
Research Article
An Efficient Searchable Public-Key Authenticated Encryption for
Cloud-Assisted Medical Internet of Things

Tianyu Chi,1 Baodong Qin ,1,2 and Dong Zheng1,3

1School of Cyberspace Security, Xi’an University of Posts & Telecommunications, Xi’an, Shaanxi, China
2State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, China
3Westone Cryptologic Research Center, Beijing, China

Correspondence should be addressed to Baodong Qin; qinbaodong@foxmail.com

Received 27 March 2020; Revised 13 June 2020; Accepted 17 June 2020; Published 14 July 2020

Academic Editor: Huaqun Wang

Copyright © 2020 Tianyu Chi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, it has become popular to upload patients’ medical data to a third-party cloud server (TCS) for storage through
medical Internet of things. It can reduce the local maintenance burden of the medical data and importantly improve accuracy in
the medical treatment. As remote TCS cannot be fully trusted, medical data should be encrypted before uploading, to protect
patients’ privacy. However, encryption makes search capabilities difficult for patients and doctors. To address this issue, Huang
et al. recently put forward the notion of Public-key Authenticated Encryption with Keyword Search (PAEKS) against inside
keyword guessing attacks. However, the existing PAEKS schemes rely on time-consuming computation of parings. Moreover,
some PAEKS schemes still have security issues in a multiuser setting. In this paper, we propose a new and efficient PAEKS
scheme, which uses the idea of Diffie-Hellman key agreement to generate a shared secret key between each sender and receiver.
The shared key will be used to encrypt keywords by the sender and to generate search trapdoors by the receiver. We prove that
our scheme is semantically secure against inside keyword guessing attacks in a multiuser setting, under the oracle Diffie-
Hellman assumption. Experimental results demonstrate that our PAEKS scheme is more efficient than that of previous ones,
especially in terms of keyword searching time.

1. Introduction

In today’s society, almost all medical service providers will use
some form of electronic medical record system [1]. Specifi-
cally, medical Internet of things (MIoT) has become a new
technology to gather data from patients by small wearable
devices or implantable sensors. With the increasing number
of medical data, the burden of hospital storage equipment is
heavy, and it needs a professional person to maintain. If the
hardware storage device is damaged and data is lost due to
other force majeure factors, it will lead to very serious conse-
quences. The most important way to solve this problem is to
upload the data to the third-party cloud server (TCS).
However, after the data is uploaded to the TCS, the patient’s
privacy will not be guaranteed. Once the cloud server man-
agers or externalmalicious attackers steal the data, it will cause
data leakage and other problems [2].

In order to solve the problem of data security, the best way
is to encrypt the data and then upload the result to TCS. But
whenmedical service providers want to retrieve the electronic
medical records of patients, it becomes more difficult. First,
doctors need to download all encrypted data to a local server
and then decrypt it locally. After that, they can search for the
desired results in the plaintext medical data. However, this
process is very cumbersome and impractical formost applica-
tions. Due to the powerful cloud computing, medical institu-
tions hope that the cloud server can complete the retrieval
function instead of doing it themselves. But if the key is sent
to the cloud server, the patient’s private data still has the risk
of exposure.

To address the above security issues, the conception of
(symmetric-key) searchable encryption (SE) was proposed
by Song et al. [3]. It is a powerful technology that allows the
cloud server to search on encrypted data using some search

Hindawi
Wireless Communications and Mobile Computing
Volume 2020, Article ID 8816172, 11 pages
https://doi.org/10.1155/2020/8816172

https://orcid.org/0000-0001-7617-5462
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8816172

trapdoors generated by the local data users. In 2004, Boneh
et al. [4] proposed a public-key version of SE, namely,
Public-key Encryption with Keyword Search (PEKS). This
scheme embeds keywords in public-key encryption and is
very suitable for scenarios of a multiuser data sharing setting,
e.g., medical data sharing. There are three parties in the PEKS
scheme: cloud server, data sender, and data receiver. The
sender (e.g., patient) has a lot of privacy files Fi and wants to
share them with the receiver (e.g., doctor). First, the sender
extracts the keyword wi from each file Fi, encrypts the key-
word with the PEKS scheme, and then encrypts each file with
other encryption schemes (not necessarily the same as the
PEKS scheme). Let the keyword cipher text beCwi

. The sender
uploads all cipher texts to the TCS. In order to search whether
there is a document containing the keyword w in the
encrypted document, the receiver generates a search trapdoor
Tw of the keyword w and sends the trapdoor to the cloud
server. After the server receives Tw, it checks whether each
keyword cipher text matches with the search trapdoor. If so,
it indicates that the corresponding encrypted document must
contain the desired keyword. After that, the results are
returned to the receiver, and the receiver can get the required
plaintext data by decrypting the encrypted documents.

As mentioned in Figure 1, we will apply searchable
encryption to telemedicine services, where the patient is the
sender and the medical service provider is the receiver. Each
patient can encrypt and upload their own electronic medical
record to the cloud server. When the patient wants to see a
doctor remotely, the doctor can retrieve the medical data
information related to some disease on the third-party cloud
server according to the keyword information of the patient.
In this process, doctors will only get data related to a certain
disease and will not expose other information (such as name)
of patients.

However, PEKS inherently has a disadvantage to resist
against keyword guessing attacks (KGA). Ideally, a keyword
space can be considered infinite. In practice, however, this
is not the case. In real life, users often use a limited number
of keywords because of their living habits, which leads to
the transformation of the original polynomial space into an
affixed and low-entropy space. In this case, the adversary
can guess the keywords contained in the searching trapdoor
as follows: First, the adversary guesses all the keyword spaces
of the user and then generates keyword cipher text one by
one. The adversary checks the trapdoor requested by the user
one by one with keyword cipher texts generated by itself. If
there is coincidentally the same situation, the adversary can
obtain the keyword information retrieved by the user, thus
exposing the privacy of the user. This kind of attack can be
easily mounted by the cloud server, as the cloud server has
users’ searching trapdoors. Such attack is often called inside
keyword guessing attacks (IKGA).

To resist against KGA is very challenging. Recently, many
methods [5–11] were proposed to prevent KGA on PEKS
schemes; however, most of them were later proven insecure
[12–15]. In 2017, Huang and Li [16] proposed a new primi-
tive, namely, Public-key Authenticated Encryption with
Keyword Search (PAEKS), to solve the problem of inside
KGA. In PAEKS, the data sender not only encrypts a key-

word but also authenticates it, so that a search trapdoor can
only match with the corresponding data sender. PAEKS is
also applicable to cloud-assisted MIoT, as in general, the
doctor just searches on a designated patient’s medical data.
However, the proposed concrete PAEKS scheme still has
some security issues [17–19]. In particular, Noroozi and
Eslami [18] pointed out that it cannot handle multiuser
settings and provided an improvement security model for
PAEKS in a multiuser setting.

1.1. Our Contribution. In this paper, we research on new and
efficient construction of PAEKS schemes in a multiuser
setting for cloud-assisted MIoT. Our main contributions
are as follows:

(i) We observe that in PAEKS, both the data sender and
data receiver hold a pair of public/secret keys. If they
can compute a shared key without any interaction,
then the shared key can be viewed as a secret key of
a symmetric searchable encryption scheme. Inspired
by this, we propose an efficient PAEKS scheme,
which involves the (noninteractive) Diffie-Hellman
key exchange scheme to compute the shared key
and Song et al.’s SSE scheme to encrypt keywords. It
removes the usage of time-consuming operation of
pairing in previous PAEKS schemes

(ii) We show that our scheme is semantically secure
against IKGA in a multiuser setting under the oracle
Diffie-Hellman assumption [20]. Specially, it satisfies
both cipher text indistinguishability and trapdoor
indistinguishability

(iii) We compare our scheme with some related PAEKS
scheme in terms of security and computation effi-
ciency and also do some experiments to demonstrate
the efficiency of our schemes for protecting the
privacy of cloud-assisted MIoT data. Experiment
results show that our scheme is more efficient than
that of previous ones, especially in terms of keyword
searching time

1.2. Paper Organization. In the next section, we will briefly
introduce some cryptographic primitives. Our main con-
struction of the PAEKS scheme and its security proof are
given in Section 3. In Section 4, we compare the efficiency of
our scheme with that of other related PAEKS schemes.
Finally, we summarize the paper in Section 5.

2. Preliminaries

In this section, we recall some basic conceptions of crypto-
graphic primitives that will be used in this paper, including
cyclic group, hardness assumption, pseudorandom func-
tions, syntax of PAEKS, and its security model.

2.1. Cyclic Group. Let G be a group with order p. We say that
G is a cyclic group, if the group G can be generated by a
single element g ∈G. That is, every element h ∈G has the
form h = gx for some exponent x ∈ℤp. We call g to be a

2 Wireless Communications and Mobile Computing

generator of the group. In our scheme, we use a cyclic group
with a prime order; i.e., p is a prime. In this case, any group
element except the identity will be a generator.

2.2. Oracle Diffie-Hellman (ODH) Problem [20]. Let G be a
cyclic group with prime order p and a generator g. Let H
be a hash function from G to some n-bit length space
f0, 1gn. The ODH problem states that given a tuple ðg, gx,
gy , TÞ and an oracle Ogxð·Þ, to decide whether T is HðgxyÞ
or a random string from f0, 1gn, here, x and y are randomly
chosen fromℤp, and the oracle returns HðhxÞ for each h ∈G.
LetA be any probabilistic polynomial time (PPT) algorithm.
We say thatA breaks the ODH problem over group G andH
with advantage at most ϵodh, if

Pr AOgx ·ð Þ g, gx, gy,H gxyð Þð Þ = 1
h i���
− Pr AOgx ·ð Þ g, gx, gy , Tð Þ = 1

h i��� < ϵodh:
ð1Þ

Definition 1 (ODH assumption). We say that the ODH
assumption holds over group G and H, if for any PPT algo-
rithm A , its advantage ϵodh in solving the ODH problem is
negligible in κ (the bit length of p).

2.3. Pseudorandom Functions (PRFs).A pseudorandom func-
tion is a family of functions such that for a random choice
from the family, its input/output behavior is computationally
indistinguishable from that of a random function. A formal
definition of PRFs is given below.

Definition 2 (PRFs). Let f : K ×X ⟶Y be a family of
functions indexed with key space K from X to Y . We say
that f is an ϵ f − securePRFs if

(1) Given a key k ∈K and an input x ∈X , there is an
efficient algorithm to compute the output y = f kðxÞ

(2) For any PPT algorithm A that makes at most
polynomial number of oracle queries, the following
advantage is at most ϵ f :

where F = f f : X ⟶Yg and the oracles are given an input
x ∈X and output the corresponding image of the function.

Pr A Ogx ·ð Þ� �
= 1 : k⟵K

� �
− Pr A Ogx ·ð Þ� �

= 1 : f ⟵ F
� ��� �� ≤ ϵ f ,

ð2Þ

The above definition indicates that, given any polynomial
number of valid input/output pairs ðxi, f kðxiÞÞ, no PPT
adversary can predicate f kðxÞ for a new and distinct input
x. Specifically, f kðxÞ is computationally indistinguishable
from a random y ∈Y .

2.4. PAEKS and Security Model. The notion of Public-key
Authenticated Encryption with Keyword Search (PAEKS)
was first proposed in [16] to protect the privacy of a key-
word against inside keyword guessing attacks. It involves
the public/secret key pair into the cipher text to prevent
keyword guessing attacks by the insider server. We first
recall its definition.

Definition 3 (syntax of PAEKS). A PAEKS scheme consists of
the following six PPT algorithms:

(i) Setup (λ). This is the global parameter generation
algorithm. It takes the security parameter λ as input
and outputs global system parameter Param

(ii) KeyGenS (Param). This is the sender’s key genera-
tion algorithm. It takes the global system parameter
Param as input and outputs a public/secret key pair
ðpkS, skSÞ

(iii) KeyGenR (Param). This is the receiver’s key gener-
ation algorithm. It takes the global system parameter
Param as input and outputs a public/secret key pair
ðpkR, skRÞ

(iv) PAEKS ðskS, pkR,wÞ. This is the keyword encryption
algorithm performed by the sender. It takes the
sender’s secret key skS, the receiver’s public key
pkR, and a keywordw as input and outputs a PAEKS
cipher text C of the keyword w

(v) Trapdoor ðskR, pkS,wÞ. This is the trapdoor genera-
tion algorithm performed by the receiver. It takes
the receiver’s secret key skR, the sender’s public key
pkS, and a keyword w as input and outputs a
trapdoor Tw

(vi) Test ðTw, C, pkS, pkRÞ. This is the test algorithm
performed by the cloud server. It takes a trapdoor
Tw, a PAEKS cipher text C, the sender’s public key
pkS, and the receiver’s public key pkR as input and
outputs 1 if C and Tw contain the same keyword
and 0 otherwise

Data sender
(patients)

Encrypt data
and upload

Data receiver
(doctors)

TCS

Search

Receive

Figure 1: Telemedicine service based on searchable encryption.

3Wireless Communications and Mobile Computing

Next, we recall the improved security model for PAEKS
in a multiuser setting by Noroozi and Eslami [18]. It includes
trapdoor indistinguishability (TI) and cipher text indistin-
guishability (CI). Both of them are described through games
played between an adversary A and the challenger C .

Definition 4 (TI security game). The TI security game is
described as follows:

(i) Initialization. Given a security parameter λ, the chal-
lenger generates the global system parameter. Then,
the challenger generates the receiver’s public/secret
keys ðpkR, skRÞ and the sender’s public/secret keys
ðpkS, skSÞ. It executes the adversary A on input
ðParam, pkS, pkRÞ

(ii) Phase 1. The adversary A is permitted to adaptively
query the following two oracles polynomial times:

(a) Cipher Text Oracle OCðw, pkÞ. Given a keyword w

and a public key pk, the challenger computes the
cipher text C by running the algorithm PAEKS ðskS,
pk,wÞ and returns the cipher text to A

(b) Trapdoor Oracle OTðw, pkÞ. Given a keywordw and a
public key pk, the challenger computes the trapdoor
Tw by running the algorithm trapdoor ðskR, pk,wÞ
and returns the trapdoor to A

(iii) Challenge. When phase 1 ends, the adversary A out-
puts two challenge keywords w∗

0 and w∗
1 , which

have not been queried to the oracles OCð·, pkRÞ
and OTð·, pkSÞ before. Now, the challenger chooses
a random bit b ∈ f0, 1g, computes the Tw∗

b
⟵

trapdoorðskR, pkS,w∗
b Þ, and returns it to the

adversary A

(iv) Phase 2. In this phase, the adversary A can continue
to access the oracles, with the restriction that neither
w∗

0 nor w
∗
1 could be queried to the oracles OCð·, pkRÞ

and OTð·, pkSÞ
(v) Guessing. Finally, the adversaryA outputs a bit b′ as

the guess of b. If b′ = b, we say thatA wins the game

We define A ’s advantage in breaking the TI security of
PAEKS as

AdvTIA λð Þ = Pr b′ = b
h i

−
1
2

����
����: ð3Þ

Definition 5 (CI security game). Similarly, the CI security
game can be described as follows:

(i) Initialization. Given a security parameter λ, the chal-
lenger generates the global system parameter Param.

Then, the challenger generates the receiver’s public/-
secret keys ðpkR, skRÞ and the sender’s public/secret
keys ðpkS, skSÞ. It executes the adversary A on input
ðParam, pkS, pkRÞ

(ii) Phase 1. The adversary A is allowed to adaptively
query the following two oracles polynomial times:

(a) Cipher Text Oracle OCðw, pkÞ. Given a keyword w
and a public key pk, the challenger computes the
cipher text C by running the algorithm PAEKS ðskS
, pkR,wÞ and returns the cipher text to A

(b) Trapdoor Oracle OTðw, pkÞ. Given a keyword w and
a public key pk, the challenger computes the trap-
door Tw by running the algorithm trapdoor ðskR,
pkS,wÞ and returns the trapdoor to A

(iii) Challenge. When phase 1 ends, the adversary A

outputs two challenge keywords w∗
0 and w∗

1 , which
have not been queried to the oracles OCð·, pkRÞ
and OTð·, pkSÞ before. Now, the challenger
chooses a random bit b ∈ f0, 1g, computes the
Cw∗

b
⟵ PAEKSðskS, pkR,w∗

b Þ, and returns it to

the adversary A

(iv) Phase 2. In this phase, the adversary A can continue
to access the oracles, with the restriction that neither
w∗

0 nor w
∗
1 could be queried to the oracles OCð·, pkRÞ

and OTð·, pkSÞ
(v) Guessing. Finally, the adversaryA outputs a bit b′ as

the guess of b. If b′ = b, we say thatA wins the game

We define A ’s advantage in breaking the CI security of
PAEKS as

AdvCIA λð Þ = Pr b′ = b
h i

−
1
2

����
����: ð4Þ

If for any PPT adversary A , bothAdvTIA ðλÞ andAdvCIA ðλÞ
are negligible in the security parameter λ; we say that the
PAEKS is semantically secure against inside keyword guess-
ing attacks.

3. Our PAEKS Scheme

In this section, we introduce a PAEKS scheme for an
electronic medical record system. The system framework is
given in Figure 2.

3.1. The Construction. Our PAEKS scheme is described as
follows:

(i) Setup ðλÞ. Select a cyclic group G with prime order p
and a randomgeneratorg ofG. Select three pseudoran-
dom functions: E : K ′ ×W ⟶ f0, 1gn, f : K ′′ ×

4 Wireless Communications and Mobile Computing

f0, 1gn ⟶K, and F : K ′ × f0, 1gm−n ⟶ f0, 1gm,
whereK ′,K ′′, andK are the key spaces of the three
PRFs, respectively, andW is the keyword space. LetH
be a hash function, defined as H : G⟶K ′ ×K ′′.
Finally, return Param = ðG, g, p, E, f , FÞ

(ii) KeyGenS (Param). Randomly select x⟵ Zp, and
set pkS ≔ gx and skS ≔ x. Return skS and pkS

(iii) KeyGenR (Param). Randomly select y⟵ Zp, and
set pkR ≔ gy and skS ≔ y. Return skR and pkR

(iv) PAEKS ðskS, pkR,wÞ. To encrypt a keyword w ∈W ,
do the following:

(a) Compute the keys k′kk′′ =HðpkskSR Þ =HðgxyÞ
(b) Compute X = Ek′ðwÞ and k = f k′′ðXÞ
(c) Select a random string S ∈ f0, 1gn−m and set U =

SkFkðSÞ
(d) Set C = X ⊕U

(e) Finally, return C

(v) Trapdoor ðskR, pkS,wÞ. Compute k′kk′′ =HðpkskSR Þ
=HðgxyÞ, X = Ek′ðwÞ and k = f k′′ðXÞ. Return the
trapdoor Tw = Xkk′′

(vi) Test ðTw, CÞ. Compute U = C ⊕ X and parse it as S
kT . If T = FkðSÞ holds, return 1; otherwise, return 0

3.1.1. Correctness. Let the receiver’s key pair be ðpkR, skRÞ =
ðgx, xÞ and the sender’s key pair be ðpkS, skSÞ = ðgy, yÞ. Then,
the key k′‖k′′ =HðgxyÞ can be generated by each other. Let C
be a cipher text of keywordw generated by the sender and Tw
be the corresponding search trapdoor generated by the
receiver. According to the keyword encryption algorithm,
there must exist two strings X and U and a random
string S ∈ f0, 1gn−m such that C = X ⊕U , X = Ek′ðwÞ, and
U = S‖FkðSÞ, where k = f k′′ðXÞ. For a right trapdoor of

keyword w, it should be in the form Tw = X‖k, where
X = Ek′ðwÞ and k = f k′′ðXÞ. So, X ⊕ C =U . Let S be the first
n −m bits of U and T be the last m bits. Clearly, T = FkðSÞ
will hold. Thus, for the same keyword, the cipher text will
match with the corresponding trapdoor.

Fixing a cipher text C′ of a distinct keyword w′ ≠w, we
have C′ = X ′ ⊕U ′, for some X ′ = Ek′ðw′Þ. Since E is a pseu-
dorandom function, then X = Ek′ðwÞ is a random string over
f0, 1gn with probability at least 1 − ϵE. In this case, X ⊕ C′
will be a random string. Since F is also a pseudorandom func-
tion, for a random string S′‖T ′, the equation FkðS′Þ = T ′
holds with probability at most ϵE + ð1/2nÞ. Thus, the cipher
text C′ matches with the search trapdoor with a negligible
probability. So our PAEKS scheme satisfies the correctness.

3.2. Security Proof. In this section, we prove that our PAEKS
scheme satisfies both trapdoor indistinguishability and
cipher text indistinguishability. Its trapdoor indistinguish-
ability follows from the theorem below.

Theorem 6. If the oracle Diffie-Hellman assumption holds
and E is a pseudorandom function, then our PAEKS scheme
achieves trapdoor indistinguishability. Specifically, for any
PPT adversary A , we have

AdvTIA λð Þ ≤ ϵodh + ϵE , ð5Þ

where ϵodh and ϵE are the advantages to break the ODH
assumption and the pseudorandomness of the PRF E.

Proof. Let A be any PPT adversary that aims to break the
security of trapdoor indistinguishability of our PAEKS
scheme. We prove Theorem 6 by a sequence of games.
Let Suci denote the event that A succeeds (i.e., b′ = b) in
the i-th game.

Game 0. This is the original trapdoor in a distinguishabil-
ity game as defined in Definition 4. In this game, the chal-
lenger generates two public/secret key pairs ðpkS, skSÞ and
ðpkR, skRÞ for the sender and the receiver, respectively, and
gives the public keys to A . In addition, the adversary can
adaptively issue queries to the trapdoor oracle OTð·, · Þ and
cipher text oracle OCð·, · Þwith any keywordw ∈W and pub-
lic key pk. But, for the two challenge keywords w∗

0 and w∗
1 ,

Sender

TCS

Test (T𝜔, C) == 1

Encrypt data

and upload

Receiver

Searchtrapdoor

skS, pkS
skR, pkR

T
𝜔 = Trapdoor (skR , pkS, 𝜔)

C = PAEKS (sk S, p
k R, 𝜔

)

pkR

pkS

?

Figure 2: Our PAEKS system framework.

5Wireless Communications and Mobile Computing

the adversary cannot submit them to the oracles OTð·, pkSÞ
and OCð·, pkRÞ. Let Tw∗

b
denote the challenge trapdoor of

w∗
b , where b⟵ f0, 1g. Let b′ denote the guess of b by A .

So, A ’s advantage in this game is

AdvTIA λð Þ = Pr Suc0½ � − 1
2

����
����, ð6Þ

Game 1. This game is the same as the previous game with
the exception of k′‖k′′ being sampled from K ′ ×K ′′ uni-
formly at random. Recall that in the previous game, the chal-
lenger computes k′‖k′′ by HðpkSskRÞ (namely, HðpkRskSÞ)
according to the keyword encryption algorithm (namely,
trapdoor generation algorithm). We now prove that

Pr Suc1½ � − Pr Suc0½ �j j ≤ ϵodh, ð7Þ

Given an instance of the oracle Diffie-Hellman problem
ðg, gx, gy, KÞ, where K =HðgxyÞ or K is a random string
from K ′ ×K ′′, we construct an algorithm B to solve it
using A as a subroutine. B sets pkS ≔ gx and pkR ≔ gy and
gives them toA . The corresponding secret keys are implicitly
set to be x and y, respectively. In addition, B chooses the
other system parameters, including E, f , F, by itself. Parse
K as k′‖k′′. When A issues queries to the oracles OTð·, pkÞ
and OCð·, pkÞ with pk ∉ fpkS, pkRg, B involves the oracle
OgyðpkÞ or OgxðpkÞ to obtain the shared key k′‖k′′. When
A issues queries to the oracles OTð·, pkSÞ and OCð·, pkRÞ, B
uses k′‖k′′ to generate cipher texts and trapdoors. For exam-
ple, for a keywordw,B computes the cipher text C as follows:

(1) Compute X = Ek′ðwÞ and k = f k′′ðXÞ
(2) Select a random string S ∈ f0, 1gn−m and set U =

SkFkðSÞ
(3) Set C = X ⊕U

Given two challenge keywords w∗
0 and w∗

1 , B computes
the challenge trapdoor Tw∗

b
as follows:

(1) Choose a random bit b ∈ f0, 1g
(2) Compute X∗ = Ek′ðw∗

b Þ and k∗ = f k′′ðX∗Þ
(3) Set Tw∗

b
= X∗kk∗

Finally, A outputs a bit b′ as a guess of b. If b′ = b, B
outputs 1; otherwise, B outputs 0.

Clearly, if K =HðgxyÞ, the above game is identical to
Game 0. Otherwise, it is identical to Game 1. So,

Pr B gx, gy,H gxyð Þð Þ = 1 : x, y⟵ℤp

� �
= Pr Suc0½ �,

Pr B gx , gy, Kð Þ = 1 : x, y←ℤp, K ⟵K ′ ×K ′′
h i

= Pr Suc1½ �:
ð8Þ

This proves the result of Equation (7).

Game 2. This game is identical to the previous game with
the exception of X∗ being sampled randomly from f0, 1gn.
Assuming that E is a pseudorandom function, we have

Pr Suc2½ � − Pr Suc1½ �j j ≤ ϵE: ð9Þ

We now prove Equation (9). Given a challenge pseudo-
random function E, we construct an algorithm B to break
its pseudorandomness using A as a subroutine. B chooses
the system parameter, the sender and receiver’s public/secret
key pairs, as in the previous game, with the exception of E
being provided by its own challenger. Specifically, the random
string k′′ ∈K ′′ is chosen by B itself, but k′ is implicitly
defined by the secret key of the challenge pseudorandom func-
tion E. Next, we show how B answers A ’s queries of cipher
texts and trapdoors with ðw, pkRÞ or ðw, pkSÞ, respectively.
For a keyword w,B computes its cipher text as follows:

(1) Query the challenger of E with w to obtain the result
X = Ek′ðwÞ

(2) Compute k = f k′′ðXÞ
(3) Select a randomstringS ∈ S and computeU = SkFkðSÞ
(4) Set C = X ⊕U

B computes its trapdoor as follows:

(1) Submit w to its own challenger to obtain the result
X = Ek′ðwÞ

(2) Compute k = f k′′ðXÞ
(3) Set Tw = Xkk
When A submits two challenge keywords w∗

0 and w∗
1 ,B

picks a random bit b and sends w∗
b to the oracle of PRF E for

challenging. The PRF challenger will return the challenge
PRF valueX∗ toB, whichmay be Ek′ðw∗

b Þ or a random value.
B then computes k∗ = f k′′ðX∗Þ and returns Tw∗

b
= X∗‖k∗ to

the adversary. Finally, A outputs a guess bit b′. If b′ = b, B
outputs 1; otherwise, it outputs 0.

From the above analysis, it is clear that if X∗ = Ek′ðw∗
b Þ,

B actually simulates an environment of Game 1 for the
adversary A . If X∗ is random, the simulated environment
is identical to Game 2. Thus, if A ’s success probability
between Game 1 and Game 2 has difference Pr ½Suc2� − Pr
½Suc1�, then B can distinguish X∗ = Ek′ðw∗

b Þ from a ran-
dom one with the same advantage. This computes the proof
of Equation (9).

Note that in Game 2, the challenge trapdoor is indepen-
dent of the two challenge keywords. So, the adversary has
no success advantage in this game, i.e.,

Pr Suc2½ � = 1
2
: ð10Þ

6 Wireless Communications and Mobile Computing

0
0 1 2 3 4 5

Running times (times)
6 7 8 9 10

×104

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ti
m

e (
se

co
nd

s)

Boneh et al.
Huang and Li & Noroozi and Eslami

Qin et al.
Ours

Figure 4: Running time of the encryption algorithm.

Trapdoor
0

50
100
150
200
250
300
350

Parameters

Le
ng

th
 (b

yt
e)

Cipher text Sender
public key

Boneh et al.
Huang and Li

Qin et al.
Ours

Sender
secret key

Receiver
public key

Receiver
secret key

Figure 3: Comparison of parameter sizes.

Table 1: Efficiency comparison.

Schemes Encryption Trapdoor Test IKGA Multiuser

Boneh et al. [4] 3E +H1 +H2 + P E +H1 P No Yes

Huang and Li [16] 3E +H1 E +H1 + P 2P Yes No

Noroozi and Eslami [18] 3E +H1 E +H1 + P 2P Yes Yes

Qin et al. [19] 3E +H1 +H2 + P 2E +H1 P Yes Unknown

Ours E +H2 + 3F E +H2 + 2F F Yes Yes

7Wireless Communications and Mobile Computing

Taking Equations (6) to (10) together, it follows that

AdvTIA λð Þ ≤ ϵodh + ϵE: ð11Þ

This completes the proof of Theorem 6.

The cipher text indistinguishability of our PAEKS
scheme follows from the theorem below.

Theorem 7. If the oracle Diffie-Hellman assumption holds
and f , F are pseudorandom functions, then our PAEKS
scheme achieves cipher text indistinguishability. Specifically,
for any PPT adversary A , we have

AdvCIA λð Þ ≤ ϵodh + ϵ f + ϵF , ð12Þ

where ϵodh, ϵ f , and ϵF are the advantages to break the ODH
assumption and the pseudorandomness of the PRFs f and F,
respectively.

Proof. Similar to the proof of Theorem 6, we prove the above
theorem also via a sequence of games. In each game, A is a
PPT adversary, aiming to break the cipher text indistinguish-
ability of our PAEKS scheme. b is the challenge random bit,
selected by the challenger, and b′ is A ’s guess bit. We denote
the event that b′ = b in each game as Suci.

Game 0. This is the original cipher text indistinguish-
ability game as defined in Definition 5. So,

AdvCIA λð Þ = Pr Suc0½ � − 1
2

����
����: ð13Þ

Game 1. This game is the same as Game 0, except that the
value k′‖k′′ is chosen randomly from K ′ ×K ′′. Under the
ODH assumption, these two games are computationally
indistinguishable, i.e.,

Pr Suc1½ � − Pr Suc0½ �j j ≤ ϵodh: ð14Þ

The proof of the above equation is similar to that of
Equation (7); we omit it here.

Game 2. This game is identical to Game 1, except the
following modification to the challenge cipher text. Suppose
thatw∗

b is the challenge keyword and X
∗ = Ek′ðw∗

b Þ is the cor-
responding internal value of the cipher text. In this game, k∗

is selected randomly from K , instead of being computed via
k∗ = f k′′ðX∗Þ. Note that, for normal keyword cipher text, k is
still computed from f k′′ðXÞ. Under the assumption that f is a
pseudorandom function, these two games are computation-
ally indistinguishable. Specially, we have

Pr Suc2½ � − Pr Suc1½ �j j ≤ ϵ f : ð15Þ

0
0 1 2 3 4 5

Running times (times)
6 7 8 9 10

×104

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ti
m

e (
se

co
nd

s)

Boneh et al.
Huang and Li & Noroozi and Eslami

Qin et al.
Ours

Figure 5: Running time of the trapdoor algorithm.

8 Wireless Communications and Mobile Computing

The proof of the above equation is similar to that of
Equation (9); we omit it here.

Game 3. In this game, we replace the challenge value
U∗ = S∗kFk∗ðS∗Þ with a random string U∗ ⟵ f0, 1gn.
Recall that, in this game, k∗ is sampled uniformly from K .
By the pseudorandomness of PRF F, S∗‖Fk∗ðS∗Þ is computa-
tionally indistinguishable from a random n-bit string. Simi-
larly, we can prove that

Pr Suc3½ � − Pr Suc2½ �j j ≤ ϵF : ð16Þ

In Game 3, U∗ is random and is independent of the chal-
lenge keywords. So, the adversary has no advantage in this
game, i.e.,

Pr Suc3½ � = 1
2
: ð17Þ

Taking Equations (13) to (17) together, we complete the
proof of Theorem 7.

From Theorems 6 and 7, we conclude that our PAEKS
scheme is semantically secure against inside keyword guessing
attack assuming that the ODHproblem is hard and E, f , F are
PRFs.

4. Experiments and Efficiency Comparison

In this section, we analyze the efficiency of our PAEKS
scheme and compare it with some other related schemes,
including Boneh et al.’s PEKS scheme [4] and PAEKS
schemes of [16, 18, 19]. Except our scheme, all the others
are designed in bilinear groups. That is, besides group G,
there are another groupGT and a bilinear map e defined from
G × G to GT .

Table 1 demonstrates the theoretical result of efficiency
comparison in terms of keyword encryption, trapdoor gener-
ation, testing, and two security properties. In the table, we use
symbols “E” and “P” to denote the evaluation of a modular
exponentiation and a bilinear pairing, respectively. “H1”
denotes a special hash function that maps an arbitrary string
to a group element, while “H2” denotes a traditional hash
function, e.g., MD5. We denote the pseudorandom function
as “F.”

Figure 3 shows the length of each parameter in different
PEKS/PAEKS schemes. With the exception of Boneh et al.’s
scheme, the other three schemes involve the sender’s public
key and secret key in the keyword encryption algorithm and
trapdoor generation algorithm, respectively. It can be seen
from the figure that our scheme has shorter trapdoor and
cipher text than other schemes. For the other parameters,
our scheme still has comparable length with other schemes.

Among these operations, the computation of the pairing
is usually the most time-consuming. According to the con-
struction of H1 in [21], its computation is usually inefficient

0
0 1 2 3 4 5

Running times (times)
6 7 8 9 10

×104

500

1000

1500

2000

2500

Ti
m

e (
se

co
nd

s)

Boneh et al.
Huang and Li & Noroozi and Eslami

Qin et al.
Ours

Figure 6: Running time of the test algorithm.

9Wireless Communications and Mobile Computing

with the comparison of the traditional hash function. In a ran-
dom oracle model, it is easy to construct a PRF from an effi-
cient hash function. From these observations, we can see
that our keyword testing algorithm should be much faster
than that of the other three schemes. For encryption and the
trapdoor generation, the advantage of our scheme is not obvi-
ous among them. In terms of security, Boneh et al.’s scheme
cannot resist against IKGA. The scheme of [16] can prevent
IKGA, but it is not secure in a multiuser setting. The scheme
of [19] did not show its security in a multiuser setting.

To evaluate the efficiency of these schemes in practice, we
use a laptop with 1.7GHz Intel i3 CPU, 2GB memory, and a
Windows 7 operating system to implement them. We use the
jPBC library and choose a type A pairing, which makes use of
the curve y2 = x3 + x over the field Fq for prime q ≡ 3 mod 4.
We run each algorithm with different times and record their
time in seconds. The results are shown in Figures 4, 5, and 6,
respectively. As the computations of Noroozi and Eslami and
Huang and Li, they possess the same experimental results.
Experiment results show that our encryption algorithm and
trapdoor generation algorithm are slightly faster than those
of the other schemes. But our keyword testing algorithm is
significantly faster than that of the other schemes.

5. Conclusion

In this paper, we proposed a new public-key authenticated
encryption scheme with keyword search. Our scheme uses
the idea of the Diffie-Hellman key exchange protocol to gen-
erate a shared secret key between the sender and the receiver.
The shared key can be viewed as the secret key of a symmetric-
key searchable encryption scheme to encrypt keywords by the
sender or to generate search trapdoors by the receiver. Under
the ODH assumption, our PAEKS scheme can achieve both
trapdoor indistinguishability and cipher text indistinguish-
ability, and hence, it can resist inside keyword guessing
attacks. The scheme is also efficient. Specifically, its keyword
searching algorithm is very fast in the sense that it requires
only one computation of PRF, while the previous schemes
require at least one expensive pairing operation.

Data Availability

Thedata used to support thefindings of this study are embedded
in the programming. They are available from the corresponding
author upon request (email: qinbaodong@xupt.edu.cn).

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (grant numbers 61872292 and
61772418), the Key Research and Development Program of
Shaanxi (grant number 2020ZDLGY08-04), and the Basic
Research Program of Qinghai Province (grant number
2020-ZJ-701).

References

[1] R. Zhang, R. Xue, and L. Liu, “Searchable encryption for
healthcare clouds: a survey,” IEEE Transactions on Services
Computing, vol. 11, no. 6, pp. 978–996, 2018.

[2] W. Sun, Z. Cai, Y. Li, F. Liu, S. Fang, and G. Wang, “Security
and privacy in the medical internet of things: a review,” Secu-
rity and Communication Networks, vol. 2018, Article ID
5978636, 9 pages, 2018.

[3] D. X. Song, D.Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proceeding 2000 IEEE Sympo-
sium on Security and Privacy. S&P 2000, pp. 44–55, Berkeley,
CA, USA, May 2000.

[4] D. Boneh, G. di Crescenzo, R. Ostrovsky, and G. Persiano,
“Public key encryption with keyword search,” in Advances in
Cryptology - EUROCRYPT 2004, International Conference on
the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, C. Cachin and J.
Camenisch, Eds., vol. 3027 of Lecture Notes in Computer Sci-
ence, , pp. 506–522, Springer, 2004.

[5] H. S. Rhee, W. Susilo, and H. J. Kim, “Secure searchable public
key encryption scheme against keyword guessing attacks,”
IEICE Electronics Express, vol. 6, no. 5, pp. 237–243, 2009.

[6] L. Fang, W. Susilo, C. Ge, and J. Wang, “Public key encryption
with keyword search secure against keyword guessing attacks
without random oracle,” Information Sciences, vol. 238,
pp. 221–241, 2013.

[7] P. Xu, H. Jin, Q. Wu, and W. Wang, “Public-key encryption
with fuzzy keyword search: a provably secure scheme under
keyword guessing attack,” IEEE Transactions on Computers,
vol. 62, no. 11, pp. 2266–2277, 2013.

[8] C.-H. Wang and T.-Y. Tu, “Keyword search encryption
scheme resistant against keyword-guessing attack by the
untrusted server,” Journal of Shanghai Jiaotong University (Sci-
ence), vol. 19, no. 4, pp. 440–442, 2014.

[9] Z. Y. Shao and B. Yang, “On security against the server in des-
ignated tester public key encryption with keyword search,”
Information Processing Letters, vol. 115, no. 12, pp. 957–961,
2015.

[10] Y. Wu, X. Lu, J. Su, and P. Chen, “An efficient searchable
encryption against keyword guessing attacks for sharable elec-
tronic medical records in cloud-based system,” Journal of
Medical Systems, vol. 40, no. 12, article 258, 2016.

[11] M. Ma, D. He, N. Kumar, K. K. R. Choo, and J. Chen, “Certi-
ficateless searchable public key encryption scheme for indus-
trial internet of things,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 2, pp. 759–767, 2018.

[12] W. C. Yau, R. C. W. Phan, S. H. Heng, and B. M. Goi, “Key-
word guessing attacks on secure searchable public key encryp-
tion schemes with a designated tester,” International Journal of
Computer Mathematics, vol. 90, no. 12, pp. 2581–2587, 2013.

[13] C. Li, C. Lee, C. Weng, T. Wu, and C. Chen, “Cryptanalysis of
an efficient searchable encryption against keyword guessing
attacks for shareable electronic medical records in cloud-
based system,” in Information Science and Applications 2017-
ICISA 2017, Macau, China, 20-23 March 2017, K. Kim and
N. Joukov, Eds., vol. 424 of Lecture Notes in Electrical Engi-
neering, , pp. 282–289, Springer, 2017.

[14] Y. Lu, G. Wang, and J. Li, “Keyword guessing attacks on a
public key encryption with keyword search scheme without
random oracle and its improvement,” Information Sciences,
vol. 479, pp. 270–276, 2019.

10 Wireless Communications and Mobile Computing

[15] T. Y. Wu, C. M. Chen, K. H. Wang, and J. M. T. Wu, “Security
analysis and enhancement of a certificateless searchable public
key encryption scheme for IIoT environments,” IEEE Access,
vol. 7, pp. 49232–49239, 2019.

[16] Q. Huang and H. Li, “An efficient public-key searchable
encryption scheme secure against inside keyword guessing
attacks,” Information Sciences, vol. 403-404, pp. 1–14, 2017.

[17] T.-Y. Wu, C.-M. Chen, K.-H. Wang, J. M.-T. Wu, and J.-S. Pan,
“Security analysis of a public key authenticated encryption with
keyword search scheme,” in Recent Advances in Intelligent
Information Hiding and Multimedia Signal Processing: Proceed-
ing of the Fourteenth International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, Novem-
ber, 26-28, 2018, Sendai, Japan, Volume 1, pp. 178–183,
Springer, 2019.

[18] M. Noroozi and Z. Eslami, “Public key authenticated encryp-
tion with keyword search: revisited,” IET Information Security,
vol. 13, no. 4, pp. 336–342, 2019.

[19] B. Qin, Y. Chen, Q. Huang, X. Liu, and D. Zheng, “Public-key
authenticated encryption with keyword search revisited: secu-
rity model and constructions,” Information Sciences, vol. 516,
pp. 515–528, 2020.

[20] M. Abdalla, M. Bellare, and P. Rogaway, “The oracle Diffie-
Hellman assumptions and an analysis of DHIES,” Topics in
Cryptology — CT-RSA 2001: The Cryptographers’ Track at
RSA Conference 2001 San Francisco, CA, USA, April 8–12,
2001 Proceedings, D. Naccache, Ed., , pp. 143–158, Springer,
2001.

[21] D. Boneh and M. Franklin, “Identity-based encryption from
the Weil pairing,” SIAM Journal on Computing, vol. 32,
no. 3, pp. 586–615, 2003.

11Wireless Communications and Mobile Computing

	An Efficient Searchable Public-Key Authenticated Encryption for Cloud-Assisted Medical Internet of Things
	1. Introduction
	1.1. Our Contribution
	1.2. Paper Organization

	2. Preliminaries
	2.1. Cyclic Group
	2.2. Oracle Diffie-Hellman (ODH) Problem [20]
	2.3. Pseudorandom Functions (PRFs)
	2.4. PAEKS and Security Model

	3. Our PAEKS Scheme
	3.1. The Construction
	3.1.1. Correctness

	3.2. Security Proof

	4. Experiments and Efficiency Comparison
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

