
An Efficient Scalable and Flexible Data Transfer
Architecture for Multiprocessor SoC with Massive

Distributed Memory
Sang-Il Han*,**, Amer Baghdadi***, Marius Bonaciu**, Soo-Ik Chae*, Ahmed. A. Jerraya**

*Department of Electrical Engineering,
 Seoul National Univ., Seoul, Korea

{sihan,chae}@sdgroup.snu.ac.kr

**SLS Group, TIMA Laboratory,
Grenoble, France

{marius.bonaciu,ahmed.jerraya}@imag.fr

***Electronics Department,
ENST Bretagne, Brest, France
amer.baghdadi@enst-bretagne.fr

ABSTRACT
Massive data transfer encountered in emerging multimedia

embedded applications requires architecture allowing both highly
distributed memory structure and multiprocessor computation to be
handled. The key issue that needs to be solved is then how to
manage data transfers between large numbers of distributed
memories. To overcome this issue, our paper proposes a scalable
Distributed Memory Server (DMS) for multiprocessor SoC
(MPSoC). The proposed DMS is composed of: (1) high-
performance and flexible memory service access points (MSAPs),
which execute data transfers without intervention of the processing
elements, (2) data network, and (3) control network. It can handle
direct massive data transfer between the distributed memories of
an MPSoC. The scalability and flexibility of the proposed DMS
are illustrated through the implementation of an MPEG4 video
encoder for QCIF and CIF formats. The experiments show clearly
how DMS can be adapted to accommodate different SoC
configurations requiring various data transfer bandwidths.
Synthesis results show that bandwidth can scale up to 28.8 GB/sec.

Categories and Subject Descriptors: B.4.3
[Input/Output and Data Communications]: Interconnections
(Subsystems); B.8 [Hardware]: Performance and Reliability

General Terms: Design, Performance, Experimentation.

Keywords: Multiprocessor SoC, Message passing, Data
transfer architecture, Memory Server, Network on chip, Network
Interface.

1. Introduction
Current multimedia and telecommunication applications require

complex high-performance multiprocessor SoC (MPSoC). Raising
communication abstraction level and decoupling communication
from computation have been proposed as the solution to master the
design complexity of MPSoC [1]. To that end, high level
programming models, such as message passing [17][18], are quite
appropriate. However, to achieve the required high-performance,
more and more efficient architectures able to handle message
passing programming models are still required. The main

constraint that such architectures should deal with is to handle
high data transfer rates encountered in emerging complex
applications.

The data transfer architecture should be scalable to handle
applications of varying complexity requiring a different number of
processors, different bandwidth and/or different latency. The bus-
based MPSoC fails to scale well because it employs global order of
data transfer defined by central arbitration and the limited number
of data transfer. In order to overcome this issue, we adopt two
assumptions: 1) the read and write operations of a data transfer
should be decoupled, and 2) the data transfer engines should be
distributed to allow massive data transfers concurrently. These
two assumptions have already been employed in classical
massively parallel processors architectures [2] and the work
presented here adapts this concept to multiprocessor SoC with
massively distributed memory. The key contribution is to allow
customization of the communication infrastructure.

The data transfer architecture should also be flexible to enable
designs of different configurations in order to (1) fit the precise
application needs for low-cost implementation and (2) adapt
different kinds of computation and memory subsystems. This
flexible data transfer architecture can be built using a component-
based design methodology [3][4].

This paper proposes an efficient scalable and flexible data
transfer architecture for MPSoC with massive distributed memory.
The architecture is organized as Distributed Memory Server
(DMS) that consists of high-performance and flexible memory
service access points (MSAPs), data network, and control
network. The MSAP acts as Network Interface and Data Transfer
Engine. Synthesis results show that a typical MSAP provides
efficient results in terms of size and throughput. The scalability of
the proposed DMS will be illustrated through two implementations
of an MPEG4 video encoder. The experiments show clearly how
the DMS can be adapted to accommodate different multiprocessor
SoC configurations requiring different data transfer bandwidths.

The rest of the paper is organized as follows. Section 2 presents
state of the art on data transfer architectures. Section 3 presents the
scalable data transfer architecture (i.e. DMS) model. Section 4
details the high-performance and flexible memory service access
point (MSAP). Section 5 presents several experiments to analyze
the efficiency of the proposed DMS. Finally, section 6 gives our
conclusions on the work presented in this paper.

2. Related work on data transfer architecture
Massive data transfer architectures are well handled in the

classical massively parallel processors systems. Machines [2] like
nCUBE, CM-5, Intel Paragon, and Meiko CS-2 include
sophisticated mechanism for direct data transfer between
distributed memories. These architectures are generally scalable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

15.3

250

and support performance-efficient data transfers between large
numbers of memories. However, all of them lack flexibility and
have little concern about resource constraints. So these
architectures are not suitable for data transfer in SoC that should
satisfy severe performance, area, power, and cost constraints.
These constraints can be achieved only when the communication
structure can be customized to each specific application.

Conventional DMA engines [5] support efficient data transfers,
but they can execute only sequential data transfer. Multiple DMA
engines used in classical multiprocessor system enable the
execution of multiple concurrent data transfers, however such a
solution will not be cost-effective because the architecture is not
flexible. This will be shown in section 5. The DMA engines in
[6][7] support performance-efficient and concurrent data transfers.
But the scalability of data transfers is limited by the use of a
unique global arbiter.

Several on-chip network [10][11] and network interfaces [8][9]
handle data transfers between distributed memories on a chip.
These interfaces support scalable data transfers. The main
restriction of existing NoC solutions is the restrictions of the
number of channels used to link computation or memory nodes to
the network. This generally introduces congestion in the nodes
using the network. A typical case is a slow computation node
inducing saturation of the shortage capacity of the network and
then blocking all data transfers in the network. In order to avoid
that, highly flexible access to the network is required.

Additionally, several academic and industrial research projects
proposed high performance architectures for massive data transfer
applications. Among those we can cite Philips Nexperia™ DVP
[12], and TI OMAP™ [13]. Even if their architectures are highly
programmable, they lack scalability.

The key contribution of this paper is to provide both scalable
and flexible architecture allowing the specific needs of each
application to be accommodated. It combines the scalability of
NoC solutions with flexibility of component-based design to
customize the data transfer architecture.
3. The Distributed Memory Server

Distributed memory server (DMS) acts as a server that services
subsystems by executing data transfers between their
corresponding memories.

Figure 1 shows a global view of an MPSoC architecture using
DMS. The system is composed of computation subsystems,
memory subsystems and a DMS. A computation subsystem is
composed of one processing element (PE), local memory and local
bus. A memory subsystem consists of one or more memories. All
subsystems are connected to the DMS through Memory Service
Access Points (MSAP).

Control Network

…

…

DMS

m P M…

…

m IP …

…MSAP

Data Network

Local Bus 0 Local Bus k m

P

Local memory

Processor

M

IP

Global memory

IP

Data

Control

Memory Service
Access Point

MSAP

MSAPMSAP

Subsystem 0 Subsystem k Subsystem n

Control Network

…

…

DMS

m P M…

…

m IP …

…MSAP

Data Network

Local Bus 0 Local Bus k m

P

Local memory

Processor

M

IP

Global memory

IP

Data

Control

Memory Service
Access Point

MSAP

MSAPMSAP

Subsystem 0 Subsystem k Subsystem n

Figure 1. MPSoC with the DMS

The DMS is composed of MSAPs, control network and data
network. Each subsystem is connected to a specific MSAP that

allows data transfer from its local memories to other subsystems
and from other subsystems to its local memories. Data transfers are
requested by subsystems using the control network. MSAP
delivers transaction requests ordered by its subsystem and
synchronization information via control network. It also executes
data transfer between its local memory and other subsystem’s
memory via data network.

The proposed DMS allows:
1) Decoupling of read and write operations: MSAP

receives a data transfer request from the attached PE and
splits it into local request (read or write) and remote request
(write or read). Then, it sends the remote requests to the target
MSAPs via the control network.

2) Distributing execution requests: the distributed MSAPs
execute the memory-to-memory data transfers ordered by a
distributed scheduler (each MSAP includes an independent
local scheduler).

The proposed DMS decouples computation from communication
through the MSAP and allows parallel execution of computation
and communication through the processing power of MSAP.

In this paper, we use an AMBA bus for the control network and a
partial point to point interconnect for data network. The proposed
DMS has no assumption about control network and data network.
MSAP can accommodate any type and any combination of control
and data networks, e.g. bus, full point-to-point link, packet switch,
and circuit switch. The structure of the networks themselves is out
of the scope of this paper. We will discuss only the connection
between the networks and the MSAPs.
4. Memory Server Access Point

A Memory Server Access Point (MSAP) acts as a Network
Interface that provides the link between NoC and subsystems
(Figure 1). It also acts as a data transfer engine that transfers data
between the attached memory and other memories of other
MSAPs.

Figure 2 shows global structure of an MSAP. It is composed of 5
basic functions:

MSAP

Data
Network

Control
Network

PE

mem

Subsystem

Remote
Request
Acceptor

Memory
Scheduler

Memory
Activator

W
ra

pp
er

W
ra

pp
er

W
ra

pp
erLocal

Request
Acceptor

W
ra

pp
er

MSAP

Data
Network

Control
Network

PE

mem

Subsystem

Remote
Request
Acceptor

Memory
Scheduler

Memory
Activator

W
ra

pp
er

W
ra

pp
er

W
ra

pp
erLocal

Request
Acceptor

W
ra

pp
er

W
ra

pp
er

Figure 2. Basic functions of the MSAP

1) Local Request Acceptor (LRA): It accepts data transfer
requests from the attached PE and splits them into local
requests and remote requests. It sends the remote requests to
the target MSAPs via control network. (A data transfer is
composed of local read (write) operations and remote write
(read) operations.)

2) Remote Request Acceptor (RRA): It receives the remote
requests from other MSAPs.

3) Memory Scheduler (MS): It schedules the received requests
from LRA or RRA.

4) Memory Activator (MA): It executes read (write) request
selected by its memory scheduler.

251

5) Wrappers: they adopt the MSAP to PE, memory, data
network and control network.

The different parts can be customized and assembled using a
flexible scheme to
- Accommodate different networks and heterogeneous

subsystems thanks to wrappers.
- Accommodate different communication bandwidths and

latency thanks to modular decomposition in separate basic
functions.

The flexibility and configuration of MSAP will be explained in
the next section. Not all of the basic functions are required for all
possible configurations.

4.1 MSAP architecture
Figure 3 details the general architecture of the MSAP. Each

component will be explained in the rest of this section.
The MSAP is connected to the data network through data

input/output ports. A data channel is established by linking a data
input port and a data output port. The MSAP can transfer data to
another MSAP through a data channel. For the control ports,
control channels and the control network, we have exactly the
same behavior.

Each data port has a FIFO buffer that connects the Memory
Activator (MA) to the data network. Each control port has two
FIFO buffers: one connects Local Request Acceptor (LRA) to the
control network and the other connects Remote Request Acceptor
(RRA) to the control network. Note that RRA and LRA are
separated in order to avoid unnecessary instantiation (flexibility).

CONN,
COMM

TD

CHAIN

DNW

DNW

DNW

DNW

TD

DONE

RRA LRA

MA

MS

READY EXIT

MSAPControl Network

Data Network Local
bus

Processor

CNW

CNW

……
… …

MW Local
memory

PW

Data output
ports

Data input
ports

Ctrl input
port

Ctrl Output
port

…
…

NETID,
DONE

NETID,
DONE

CONN,
COMM

DONE

CONN,
COMM

TD

CHAIN

DNW

DNW

DNW

DNW

TD

DONE

RRA LRA

MA

MS

READY EXIT

MSAPControl Network

Data Network Local
bus

Processor

CNW

CNW

……
… …

MW Local
memory

PW

Data output
ports

Data input
ports

Ctrl input
port

Ctrl Output
port

…
…

NETID,
DONE

NETID,
DONE

CONN,
COMM

DONE

Figure 3. General detailed architecture of the MSAP

The buffers can be operated by two clocks: 1) data or control
network clock and 2) subsystem clock. The dotted lines on the
buffers in Figure 3 shows three clock domains, i.e. data network
clock domain, control network clock domain and subsystem clock
domain. The separation of network clock domain from subsystem
clock domain allows integrating subsystems with different clock
frequency with DMS.
4.1.1 Local Request Acceptor

LRA is connected to the PE of a subsystem through PE Wrapper
(PW) in order to receive and handle the requests of the local
subsystem.

LRA 1) receives connection setup/release requests and data
transfer requests from the attached PE, 2) reports the status of
requests to the attached PE, 3) sends remote requests to the target
RRAs via the control network, and 4) sends a Transfer Descriptor
(TD), to the Memory Scheduler (MS). A TD contains the

information for the data transfer, i.e. memory address, transfer size,
transfer mode, port number, and block transfer mode.

MSAP does not need an LRA if the attached subsystem is a
memory subsystem or slave computation subsystem.

Possible configurations of the LRA include interrupt generation,
scatter/gathering (i.e. automatic link of data transfers), and block
transfer (e.g. macro-blocks in video encoder).
4.1.2 Remote Request Acceptor

The RRA is connected to the control network through a CNW in
order to receive and handle the requests from LRAs.

The RRA 1) receives connection setup/release and data transfer
requests from other LRAs (including LRA of the same MSAP), 2)
sends a TD in data transfer request to Memory Scheduler, and 3)
makes acknowledgement of the received requests.

The MSAP doesn’t need an RRA if the memory of the attached
subsystem is not accessed by other LRAs.
4.1.3 Data Queue

A Data queue between the Memory Activator and a Data
Network Wrapper hides delay jitter for avoiding the unnecessary
activations of the data network and memory.

A data queue provides warning signal. The warning signal is set
or cleared according to its five latency levels: not empty, 1/4 filled,
1/2 filled, 3/4 filled and not full. The Memory Scheduler uses the
warning signal for avoiding unnecessary context switch.

Possible configurations of a Data Queue include its size and
latency level.

In addition, the chain queue (CHAIN) shown in Figure 3
contains the next transfer descriptor for scatter/gathering feature
mentioned in section 4.1.1.
4.1.4 Control Queue

A control queue between the LRA (or RRA) and the control
network hides the latency due to the contention of the control
network. The possible configuration of a Control Queue concerns
its size.

In addition, the completion queue (DONE) shown in Figure 3
contains the descriptors of the completed data transfer.
4.1.5 Memory scheduler

The Memory Scheduler contains a set of registers (called port
context) describing the status of each data port. A port context
consists of 6 registers as shown in Figure 4.

Local memory address (laddr)

Remote memory address (raddr)

Chain address (caddr)

Transfer configuration (ch_cfg)

Remote control network ID (rcnetid)

Remote data network ID (rdnetid)

Content Offset

0x0

0x4

0x8

0x10

0x14

0x18

Local memory address (laddr)

Remote memory address (raddr)

Chain address (caddr)

Transfer configuration (ch_cfg)

Remote control network ID (rcnetid)

Remote data network ID (rdnetid)

Local memory address (laddr)

Remote memory address (raddr)

Chain address (caddr)

Transfer configuration (ch_cfg)

Remote control network ID (rcnetid)

Remote data network ID (rdnetid)

Content Offset

0x0

0x4

0x8

0x10

0x14

0x18
Figure 4. Context registers of a data port

Memory Scheduler 1) selects one of the port contexts according
to its scheduling policy, 2) sends the selected context to the local
Memory Activator, and 3) updates the port contexts according to
the received TDs.

Possible configurations of the MS include scheduling policy,
priority, the size of ready queue and the number of MA.
4.1.6 Memory activator

Memory Activator (MA) receives an active context from
Memory Scheduler and executes it.

252

MA 1) executes the data transfer by generating memory address,
memory control signals and queue control signals according to the
received context, 2) switches context when the data transfer is
completed, a preemption condition is occurred, or the data queue is
empty (read operation) or full (write operation).

Figure 5 shows the detailed connections between the MA and
the data input ports.

Network clock Local clock

MA

MREADY

…

MUX

Data input
ports

WENnEMPTY

nFULL

DNW

REN

nEMPTY

REN

WENnEMPTY

nFULL

DNW

REN

nEMPTY

REN

…

nEMPTY

REN

RDATA

MWEN

MWDATA

Data
Network

Memory

or

Local bus

Network clock Local clock

MA

MREADY

…

MUX

Data input
ports

WENnEMPTY

nFULL

DNW

REN

nEMPTY

REN

WENnEMPTY

nFULL

DNW

REN

nEMPTY

REN

…

nEMPTY

REN

RDATA

MWEN

MWDATA

Data
Network

Memory

or

Local bus

Figure 5. Data flow between a subsystem and the data network

The MSAP can have several MAs for concurrent data transfers
if the subsystem has several memories, e.g. scratch-pad memories
[15][16]. So the possible configuration of the MA concerns the
number of ports.
4.1.7 Wrappers

An MSAP can be connected to four kinds of components: PE,
memories, data network and control network. For flexible
instantiation of MSAP, four kinds of wrapper are required, i.e. PE
Wrapper (PW), Memory Wrapper (MW), Data Network Wrapper
(DNW) and Control Network Wrapper respectively.

A PW converts the protocol of LRA to the memory access
protocol of PE. In the current version, the protocol of the LRA is
the AMBA protocol.

An MW provides the logical interface of memory to an MA. If
the attached memory is a local memory and it is connected to a
local bus, the memory wrapper converts the local bus protocol to
the queue protocol or vice versa. If the memory is global, e.g. an
embedded SRAM, an embedded flash memory, or an embedded
DRAM, the MW is a physical memory controller [7].

DNW and CNW convert the queue protocol to the network
protocol or vice versa. For example, if data network is packet-
switch, DNW is packetsizer or de-packetizer.
4.2 Data transfer Models

Three procedures are required to transfer data between two
MSAPs.
1) Connection setup: the two MSAPs open a channel by

reserving two ports and exchange the data network IDs of
these ports.

2) Data transfer: the two MSAPs transfer the data via the
channel.

3) Connection release: the two MSAPs release the two ports of
the channel.

We assume that the control network ID of the target port is
known before the connection setup.

Figure 6 shows an example of a data transfer from a global
memory to a local memory. The procedure of the data transfer is as
follows.

(1) The processor writes the data transfer information into its
control registers. (see Figure 4)
(2),(3),(4),(5) The LRA sends a command (COMM) request to
the RRA of the global memory via the control network. It also
sends a TD to the local MS.

(6) The RRA parses the COMM request and sends the
corresponding TD to its MS.
(7) The MS schedules the received TD.
(8),(9) The MA of the global memory transfers data from the
global memory to the data queue according to the received TD.
(10) The data (of the data queue of the global memory) is
transferred to the data queue of the local memory via the data
network.
(11),(12) The MA of the local memory transfers the data from
the data queue to the local memory according to the received TD.
If the TD is about write operation, the memory scheduler sends

DONE signal to the LRA and the RRA for synchronization after
transfer completion.

(9)

(8)

(5)

(6)

(7)

(1)

(2)

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

(b)

Network

(4)

P,m
MAMA MS LRA RRA MS

M
CNW DNW DNW CNW

(10)

(11)

(12)

(3)

MSAP1 MSAP2
(a)

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
���������������� (1)

(2)

(4)

Network

DNW

CNW

DNW

CNW

MA M

MS

MS

MA

LRA P

m

RRA

MSAP2

(7)

CNW

CNW

(5) (6)

(8)

COMM

MSAP1

(9)
(10)

(11) (12)

(3)

(7)

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
���������������� (1)

(2)

(4)

Network

DNW

CNW

DNW

CNW

MA M

MS

MS

MA

LRA P

m

RRA

MSAP2

(7)

CNW

CNW

(5) (6)

(8)

COMM

MSAP1

(9)
(10)

(11) (12)

(3)

(7)

(9)

(8)

(5)

(6)

(7)

(1)

(2)

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

(b)

Network

(4)

P,m
MAMA MS LRA RRA MS

M
CNW DNW DNW CNW

(10)

(11)

(12)

(3)

MSAP1 MSAP2

(9)

(8)

(5)

(6)

(7)

(1)

(2)

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

(b)

Network

(4)

P,m
MAMA MS LRA RRA MS

M
CNW DNW DNW CNW

(10)

(11)

(12)

(3)

MSAP1 MSAP2
(a)

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
���������������� (1)

(2)

(4)

Network

DNW

CNW

DNW

CNW

MA M

MS

MS

MA

LRA P

m

RRA

MSAP2

(7)

CNW

CNW

(5) (6)

(8)

COMM

MSAP1

(9)
(10)

(11) (12)

(3)

(7)

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
���������������� (1)

(2)

(4)

Network

DNW

CNW

DNW

CNW

MA M

MS

MS

MA

LRA P

m

RRA

MSAP2

(7)

CNW

CNW

(5) (6)

(8)

COMM

MSAP1

(9)
(10)

(11) (12)

(3)

(7)

(a)

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
���������������� (1)

(2)

(4)

Network

DNW

CNW

DNW

CNW

MA M

MS

MS

MA

LRA P

m

RRA

MSAP2

(7)

CNW

CNW

(5) (6)

(8)

COMM

MSAP1

(9)
(10)

(11) (12)

(3)

(7)

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
���������������� (1)

(2)

(4)

Network

DNW

CNW

DNW

CNW

MA M

MS

MS

MA

LRA P

m

RRA

MSAP2

(7)

CNW

CNW

(5) (6)

(8)

COMM

MSAP1

(9)
(10)

(11) (12)

(3)

(7)

Figure 6. A data transfer example between two MSAPs

In distributed memory architectures, data consistency is an
important issue. DMS assumes that this issue is considered by a
higher-level protocol. That means, if the DMS is used in a
message-passing architecture, the message-passing protocol will
solve this issue [19].

4.3 Flexible configuration of the MSAP
The flexible architecture of the MSAP enables various

configurations that allow to 1) integrate different networks and
heterogeneous subsystems, 2) accommodate different
communication bandwidths and latency, and 3) implement DMS at
low-cost.

MSAP is able to adapt various types of PEs, memories, control
networks, and data networks to the DMS through the
corresponding wrapper, i.e. PW, MW, CNW and DNW.
Furthermore, it is able to integrate various clock domains of
subsystems and networks through queues that are operated by two
clock frequencies.

To accommodate such various data transfers, MSAP allows the
configuration of the number of MAs, the number of ports of each
MA, the queue size of each port, the priority of each port, the
latency level of each port, and the scheduling policy.

Besides that, to customize the MSAP according to a specific
functionality, the MSAP can be configured to include or not the
following components: RRA, LRA (Interrupt generation, Block
Transfer, and scatter/gathering).

Finally, the automatic configuration and generation of the DMS
is important to reduce the design time. A component-based design
methodology could be a proper approach. We believe that the
proposed architecture model for the DMS is already suitable for a
systematic design. Automation is out of the scope of the work
presented in this paper. Yet, it concerns our future work.

253

5. Experiments
Several experiments were conducted in order to verify the

scalability and flexibility of DMS under the parameters and
environment shown in Table 1.

Language SystemC RTL description

Technology TSMC (slow) 0.18µm

Compiler Synopsis Design Compiler

Control Network AMBA bus

Data network Point-to-point

Clock freq. 200 MHz

Table 1. Parameters and environment of the experiments

First, to evaluate the flexibility of MSAP, we have synthesized
several MSAPs by using various configurations. Table 2 shows the
area for each configuration. The basic configuration (BASIC) of
an MSAP is the one with only MA, MS, CNW, DNW, Data queue
and Control queue. The INTR, BLOCK, CHAIN, and TWO_PRIO
represent a configuration with interrupt feature, block transfer
feature, linked-list feature, and two priority feature of MSAP
respectively.

Configuration MSAP w/o

data queue Data queue Total area

1 BASIC+RRA 0.129 0.103 0.233
2 BASIC+LRA 0.200 0.103 0.303
3 +RRA 0.235 0.103 0.338
4 +INTR 0.240 0.103 0.344
5 +BLOCK 0.245 0.103 0.349
6 +CHAIN 0.321 0.121 0.442
7 +TWO_PRIO 0.348 0.121 0.470

Table 2. Areas (mm2) of an MSAP for various configurations

For all of these configurations, we fixed the number of data ports
to 4 and we used a 2-port, 32bit wide and 16-word deep register
file as data queue. In this case, the MSAP (with four data ports)
has an aggregate bandwidth of 4×200MHz×4bytes = 3.2 GB/sec.
However, in general case, the bandwidth of MSAP is limited by
the memory bandwidth. This result shows how configuration may
affect heavily the cost of MSAP.

The scalability of the number of data ports is also a key feature
of MSAP. The synthesis results of several MSAPs with different
numbers of ports are shown Table 3. For all of them, we used the
configuration number 5 of Table 2.

The MSAP compares favorably to classical DMA. The gate
count (NAND2 equivalent) of a commercial DMA engine [5] (8
channels, 32bit*4 words data queue per each port, with
scatter/gathering feature) is about 82k. The gate count of the
proposed data transfer engine (8 channels, 32bit*8 words data
queue per each port, with scatter/gathering feature) is about 68k, so
it is about 20% smaller than the commercial DMA.

Port number MSAP w/o data queue Data
queue

Total
area

1 0.136 0.026 0.161
2 0.177 0.052 0.229
4 0.245 0.103 0.349
8 0.394 0.207 0.600
16 0.685 0.413 1.099

Table 3. Areas (mm2) of an MSAP about port number

Second, to verify the scalability and flexibility of DMS, we
conducted two other experiments. One is the design of an MPEG4
[14] encoder that can encode QCIF image at 25 frames/sec by
using 4 ARM7 processors. The other is the design of an MPEG4
encoder for CIF image by using 16 ARM7 processors.

MPEG4 Encoder

Fc

Fn-1

Fn

ME

MC

Q DCT

ZIG

IQ IDCT

VLC

CamNet

(a)

Px Cam

NetM Global
Memory

Network
Device

CameraXth processor

P2P2M P1CamNet P2

P3,P4

(b)

MPEG4 Encoder

Fc

Fn-1

Fn

ME

MC

Q DCT

ZIG

IQ IDCT

VLC

CamNet

MPEG4 Encoder

Fc

Fn-1

Fn

ME

MC

Q DCT

ZIG

IQ IDCT

VLC

CamNet

(a)

Px Cam

NetM Global
Memory

Network
Device

CameraXth processor

P2P2M P1CamNet P2

P3,P4

(b)

Px Cam

NetM Global
Memory

Network
Device

CameraXth processor

P2P2MM P1P1CamCamNetNet P2

P3,P4

(b)
Figure 7. (a) Block diagram, (b) System-level architecture of an

MPEG4 system for QCIF format

Figure 7 (a) shows the Block diagram of an MPEG4 system. The
MPEG4 encoder receives images from a camera, encodes the
images and then sends the encoded bit-stream to network device,
e.g. wireless LAN. Figure 7 (b) shows the system-level
architecture of an MPEG4 system for QCIF format. Each node
represents a subsystem and each edge represents an abstract
channel. A camera writes a part of image from its buffer to the
global memory. Each processor reads a part of image from the
global memory and executes encoding algorithm (ME, MC, DCT,
IDCT and so on). P1 makes a bit-stream from the results by
executing VLC and sends it to network device. The structure of
MPEG4 system for CIF format is hierarchical combination of
MPEG4 system for QCIF format.

Figure 8 shows the corresponding implementation as an MPSoC
with the DMS architecture.

Property DMS for

MPEG4 QCIF
DMS for

MPEG4 CIF
of MSAP 7 22
of port 18 72
Area of DMS 1.61 mm2 5.93 mm2
Area over DMAs+NIs 45% 41%
Area over DMAs 86% 80%
Aggregate bandwidth 7.2 GB/sec 28.8 GB/sec
Latency of read transfer 10 10
Latency of write transfer 6 6

Table 4. Experimental results of two DMS versions

Table 4 summarizes the results obtained from the two DMS
implementations. These results show clearly the bandwidth
scalability and the area efficiency of the proposed DMS.

254

DNW DNW DNW DNW DNW CNW

MA

M

MS

Control Network

RRA

DNW DNW DNW DNW DNW CNW

MA MS

RRA

P1m

Local bus 2

LRA

DNWDNW CNW

MA MS

RRA

P2m

Local bus 3

LRA

DNW CNW

MSMA

LRA

Cam
Ctrlm

Local bus 1

Data Network

DNW CNW

MSMA

RRA

Net
Ctrlm

Local bus 0

DNWDNW CNW

MA MS

RRA

P3m

Local bus 4

LRA

DNWDNW CNW

MA MS

RRA

P4m

Local bus 5

LRA

DNW DNW DNW DNW DNW CNW

MA

M

MS

Control Network

RRA

DNW DNW DNW DNW DNW CNW

MA MS

RRA

P1m

Local bus 2

LRA

DNWDNW CNW

MA MS

RRA

P2m

Local bus 3

P2m

Local bus 3

LRA

DNW CNW

MSMA

LRA

Cam
Ctrlm

Local bus 1

Data Network

DNW CNW

MSMA

RRA

Net
Ctrlm

Local bus 0

DNWDNW CNW

MA MS

RRA

P3m

Local bus 4

P3m

Local bus 4

LRA

DNWDNW CNW

MA MS

RRA

P4m

Local bus 5

P4m

Local bus 5

LRA

Figure 8. MPEG4 system for QCIF format using the DMS architecture

6. Conclusion
In this paper, we described a Distributed Memory Server (DMS)

to handle massive data transfers between large numbers of
distributed memories on MPSoC. It consists of high-performance
and flexible Memory Service Access Points (MSAPs), data
network and control network. The DMS provides 1) performance-
efficient data transfer mechanism between subsystems of MPSoC,
2) a scalable solution to handle a large application field, and 3)
flexible designs to integrate with heterogeneous subsystems at low-
cost.

An MSAP, which is the main component of the DMS, receives
data transfer requests from the attached subsystem of an MPSoC,
schedules them and then executes the received data transfer
requests concurrently. Synthesis results of different configurations
show clearly the flexibility of the proposed architecture of MSAP.
Compared to a conventional DMA engine of similar functionality,
an MSAP reduce the area by about 20%. A typical instance of
MSAP runs at 200Mhz, occupies 0.349 mm2 in a 0.18 µm
technology, and has an aggregate bandwidth that scales up to 3.2
GB/sec.

The scalability and flexibility of the proposed DMS are
illustrated through the implementation of an MPEG4 video
encoder for QCIF and CIF formats. The experiments illustrate how
DMS can be adapted to accommodate different SoC configuration
requiring different data transfer bandwidths. The DMS for CIF
requires 22 MSAPs and its aggregate bandwidth rises up to 28.8
GB/sec. Its area is 55%~59% smaller than the combination of
conventional DMAs [5] and network interfaces [8].

7. REFERENCES
[1] K. Keutzer et al. “System-level design: Orthogonalization of

concerns and platform-based design,” IEEE Trans. On CAD
of Integrated Circuits and Systems.

[2] Culler D. E. et al, “Parallel Computer Architecture, A
Hardware/software approach,” Morgan Kaufmann Inc, San
Francisco California, 1999, ISBN 1-55860-343-3.

[3] A. Baghdadi, D. Lyonnard, N.-E. Zergainoh, and A.A.
Jerraya, “An Efficient Architecture Model for Systematic
Design of Application-Specific Multiprocessor SoC,” in
Proceedings of DATE'01.

[4] Jerraya et al., “Component-Based Design Approach for
Multicore SoCs,” in Proceedings of DAC'02.

[5] ARM PrimeCell™ DMA Controller,
http://www.arm.com/armtech/PrimeCell?OpenDocument

[6] Dave Comisky et al, “A Scalable High-Performance DMA
Architecture for DSP Applications,” in Proceedings of ICCD
2000.

[7] MemMax™ Memory Scheduler,
http://www.sonicsinc.com/sonics/products/memmax

[8] A. Radulescu et al, "An Efficient On-Chip Network Interface
Offering Guaranteed Services, Shared-Memory Abstraction,
and Flexible Network Programming," in Proceedings of
DATE'04.

[9] P. Bhojwani et al. “Interfacing cores with on-chip packet-
switched networks,” In IEEE Proc. On VLSI Design, 2003

[10] E. Rijpkema, et al., “Trade offs in the design of a router with
both guaranteed and best-effort services for networks on
chip,” in Proceedings of DATE'03.

[11] William J. Dally and Brian Towles,“Route Packets, Not
Wires: On-Chip Interconnection Networks,” in Proceedings of
DAC'02.

[12] Philips Nexperia™ DVP,
http://www.semiconductors.philips.com/platforms/nexperia

[13] TI OMAP™ Platform,
http://www.ti.com/sc/docs/apps/omap/overview.htm

[14] MPEG-4 Standard,
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-
4.htm

[15] Motorola DSP56311,
http://www.motorola.com/brdata/PDFDB/docs/DSP56311.pdf

[16] ARM ARM946E-S,
http://www.arm.com/products/CPUs/ARM946ES.html

[17] T. McMahon, A. Skjellum, “eMPI/eMPICH: Embedding
MPI,” In Proceedings of the Second MPI Developer's
Conference, University of Notre Dame, South Bend, IN, 1996,
pp. 57-65. 22

[18] J. Kohout and A. George, "A High-Performance
Communication Service for Parallel Computing on
Distributed DSP Systems," Parallel Computing, Vol. 29, No.
7, July 2003, pp. 851-878.

[19] Junyu Peng and Daniel Gajski. “Optimal Message-Passing for
Data Coherency in Distributed Architecture,” in Proceedings
of ISSS’02.

255

