
An Efficient Scalable and Flexible Data Transfer 
Architecture for Multiprocessor SoC with Massive 

Distributed Memory 
Sang-Il Han*,**, Amer Baghdadi***, Marius Bonaciu**, Soo-Ik Chae*, Ahmed. A. Jerraya**

*Department of Electrical Engineering, 
 Seoul National Univ., Seoul, Korea 

{sihan,chae}@sdgroup.snu.ac.kr 

**SLS Group, TIMA Laboratory, 
Grenoble, France 

{marius.bonaciu,ahmed.jerraya}@imag.fr 

***Electronics Department,  
ENST Bretagne, Brest, France 
amer.baghdadi@enst-bretagne.fr

ABSTRACT 
Massive data transfer encountered in emerging multimedia 

embedded applications requires architecture allowing both highly 
distributed memory structure and multiprocessor computation to be 
handled. The key issue that needs to be solved is then how to 
manage data transfers between large numbers of distributed 
memories. To overcome this issue, our paper proposes a scalable 
Distributed Memory Server (DMS) for multiprocessor SoC 
(MPSoC). The proposed DMS is composed of: (1) high-
performance and flexible memory service access points (MSAPs), 
which execute data transfers without intervention of the processing 
elements, (2) data network, and (3) control network. It can handle 
direct massive data transfer between the distributed memories of 
an MPSoC. The scalability and flexibility of the proposed DMS 
are illustrated through the implementation of an MPEG4 video 
encoder for QCIF and CIF formats. The experiments show clearly 
how DMS can be adapted to accommodate different SoC 
configurations requiring various data transfer bandwidths. 
Synthesis results show that bandwidth can scale up to 28.8 GB/sec. 

Categories and Subject Descriptors: B.4.3 
[Input/Output and Data Communications]: Interconnections 
(Subsystems); B.8 [Hardware]: Performance and Reliability 

General Terms: Design, Performance, Experimentation. 

Keywords: Multiprocessor SoC, Message passing, Data 
transfer architecture, Memory Server, Network on chip, Network 
Interface. 

1. Introduction 
Current multimedia and telecommunication applications require 

complex high-performance multiprocessor SoC (MPSoC). Raising 
communication abstraction level and decoupling communication 
from computation have been proposed as the solution to master the 
design complexity of MPSoC [1]. To that end, high level 
programming models, such as message passing [17][18], are quite 
appropriate. However, to achieve the required high-performance, 
more and more efficient architectures able to handle message 
passing programming models are still required. The main 

constraint that such architectures should deal with is to handle 
high data transfer rates encountered in emerging complex 
applications.  

The data transfer architecture should be scalable to handle 
applications of varying complexity requiring a different number of 
processors, different bandwidth and/or different latency. The bus-
based MPSoC fails to scale well because it employs global order of 
data transfer defined by central arbitration and the limited number 
of data transfer. In order to overcome this issue, we adopt two 
assumptions: 1) the read and write operations of a data transfer 
should be decoupled, and 2) the data transfer engines should be 
distributed to allow massive data transfers concurrently. These 
two assumptions have already been employed in classical 
massively parallel processors architectures [2] and the work 
presented here adapts this concept to multiprocessor SoC with 
massively distributed memory. The key contribution is to allow 
customization of the communication infrastructure. 

The data transfer architecture should also be flexible to enable 
designs of different configurations in order to (1) fit the precise 
application needs for low-cost implementation and (2) adapt 
different kinds of computation and memory subsystems. This 
flexible data transfer architecture can be built using a component-
based design methodology [3][4]. 

This paper proposes an efficient scalable and flexible data 
transfer architecture for MPSoC with massive distributed memory. 
The architecture is organized as Distributed Memory Server 
(DMS) that consists of high-performance and flexible memory 
service access points (MSAPs), data network, and control 
network. The MSAP acts as Network Interface and Data Transfer 
Engine. Synthesis results show that a typical MSAP provides 
efficient results in terms of size and throughput. The scalability of 
the proposed DMS will be illustrated through two implementations 
of an MPEG4 video encoder. The experiments show clearly how 
the DMS can be adapted to accommodate different multiprocessor 
SoC configurations requiring different data transfer bandwidths. 

The rest of the paper is organized as follows. Section 2 presents 
state of the art on data transfer architectures. Section 3 presents the 
scalable data transfer architecture (i.e. DMS) model. Section 4 
details the high-performance and flexible memory service access 
point (MSAP). Section 5 presents several experiments to analyze 
the efficiency of the proposed DMS. Finally, section 6 gives our 
conclusions on the work presented in this paper. 

2. Related work on data transfer architecture 
Massive data transfer architectures are well handled in the 

classical massively parallel processors systems. Machines [2] like 
nCUBE, CM-5, Intel Paragon, and Meiko CS-2 include 
sophisticated mechanism for direct data transfer between 
distributed memories. These architectures are generally scalable 
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and support performance-efficient data transfers between large 
numbers of memories. However, all of them lack flexibility and 
have little concern about resource constraints. So these 
architectures are not suitable for data transfer in SoC that should 
satisfy severe performance, area, power, and cost constraints. 
These constraints can be achieved only when the communication 
structure can be customized to each specific application. 

Conventional DMA engines [5] support efficient data transfers, 
but they can execute only sequential data transfer. Multiple DMA 
engines used in classical multiprocessor system enable the 
execution of multiple concurrent data transfers, however such a 
solution will not be cost-effective because the architecture is not 
flexible. This will be shown in section 5. The DMA engines in 
[6][7] support performance-efficient and concurrent data transfers. 
But the scalability of data transfers is limited by the use of a 
unique global arbiter.  

Several on-chip network [10][11] and network interfaces [8][9] 
handle data transfers between distributed memories on a chip. 
These interfaces support scalable data transfers. The main 
restriction of existing NoC solutions is the restrictions of the 
number of channels used to link computation or memory nodes to 
the network. This generally introduces congestion in the nodes 
using the network. A typical case is a slow computation node 
inducing saturation of the shortage capacity of the network and 
then blocking all data transfers in the network. In order to avoid 
that, highly flexible access to the network is required. 

Additionally, several academic and industrial research projects 
proposed high performance architectures for massive data transfer 
applications. Among those we can cite Philips Nexperia™ DVP 
[12], and TI OMAP™ [13]. Even if their architectures are highly 
programmable, they lack scalability. 

The key contribution of this paper is to provide both scalable 
and flexible architecture allowing the specific needs of each 
application to be accommodated. It combines the scalability of 
NoC solutions with flexibility of component-based design to 
customize the data transfer architecture. 
3. The Distributed Memory Server 

Distributed memory server (DMS) acts as a server that services 
subsystems by executing data transfers between their 
corresponding memories. 

Figure 1 shows a global view of an MPSoC architecture using 
DMS. The system is composed of computation subsystems, 
memory subsystems and a DMS. A computation subsystem is 
composed of one processing element (PE), local memory and local 
bus. A memory subsystem consists of one or more memories. All 
subsystems are connected to the DMS through Memory Service 
Access Points (MSAP).  
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Figure 1. MPSoC with the DMS 

The DMS is composed of MSAPs, control network and data 
network. Each subsystem is connected to a specific MSAP that 

allows data transfer from its local memories to other subsystems 
and from other subsystems to its local memories. Data transfers are 
requested by subsystems using the control network. MSAP 
delivers transaction requests ordered by its subsystem and 
synchronization information via control network. It also executes 
data transfer between its local memory and other subsystem’s 
memory via data network.  

The proposed DMS allows: 
1) Decoupling of read and write operations: MSAP 

receives a data transfer request from the attached PE and 
splits it into local request (read or write) and remote request 
(write or read). Then, it sends the remote requests to the target 
MSAPs via the control network.  

2) Distributing execution requests: the distributed MSAPs 
execute the memory-to-memory data transfers ordered by a 
distributed scheduler (each MSAP includes an independent 
local scheduler).  

The proposed DMS decouples computation from communication 
through the MSAP and allows parallel execution of computation 
and communication through the processing power of MSAP. 

In this paper, we use an AMBA bus for the control network and a 
partial point to point interconnect for data network. The proposed 
DMS has no assumption about control network and data network. 
MSAP can accommodate any type and any combination of control 
and data networks, e.g. bus, full point-to-point link, packet switch, 
and circuit switch. The structure of the networks themselves is out 
of the scope of this paper. We will discuss only the connection 
between the networks and the MSAPs.  
4. Memory Server Access Point 

A Memory Server Access Point (MSAP) acts as a Network 
Interface that provides the link between NoC and subsystems 
(Figure 1). It also acts as a data transfer engine that transfers data 
between the attached memory and other memories of other 
MSAPs.  

Figure 2 shows global structure of an MSAP. It is composed of 5 
basic functions: 
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Figure 2. Basic functions of the MSAP 

1) Local Request Acceptor (LRA): It accepts data transfer 
requests from the attached PE and splits them into local 
requests and remote requests. It sends the remote requests to 
the target MSAPs via control network. (A data transfer is 
composed of local read (write) operations and remote write 
(read) operations.) 

2) Remote Request Acceptor (RRA): It receives the remote 
requests from other MSAPs.  

3) Memory Scheduler (MS): It schedules the received requests 
from LRA or RRA.  

4) Memory Activator (MA): It executes read (write) request 
selected by its memory scheduler. 
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5) Wrappers: they adopt the MSAP to PE, memory, data 
network and control network. 

The different parts can be customized and assembled using a 
flexible scheme to 
- Accommodate different networks and heterogeneous 

subsystems thanks to wrappers. 
- Accommodate different communication bandwidths and 

latency thanks to modular decomposition in separate basic 
functions. 

The flexibility and configuration of MSAP will be explained in 
the next section. Not all of the basic functions are required for all 
possible configurations. 

4.1 MSAP architecture 
Figure 3 details the general architecture of the MSAP. Each 

component will be explained in the rest of this section. 
The MSAP is connected to the data network through data 

input/output ports. A data channel is established by linking a data 
input port and a data output port. The MSAP can transfer data to 
another MSAP through a data channel. For the control ports, 
control channels and the control network, we have exactly the 
same behavior. 

Each data port has a FIFO buffer that connects the Memory 
Activator (MA) to the data network. Each control port has two 
FIFO buffers: one connects Local Request Acceptor (LRA) to the 
control network and the other connects Remote Request Acceptor 
(RRA) to the control network. Note that RRA and LRA are 
separated in order to avoid unnecessary instantiation (flexibility). 
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Figure 3. General detailed architecture of the MSAP 

The buffers can be operated by two clocks: 1) data or control 
network clock and 2) subsystem clock. The dotted lines on the 
buffers in Figure 3 shows three clock domains, i.e. data network 
clock domain, control network clock domain and subsystem clock 
domain. The separation of network clock domain from subsystem 
clock domain allows integrating subsystems with different clock 
frequency with DMS. 
4.1.1 Local Request Acceptor 

LRA is connected to the PE of a subsystem through PE Wrapper 
(PW) in order to receive and handle the requests of the local 
subsystem.  

LRA 1) receives connection setup/release requests and data 
transfer requests from the attached PE, 2) reports the status of 
requests to the attached PE, 3) sends remote requests to the target 
RRAs via the control network, and 4) sends a Transfer Descriptor 
(TD), to the Memory Scheduler (MS). A TD contains the 

information for the data transfer, i.e. memory address, transfer size, 
transfer mode, port number, and block transfer mode. 

MSAP does not need an LRA if the attached subsystem is a 
memory subsystem or slave computation subsystem.  

Possible configurations of the LRA include interrupt generation, 
scatter/gathering (i.e. automatic link of data transfers), and block 
transfer (e.g. macro-blocks in video encoder). 
4.1.2 Remote Request Acceptor 

The RRA is connected to the control network through a CNW in 
order to receive and handle the requests from LRAs.  

The RRA 1) receives connection setup/release and data transfer 
requests from other LRAs (including LRA of the same MSAP), 2) 
sends a TD in data transfer request to Memory Scheduler, and 3) 
makes acknowledgement of the received requests. 

The MSAP doesn’t need an RRA if the memory of the attached 
subsystem is not accessed by other LRAs.  
4.1.3 Data Queue 

A Data queue between the Memory Activator and a Data 
Network Wrapper hides delay jitter for avoiding the unnecessary 
activations of the data network and memory.  

A data queue provides warning signal. The warning signal is set 
or cleared according to its five latency levels: not empty, 1/4 filled, 
1/2 filled, 3/4 filled and not full. The Memory Scheduler uses the 
warning signal for avoiding unnecessary context switch. 

Possible configurations of a Data Queue include its size and 
latency level. 

In addition, the chain queue (CHAIN) shown in Figure 3 
contains the next transfer descriptor for scatter/gathering feature 
mentioned in section 4.1.1. 
4.1.4 Control Queue 

A control queue between the LRA (or RRA) and the control 
network hides the latency due to the contention of the control 
network. The possible configuration of a Control Queue concerns 
its size. 

In addition, the completion queue (DONE) shown in Figure 3 
contains the descriptors of the completed data transfer.  
4.1.5 Memory scheduler 

The Memory Scheduler contains a set of registers (called port 
context) describing the status of each data port. A port context 
consists of 6 registers as shown in Figure 4.  
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Figure 4. Context registers of a data port 

Memory Scheduler 1) selects one of the port contexts according 
to its scheduling policy, 2) sends the selected context to the local 
Memory Activator, and 3) updates the port contexts according to 
the received TDs.  

Possible configurations of the MS include scheduling policy, 
priority, the size of ready queue and the number of MA. 
4.1.6 Memory activator 

Memory Activator (MA) receives an active context from 
Memory Scheduler and executes it. 
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MA 1) executes the data transfer by generating memory address, 
memory control signals and queue control signals according to the 
received context, 2) switches context when the data transfer is 
completed, a preemption condition is occurred, or the data queue is 
empty (read operation) or full (write operation).  

Figure 5 shows the detailed connections between the MA and 
the data input ports. 
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Figure 5. Data flow between a subsystem and the data network 
 

The MSAP can have several MAs for concurrent data transfers 
if the subsystem has several memories, e.g. scratch-pad memories 
[15][16]. So the possible configuration of the MA concerns the 
number of ports. 
4.1.7 Wrappers 

An MSAP can be connected to four kinds of components: PE, 
memories, data network and control network. For flexible 
instantiation of MSAP, four kinds of wrapper are required, i.e. PE 
Wrapper (PW), Memory Wrapper (MW), Data Network Wrapper 
(DNW) and Control Network Wrapper respectively. 

A PW converts the protocol of LRA to the memory access 
protocol of PE. In the current version, the protocol of the LRA is 
the AMBA protocol.  

An MW provides the logical interface of memory to an MA. If 
the attached memory is a local memory and it is connected to a 
local bus, the memory wrapper converts the local bus protocol to 
the queue protocol or vice versa. If the memory is global, e.g. an 
embedded SRAM, an embedded flash memory, or an embedded 
DRAM, the MW is a physical memory controller [7]. 

DNW and CNW convert the queue protocol to the network 
protocol or vice versa. For example, if data network is packet-
switch, DNW is packetsizer or de-packetizer. 
4.2 Data transfer Models 

Three procedures are required to transfer data between two 
MSAPs. 
1) Connection setup: the two MSAPs open a channel by 

reserving two ports and exchange the data network IDs of 
these ports. 

2) Data transfer: the two MSAPs transfer the data via the 
channel.  

3) Connection release: the two MSAPs release the two ports of 
the channel. 

We assume that the control network ID of the target port is 
known before the connection setup. 

Figure 6 shows an example of a data transfer from a global 
memory to a local memory. The procedure of the data transfer is as 
follows. 

(1) The processor writes the data transfer information into its 
control registers. (see Figure 4) 
(2),(3),(4),(5) The LRA sends a command (COMM) request to 
the RRA of the global memory via the control network. It also 
sends a TD to the local MS. 

(6) The RRA parses the COMM request and sends the 
corresponding TD to its MS. 
(7) The MS schedules the received TD. 
(8),(9) The MA of the global memory transfers data from the 
global memory to the data queue according to the received TD.  
(10) The data (of the data queue of the global memory) is 
transferred to the data queue of the local memory via the data 
network. 
(11),(12) The MA of the local memory transfers the data from 
the data queue to the local memory according to the received TD. 
If the TD is about write operation, the memory scheduler sends 

DONE signal to the LRA and the RRA for synchronization after 
transfer completion.  
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Figure 6. A data transfer example between two MSAPs 

In distributed memory architectures, data consistency is an 
important issue. DMS assumes that this issue is considered by a 
higher-level protocol. That means, if the DMS is used in a 
message-passing architecture, the message-passing protocol will 
solve this issue [19]. 

4.3 Flexible configuration of the MSAP 
The flexible architecture of the MSAP enables various 

configurations that allow to 1) integrate different networks and 
heterogeneous subsystems, 2) accommodate different 
communication bandwidths and latency, and 3) implement DMS at 
low-cost. 

MSAP is able to adapt various types of PEs, memories, control 
networks, and data networks to the DMS through the 
corresponding wrapper, i.e. PW, MW, CNW and DNW. 
Furthermore, it is able to integrate various clock domains of 
subsystems and networks through queues that are operated by two 
clock frequencies. 

To accommodate such various data transfers, MSAP allows the 
configuration of the number of MAs, the number of ports of each 
MA, the queue size of each port, the priority of each port, the 
latency level of each port, and the scheduling policy.  

Besides that, to customize the MSAP according to a specific 
functionality, the MSAP can be configured to include or not the 
following components: RRA, LRA (Interrupt generation, Block 
Transfer, and scatter/gathering). 

Finally, the automatic configuration and generation of the DMS 
is important to reduce the design time. A component-based design 
methodology could be a proper approach. We believe that the 
proposed architecture model for the DMS is already suitable for a 
systematic design. Automation is out of the scope of the work 
presented in this paper. Yet, it concerns our future work. 
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5. Experiments 
Several experiments were conducted in order to verify the 

scalability and flexibility of DMS under the parameters and 
environment shown in Table 1.  

 

Language SystemC RTL description 

Technology TSMC (slow) 0.18µm 

Compiler Synopsis Design Compiler 

Control Network AMBA bus 

Data network Point-to-point 

Clock freq. 200 MHz 

Table 1. Parameters and environment of the experiments 

First, to evaluate the flexibility of MSAP, we have synthesized 
several MSAPs by using various configurations. Table 2 shows the 
area for each configuration. The basic configuration  (BASIC) of 
an MSAP is the one with only MA, MS, CNW, DNW, Data queue 
and Control queue. The INTR, BLOCK, CHAIN, and TWO_PRIO 
represent a configuration with interrupt feature, block transfer 
feature, linked-list feature, and two priority feature of MSAP 
respectively. 

 
# Configuration MSAP w/o 

data queue Data queue Total area 

1 BASIC+RRA 0.129 0.103 0.233 
2 BASIC+LRA 0.200 0.103 0.303 
3 +RRA 0.235 0.103 0.338 
4 +INTR 0.240 0.103 0.344 
5 +BLOCK 0.245 0.103 0.349 
6 +CHAIN 0.321 0.121 0.442 
7 +TWO_PRIO 0.348 0.121 0.470 

Table 2. Areas (mm2) of an MSAP for various configurations 

For all of these configurations, we fixed the number of data ports 
to 4 and we used a 2-port, 32bit wide and 16-word deep register 
file as data queue. In this case, the MSAP (with four data ports) 
has an aggregate bandwidth of 4×200MHz×4bytes = 3.2 GB/sec. 
However, in general case, the bandwidth of MSAP is limited by 
the memory bandwidth. This result shows how configuration may 
affect heavily the cost of MSAP. 

The scalability of the number of data ports is also a key feature 
of MSAP. The synthesis results of several MSAPs with different 
numbers of ports are shown Table 3. For all of them, we used the 
configuration number 5 of Table 2. 

The MSAP compares favorably to classical DMA. The gate 
count (NAND2 equivalent) of a commercial DMA engine [5] (8 
channels, 32bit*4 words data queue per each port, with 
scatter/gathering feature) is about 82k. The gate count of the 
proposed data transfer engine (8 channels, 32bit*8 words data 
queue per each port, with scatter/gathering feature) is about 68k, so 
it is about 20% smaller than the commercial DMA. 

 

Port number MSAP w/o data queue Data 
queue 

Total 
area 

1 0.136 0.026 0.161 
2 0.177 0.052 0.229 
4 0.245 0.103 0.349 
8 0.394 0.207 0.600 
16 0.685 0.413 1.099 

Table 3. Areas (mm2) of an MSAP about port number 

Second, to verify the scalability and flexibility of DMS, we 
conducted two other experiments. One is the design of an MPEG4 
[14] encoder that can encode QCIF image at 25 frames/sec by 
using 4 ARM7 processors. The other is the design of an MPEG4 
encoder for CIF image by using 16 ARM7 processors. 
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Figure 7. (a) Block diagram, (b) System-level architecture of an 

MPEG4 system for QCIF format 

Figure 7 (a) shows the Block diagram of an MPEG4 system. The 
MPEG4 encoder receives images from a camera, encodes the 
images and then sends the encoded bit-stream to network device, 
e.g. wireless LAN. Figure 7 (b) shows the system-level 
architecture of an MPEG4 system for QCIF format. Each node 
represents a subsystem and each edge represents an abstract 
channel. A camera writes a part of image from its buffer to the 
global memory. Each processor reads a part of image from the 
global memory and executes encoding algorithm (ME, MC, DCT, 
IDCT and so on). P1 makes a bit-stream from the results by 
executing VLC and sends it to network device. The structure of 
MPEG4 system for CIF format is hierarchical combination of 
MPEG4 system for QCIF format. 

Figure 8 shows the corresponding implementation as an MPSoC 
with the DMS architecture. 

 
Property DMS for 

MPEG4 QCIF 
DMS for 

MPEG4 CIF 
# of MSAP 7 22 
# of port 18 72 
Area of DMS  1.61 mm2 5.93 mm2 
Area over DMAs+NIs  45% 41% 
Area over DMAs  86% 80% 
Aggregate bandwidth 7.2 GB/sec 28.8 GB/sec 
Latency of read transfer 10 10 
Latency of write transfer 6 6 

Table 4. Experimental results of two DMS versions 

Table 4 summarizes the results obtained from the two DMS 
implementations. These results show clearly the bandwidth 
scalability and the area efficiency of the proposed DMS. 
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Figure 8. MPEG4 system for QCIF format using the DMS architecture

6. Conclusion 
In this paper, we described a Distributed Memory Server (DMS) 

to handle massive data transfers between large numbers of 
distributed memories on MPSoC. It consists of high-performance 
and flexible Memory Service Access Points (MSAPs), data 
network and control network. The DMS provides 1) performance-
efficient data transfer mechanism between subsystems of MPSoC, 
2) a scalable solution to handle a large application field, and 3) 
flexible designs to integrate with heterogeneous subsystems at low-
cost. 

An MSAP, which is the main component of the DMS, receives 
data transfer requests from the attached subsystem of an MPSoC, 
schedules them and then executes the received data transfer 
requests concurrently. Synthesis results of different configurations 
show clearly the flexibility of the proposed architecture of MSAP. 
Compared to a conventional DMA engine of similar functionality, 
an MSAP reduce the area by about 20%. A typical instance of 
MSAP runs at 200Mhz, occupies 0.349 mm2 in a 0.18 µm 
technology, and has an aggregate bandwidth that scales up to 3.2 
GB/sec. 

The scalability and flexibility of the proposed DMS are 
illustrated through the implementation of an MPEG4 video 
encoder for QCIF and CIF formats. The experiments illustrate how 
DMS can be adapted to accommodate different SoC configuration 
requiring different data transfer bandwidths. The DMS for CIF 
requires 22 MSAPs and its aggregate bandwidth rises up to 28.8 
GB/sec. Its area is 55%~59% smaller than the combination of 
conventional DMAs [5] and network interfaces [8]. 
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