temporal resolution of image. In different applications like medical imaging, remote sensing, object tracking[17] a

small error can generate major problems. The motivation is to get high resolution image to overcome the situation.

Our method allows the use of two low resolution image with small shift for generating improved resolution image.

The ambition of super resolution is to generate image with more details from group of low resolution images. In

other words, the main aim of super resolution techniques is to generate image with more clear content from low

resolution image instead of obtaining a bigger size of image.

The paper is arranged as follows: Section 2 contains brief overview of different Super Resolution methods.

Section 3 describes basic concepts which are used in proposed approach. Section 4 describes proposed approach.

Section 5 contains results and section 6 is conclusion on this study followed by references.

2. Classification of Super Resolution Techniques

Image super resolution methods can be classified into four categories: 1) Frequency domain based super

resolution[16, 18, 19, 20, 21, 22, 23, 24], 2) Interpolation based super resolution[25, 26, 27, 28, 29], 3)

Reconstruction based super resolution[30, 31, 32, 33, 34, 35, 36], and 4) Example based super resolution[37,

38, 39, 40].

2.1. Frequency Domain based Super Resolution

Frequency domain based super resolution method was proposed by Tsai and Huang[16], where their main focus

was super resolution computation for noise free low resolution images. Initially, the input images are transformed

into Discrete Fourier Transform and then integrated as specified by relationship between DFT coefficients of

mentioned low resolution images and coefficients of high resolution image[16, 18]. High resolution image is

received by transforming integrated data into spatial domain. Rhee and Kang[19] used Discrete Cosine Transform

to execute rapid image deconvolution for super resolution image computation.

The frequency domain techniques have a number of advantages. First, we can easily enhance details of the image

by generalizing high frequency details available in low resolution image. Second, frequency domain techniques

have low computational complexity.

Ji and Fermuller[20, 21] proposed strong wavelet based super resolution technique to handle error caused in

registration computation and blur recognition computation. Ei-Khamy et al.[22, 23] proposed that different low

resolution images are first registered in wavelet domain, then registered low resolution wavelet coefficients are

fused to get single image and then interpolation is performed to obtain high resolution image. Chappalli and
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Figure 2. A Framework for Wavelet Domain based Super Resolution

Bose[24] developed a super resolution technique with noise filtering by merging denoising stage into conventional

wavelet approach.

2.2. Interpolation based Super Resolution

The Interpolation based super resolution approach generates high resolution image by mapping every obtained

low resolution image to single image, then combine each and every information available from each image and

finally deblurs image. Super Resolution problem cannot be handled well by single image interpolation because

it cannot create the high frequency components which were missed throughout image acquisition procedure. The

standard of interpolated image produced by executing single input image interpolation algorithm is assigned with

the intensity value of nearest pixel value. The Interpolation based super resolution techniques generally consist of

three steps: 1) registration of low resolution input images, 2) interpolation of low resolution images for producing

high resolution image and 3) deblur reconstructed high resolution image generated in step (2)[25, 26, 27]. The

interpolation performs important role in this approach. The traditional interpolation methods are nearest neighbor

interpolation, bilinear interpolation and bicubic interpolation. In nearest neighbor algorithm, unknown pixel value

is allocated with intensity value of nearest pixel. In bilinear interpolation, unknown pixel value is estimated by the

weighted average of the neighboring four pixels.

Patti and Tekalp[27] developed an algorithm that produces high resolution image which is reconcilable with

details arising from captured low resolution images and previous image prototype. Zhang and Wu[28] proposed

a method where kriging interpolation is used based on intensity distance and geometry of pixel. High resolution

image is estimated using intensity distance and local window surrounding every unknown pixel. Shi and Shan[29]

proposed new interpolation approach that generates high resolution image by interpolating pixel position according

to directional variations of images.

Figure 3. Interpolation based Super resolution
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2.3. Reconstruction based Super Resolution

Super resolution reconstruction is an ill-posed problem, many reconstruction based algorithms are proposed

for addressing this issue. Reconstruction based super resolution techniques are classified into:1) Iterative back

projection[30, 33, 34] and 2) regularization method[35, 36]. Irani and Peleg[30] proposed super resolution

reconstruction approach using iterative back-projection, where high resolution image is estimated by iteratively

protruding error between feigned low resolution image via imaging blur and observed low resolution image. The

equation for iterative back projection method to evaluate high resolution image is:

X̂n+1
k = X̂n

k + hBP ∗ (Yk + Ŷ n
k ) (1)

Where X̂n
k denotes estimated high resolution image of kth image after n iteration, Ŷ n

k represents the simulated

degraded low resolution image of after n iteration, ?BP is the back-projecting operator.

Zhang[31] developed an algorithm which combines multiple shifted holographic images to increase resolution

of digital hologram. Many regularization based methods have been invented to solve issue of super resolution.

Regularization strategy is used to incorporate some anterior knowledge about desired high resolution image in

regularization methods[35, 36]. Applying regularization methods, desired high resolution image can be estimated

using minimization function expressed as:

ẑ = argmin[
∑

k

∥ykobs−OkDBMkz∥2 + λ2 ∗ r(Z)] (2)

Where
∑

k ∥ykobs−OkDBMkz∥2 is data fidelity term, r(Z) indicates regularization term and λ2 represents

regularization parameter.

2.4. Example based Super Resolution

In Example based single image super resolution, by employing dictionary of patch correspondences, high resolution

image is estimated. The connection between high resolution image patch and its low resolution patch is specified

by dictionary. Internal similarities or the set of external training images are used to build patch. Such algorithms

made up of two steps: a training step and Super Resolution step.

In training step, low resolution image is segmented within the coinciding patches. Then high resolution image

is evaluated using patch correspondences between low resolution patches and high resolution patches. In super

resolution step, final high resolution image is built by reassembling all estimated high resolution patches. Example

based methods are further classified into Learning based methods[37, 38] and regression based methods[39, 40].

In learning based methods, high frequency data of low resolution image is estimated by acquiring high frequency

data from specified training samples depend on internal characteristics of low resolution image. Hertzmann[37] put

forward a method to generate high frequency information for captured low resolution image from a training image

database, as shown in 4.

Figure 4. A Framework of Learning based Super Resolution

In regression based methods, regression function is used to learn connection between low resolution patches

and high resolution patches. The training patch pairs for regression are chosen based on similarity between low

resolution patch and test patch. High resolution image is constructed by integrating all estimated high resolution

patches.
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3. Related Work

3.1. DTCWT

The Dual Tree Complex Wavelet Transform (DT-CWT) is an extension of discrete wavelet transform which has

two main additional properties: 1) shift invariant and 2) good directional selectivity in multidimension. It produces

complex coefficients by applying dual tree of wavelet filters to acquire real and imaginary parts. The DT-CWT

gives better directional selectivity as it provides six directional sub bands at each scale oriented at 15o, 45o and

75o. The ordinary Discrete Wavelet Transform is shift variant due to destruction process in transform. A minor

shift in input image can end in extremely different set of wavelet coefficients. The DT-CWT transformation of 2-D

signal f(x) in form of wavelet function ψ(n) and scaling function φ(n) is as follow:

f(x) =
∑

lϵZ2

Sj0,l, lφj0,l(x, y) +
∑

θϵθ

∑

j≽j0

∑

lϵZ2

cj,l
θψj,l

θ(x, y) (3)

Where Z is the set of natural numbers, j and l refer to the index of shifts and dilations respectively, φj0,l, is the

scaling coefficient and Sj0,l, is the complex wavelet coefficient with

φj0l(x) = φrj0,l(x) +
√
−1φ−1

j0,l(x) (4)

And

ψj0l(x) = ψr
j0,l(x) +

√
−1ψ−1

j0,l(x) (5)

Where the superscripts r and i denote the real and imaginary parts, respectively[41].

3.2. Principle of improved NEDI Technique

There are some artifacts in NEDI such as interpolated pixel values change with the global brightness or the use

of larger window improves the conditioning of the CTC matrix but produces blurred images. Such problems are

solved in improved NEDI.

Figure 5. Block diagram of improved new edge directed interpolation

Improved NEDI is an extension of NEDI. The main aim of improved NEDI is to overcome the problems

occurred in NEDI and improve interpolation accuracy. The squared window used by NEDI introduces directional

artifacts and makes algorithm non-isotropic. This has been solved by INEDI using circular window. NEDI uses

bilinear interpolation while INEDI uses bicubic interpolation. To account for various frequency regions, INEDI

can dynamically increase the window radius from a minimum to a maximum value while the normalized residual

of the least squares fit decreases. INEDI tries to exclude from the circular window all pixels that do not belong

to the local edge using a sort of region growing method that excludes all uniform areas and pixels that are not

connected to the edge.
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4. Proposed Approach

High frequency components are mainly damaged after applying interpolation since interpolation caused smoothing

on high frequency components. For preserving high frequency components of image, DT-CWT has been applied.

Let us consider the αH ∗ αW high resolution image XH and two sub pixel shifted H * W low resolution images

XL1 and XL2. The objective of resolution enhancement is to estimate the high resolution image XH from two sub

pixel shifted low resolution images XL1 and XL2. DT-CWT decomposes the low resolution images into different

frequency sub bands. One level DT-CWT decomposition of H X W low resolution image gives two low frequency

sub bands and six high frequency sub bands of size H/2 * W/2 as a result. Low resolution image is obtained by

applying low pass filter to high resolution image. Low frequency sub-band images are the low resolution of the input

image which consists less information compared to input image so input image is used instead of low frequency

sub bands. In proposed interpolation technique, INEDI is applied on high frequency sub-bands for factor α/2 and

input image is interpolated with factor α/4. After interpolating high frequency sub-bands images, the ultimate high

resolution image is constructed by applying inverse DT-CWT on these interpolated sub bands and interpolated input

image. Using this approach, αH/2 * αW/2 interpolated images XH1 and XH2 are generated from low resolution

images X11 and X12. Feature based image registration algorithm is applied on XH1 and XH2 to determine shift

between them. First, pixels of XH1 and XH2 images are mapped to high resolution grid according to the sub

pixel shift between them. After mapping of pixels, unknown pixel values are computed by shift adaptable bilinear

interpolation based on the shift between input images. The output H * W high resolution image will hold keen

edges than edges in interpolated image received by interpolation of low resolution image directly. This occurs due

to the verity that interpolation of high frequency sub-band images will conserve more high frequency components

after the interpolation of the respective sub bands separately than interpolating low resolution image directly.

Figure 6. Block Diagram of Proposed Approach

In summary, the proposed interpolation technique interpolates high frequency sub band images obtained by

DT-CWT. Inverse DT-CWT is applied on interpolated high frequency sub bands and interpolated input image to

get high resolution image. Two sub pixel shifted low resolution images are interpolated by this process. These

interpolated images are registered by feature based image registration. The final high resolution image is computed

using shift adaptable bilinear interpolation on previously interpolated images.
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5. Experimental Results

The results shown in this section are performed in MATLAB 2014b. In this paper, enhancement of image resolution

of satellite image is shown with interpolation factor two and four. The effectiveness of proposed approach is proved

by comparing it with different methods like bilinear, bicubic, NEDI, DWT-RE[42], DT-CWT-RE[43] , DT-CWT-

NLM-RE[44] for different satellite images in 7. In this paper, feature based image registration algorithm is used to

find the shift between two shift variant input images. Different contrast measuring parameters like Entropy, gradient

energy, laplacian energy and Brenners measure are used for performance analysis of different algorithms. If any

three out of these four has higher value then it shows that the technique gives better result.

Brenners measure: A Brenner’s measure is image quality measurement algorithm based on the second difference

of the image gray-levels. The mathematical function to calculate Brenner’s result for the image I can be described

as[45].

φ =
∑

i,j

| I(i, j)− I(i+ 2, j) |2 (6)

The Brenners measure indicates quality characteristics of an image. Higher value of φ indicates higher resolution.

Entropy: The entropy of image is calculated using the histogram of the image. The entropy of Image I is defined

as[45].

φ = −
L∑

k=1

Pk log(Pk) (7)

Where Pk is the relative frequency of the kth gray-level. Like Brenners measure, higher the entropy indicates

greater the quality enhancement of the image.

Energy of Gradient: The energy of gradient is image quality measure which can be calculated by the sum of

squares of the first derivative in the x and y directions. The mathematical representation of energy of gradient of

Image I is written as[45].

φx,y = −
∑

(i,j)ϵω(x,y)

| Ix(i, j)2 − Iy(i, j)
2 | (8)

Laplacian energy: The laplacian energy can be obtained using the second derivative of the image. The laplacian

energy can be calculated as[45].

φx,y = −
∑

(i,j)ϵω(x,y)

△I(i, j)2 (9)

Where △I is image laplacian obtained by convolving image I with laplacian mask.

Figure 7. Test Image Dataset

Figure 8 represents the result images of different methods for interpolation factor two. Figure 9 represents the

result images of different shift adaptable methods for interpolation factor two. Figure 10 shows output images of
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different approaches for interpolation factor four. Table 1, Table 2, Table 3 show comparison of different contrast

measures for images in Figure 8, Figure 9 and Figure 10 respectively. The comparison of different contrast measures

for image dataset 2 is shown in Table 4. It can be observed from Figure 8 and Table 1 that DT-CWT plus INEDI

gives better results for single images. It can be observed from Figure Figure 9 and Table 2 that shift adaptable

bilinear interpolation gives better result for two sub pixel shifted images. It can be observed from Figure 10, Table

3 and Table 4 that proposed approach is better in terms of both visualization and quality measure parameters

compared to existing methods.

Figure 8. (i) Input image (ii) Bilinear interpolation, (iii) Bicubic interpolation, (iv) NEDI, (v) INEDI, (vi) DWT-RE[42], (vii)
DT-CWT-RE[43], (viii) DT-CWT plus INEDI

Table 1. Quality Metrics for 2x enlarged image (from 128x128 to 256x256) for image dataset 1

- Brenners Image Curvature Entropy Energy of Gradient Laplacian

Bilinear 36.6331 33.6045 7.2179 82.1735 63.9702

Bicubic 51.6328 34.4683 7.3107 96.7810 77.3993

NEDI 60.8156 35.3867 7.3413 99.5996 78.4932

INEDI 62.3922 35.4655 7.3969 103.0535 80.3847

DWT-RE[42] 64.4603 35.5848 7.2910 105.2910 81.6586

DTCWT-RE[43] 63.5878 36.9608 7.1967 107.3133 85.2421

DTCWT + INEDI 72.5199 36.9916 7.401 108.4562 91.1676

Stat., Optim. Inf. Comput. Vol. 6, December 2018



P. SOLANKI, D. ISRANI AND A. SHAH 627

Figure 9. (i) and (ii) Image dataset 1, (iii) Shift adaptable bicubic interpolation, (iv) Shift adaptable INEDI, (v) Shift adaptable
bilinear interpolation

Table 2. Quality Metrics for 2x enlarged image (from 128x128 to 256x256) for image dataset 1

- Brenners Image Curvature Entropy Energy of Gradient Laplacian

Shift adaptable Bicubic Interpolation 90.6638 34.8840 7.3380 98.2960 96.2652

Shift adaptable INEDI 89.7365 34.9106 7.3380 100.1092 97.0216

Shift adaptable Bilinear Interpolation 92.3333 35.1615 7.3596 109.3428 99.0124

Table 3. Quality Metrics for 2x enlarged image (from 128x128 to 256x256) for image dataset 1

Method Brenners Image Curvature Entropy Energy of Gradient Laplacian

Bilinear 6.9549 30.778 7.2349 39.0715 16.5433

Bicubic 8.8132 31.792 7.3308 51.1658 23.2103

NEDI 19.3484 31.146 7.289 49.5763 35.2288

INEDI 23.074 31.9402 7.4162 58.6772 47.6169

Shift adaptable Bilinear

Interpolation
24.162 32.3649 7.3291 66.0076 46.4877

Shift adaptable Bicubic

Interpolation
24.6086 31.5759 7.2918 55.4353 43.6118

Shift adaptable INEDI 24.8015 31.6284 7.3254 58.7041 54.5164

DWT-RE[42] 23.4829 32.0513 7.3415 54.0162 26.8825

DTCWT-RE[43] 24.6729 32.4668 7.3705 59.3219 35.7241

DTCWT + INEDI + Shift

adaptable Bicubic Interpolation
30.8368 31.8256 7.9012 59.0154 52.0625

DTCWT + INEDI + Shift

adaptable INEDI
35.4083 30.6503 7.4015 57.4016 56.8377

Proposed Approach 43.6307 30.6356 7.4516 62.8213 69.4937
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Figure 10. (i) and (ii) Image dataset 1 , (iii) Bilinear interpolation, (iv) Bicubic interpolation, (v) NEDI, (vi) INEDI, (vii) Shift
adaptable bilinear interpolation, (viii) Shift adaptable bicubic interpolation, (ix) Shift adaptable improved NEDI, (x) DWT-
RE[42], (xi) DT-CWT-RE[43], (xii) DT-CWT plus INEDI followed by shift adaptable bicubic interpolation (xiii) DT-CWT
plus INEDI followed by shift adaptable INEDI (xiv) Proposed Approach.
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Table 4. Quality Metrics for 2x enlarged image (from 128x128 to 256x256) for image dataset 2.

Method Brenners Image Curvature Entropy Energy of Gradient Laplacian

Bilinear 3.8316 26.6312 6.5418 20.2964 8.0345

Bicubic 4.5352 27.0208 6.5551 23.7843 10.128

NEDI 8.6632 26.7027 6.5407 23.0981 15.3721

INEDI 11.8471 28.2743 6.5616 25.817 24.854

Shift adaptable Bilinear

Interpolation
19.9799 29.9187 6.5522 25.578 26.7976

Shift adaptable Bicubic

Interpolation
15.2001 26.6082 6.5313 19.3457 19.2923

Shift adaptable INEDI 15.6749 26.7762 6.5212 23.8575 23.3526

DWT-RE[42] 16.4743 27.642 6.6861 23.6419 25.6804

DTCWT-RE[43] 18.842 28.0842 6.113 25.2042 30.1412

DTCWT + INEDI + Shift

adaptable Bicubic Interpolation
23.5977 28.6037 6.3761 27.2309 39.5569

DTCWT + INEDI + Shift

adaptable INEDI
22.5967 28.692 6.3832 26.8354 34.3277

Proposed Approach 33.9758 28.8706 6.587 43.9569 44.1763

Figure 11. Comparison of different measures for Image dataset 3. (Factor 4)

Stat., Optim. Inf. Comput. Vol. 6, December 2018



630 AN EFFICIENT SATELLITE IMAGE SUPER RESOLUTION TECHNIQUE FOR

Figure 12. Comparison of different measures for Image dataset 4.

Figure 13. Comparison of different measures for Image dataset 5.

Figure 14. Comparison of different measures for Image dataset 6.
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6. Conclusion

In this paper, a novel innovative approach is proposed to enhance resolution of image. In this approach, using

DT-CWT, low and high frequency sub-bands are generated. High frequency sub band images are interpolated with

improved NEDI which is NEDI with circular window and dynamic window size as it gives better results on high

frequency components. Then inverse DT-CWT is applied on interpolated sub bands and interpolated input image to

reconstruct high resolution image. Two sub pixel shifted low resolution images are individually interpolated using

DT-CWT and INEDI method. The output images are registered and then shift adaptable bilinear interpolation is

applied on both output images to generate high resolution image. The proposed approach is verified for different

interpolation factors and for different satellite images. The accuracy of proposed approach is verified by several

contrast features. The algorithm proposed in this paper outperforms in comparison to state of the art algorithms.
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