
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.DOI

An Efficient Secure System for Fetching
Data from the Outsourced Encrypted
Databases

SULTAN ALMAKDI1, BRAJENDRA PANDA2, MOHAMMED ALSHEHRI3, AND ABDULWAHAB

ALAZEB4,5

1
Najran University, Najran, Saudi Arabia (saalmakdi@nu.edu.sa)

2
Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701 USA (bpanda@uark.edu)

3
Najran University, Najran, Saudi Arabia (msalshahry@nu.edu.sa)

4
Najran University, Najran, Saudi Arabia (afalazeb@nu.edu.sa)

5
Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701 USA (afalazeb@uark.edu)

Corresponding author: Sultan Almakdi (saalmakdi@nu.edu.sa).

ABSTRACT Recently, database users have begun to use cloud database services to outsource their

databases. The reason for this is the high computation speed and the huge storage capacity that cloud

owners provide at low prices. However, despite the attractiveness of the cloud computing environment to

database users, privacy issues remain a cause for concern for database owners since data access is out of

their control. Encryption is the only way of assuaging users’ fears surrounding data privacy, but executing

Structured Query Language (SQL) queries over encrypted data is a challenging task, especially if the data

are encrypted by a randomized encryption algorithm. Many researchers have addressed the privacy issues

by encrypting the data using deterministic, onion layer, or homomorphic encryption. Nevertheless, even

with these systems, the encrypted data can still be subjected to attack. In this research, we first propose an

indexing scheme to encode the original table’s tuples into bit vectors (BVs) prior to the encryption. The

resulting index is then used to narrow the range of retrieved encrypted records from the cloud to a small

set of records that are candidates for the user’s query. Based on the indexing scheme, we then design a

system to execute SQL queries over the encrypted data. The data are encrypted by a single randomized

encryption algorithm, namely the Advanced Encryption Standard-Cipher-Block Chaining (AES-CBC). In

the proposed scheme, we store the index values (BVs) at user’s side , and we extend the system to support

most of relational algebra operators, such as select, join, etc. Implementation and evaluation of the proposed

system reveals that it is practical and efficient at reducing both the computation and space overhead when

compared with state-of-the-art systems like CryptDB.

INDEX TERMS Cybersecurity, Privacy-Preserving, Encrypted Databases, SQL Queries, Cloud Computing

I. INTRODUCTION

I
N the contemporary electronic era, both individuals

and organizations need scalable data storage and high-

performance computing units to process and store their data.

Historically, only large organizations/companies have been

able to own such units, as they were not affordable for most

individuals and small companies. With the rise of cloud

computing, however, this problem has been solved, as users

can now rent storage and computational units as needed at

an affordable price. Most cloud providers provide databases

as a service, which allow individual users and companies

to outsource their data and access them at any time, from

any location. According to the report in [1], the compound

annual growth rate (CAGR) of cloud database market is

anticipated to be 46.78% in 2023, Figure.1. However, given

that privacy breaches are one of the most common threats

in the cloud computing environment, many people have

expressed concerns about privacy when outsourcing sensitive

data. For instance, untrustworthy cloud service providers

might steal personal customer information, such as email

addresses, mailing addresses, and phone numbers, and sell

that information to third parties, who can then use it to

send irritating advertisements to users via email, mail, and

telephone.

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

FIGURE 1. Anticipated market growth in 2023.

Source: https://www.marketresearchfuture.com/reports/cloud-database-market-6847

More importantly, attackers who target a cloud provider

can gain access to customers’ sensitive personal information,

such as social security numbers (SSNs). This has serious

consequences, as criminals can use these data to impersonate

customers in situations such as financial transactions (e.g.,

telephone banking). Thus, sensitive data are restricted from

being processed or sold to a third party. Therefore, signif-

icant evolution in the cloud computing environment could

make such services unattractive to consumers if changes oc-

cur without also providing appropriate solutions for privacy

breach issue. Such an issue must be tackled if cloud providers

are to gain the trust of users and organizations so that they

will outsource sensitive data without worrying about data

leakages.

Data encryption effectively solves the problem of privacy

breaches by ensuring that cloud providers cannot learn from

the data they store. The easiest way is to encrypt the entire ta-

ble and outsource it. Then to process a query, the entire table

must be retrieved and decrypted. However, the application of

this technique conflicts with purpose of the databases and the

critical functionalities of cloud environments (e.g., search-

ing). Other researchers have used a proxy (i.e., a trusted third-

party server), rather than the user, as an additional component

to carry out the encryption and decryption processes. To

make this approach practical, each datum must be encrypted

with more than one encryption algorithm to support various

query types [2]. However, in the case of very large data

sets, this approach comes with the penalty of a significant

computational burden, as each datum might be decrypted

more than once. Various researchers have proposed numerous

systems using different encryption techniques to protect data

confidentiality. In the following subsection, we explore the

common encryption algorithms that have been adopted in

state-of-the-art research on cloud database security.

A. ENCRYPTION ALGORITHMS

1) Order-Preserving Encryption

Order-preserving encryption (OPE) is a functional encryp-

tion technique to encrypt data such that range queries (e.g.,

maximum, minimum, and inequality operators) can be imple-

mented on encrypted data without encrypting the operands

or decrypting the data [3] [4]. This type of encryption uses a

function to compare the order of the ciphertexts to allow com-

parison operations of the encrypted numeric data. This type

of algorithm preserves the original data order. For example, if

c1 is the ciphertext of m1, and c2 is the ciphertext of m2, then

the comparison of c1 and c2 is as follows: (c1 < c2ifm1 <

m2); (c1 > c2ifm1 > m2); or(c1 = c2ifm1 = m2)
The security of this type of encryption is downgraded if

the adversary infers the ciphertext of a certain plaintext. Also,

this type of encryption is vulnerable to inference attacks as in

[5] [6].

2) Deterministic Encryption

In deterministic encryption (DE) schemes, given the encryp-

tion key k and the messages m, the ciphertext of m is always

the same when encrypted with k, even in multiple executions

of DE. While DE can be used in keyword searches, it does not

preserve the order if used with numeric values. AES-SIV is

an example of a deterministic algorithm. DE is widely used

in securing cloud databases. However, privacy can be com-

promised in this scheme if the attacker is able to identify the

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

ciphertext of a certain plaintext word (e.g., if he establishes

the ciphertext of “Alice,” then he is able to determine which

tuples contain “Alice”).

3) Homomorphic Encryption

Homomorphic encryption (HOM) is a method of encryption

that allows for the performance of certain arithmetic opera-

tions (i.e., addition and multiplication) on ciphertexts without

the need to decrypt them. There are two types of HOM:

partially HOM and fully HOM. Partially HOM supports

either addition or multiplication, while fully HOM supports

both operations. HOM can secure numeric data in cloud

environments; however, encrypting with HOM produces long

ciphertexts, since this type of encryption is based on an asym-

metric encryption system. Also, computation performance on

HOM ciphertexts is downgraded as the volume of ciphertexts

increases [7].

4) Randomized Encryption

Randomized encryption intends to produce different cipher-

texts for each plaintext, i.e., no more than one ciphertext has

the same plaintext. Essentially, in this scheme, in addition to

the secret key, an initialization vector (IV) must be XORed

with the first block of the plaintext, and a new ciphertext must

therefore be obtained each time the algorithm is executed [8].

While this encryption technique provides the highest security

level for outsourced databases, it has a major drawback in

cloud databases,namely the inability to execute SQL queries

over ciphertexts.

5) Onion Encryption

The term “onion layers encryption” was first developed by

the authors in [2]. In onion encryption, cloud servers are able

to execute different SQL statements while data remain secret.

In the onion encryption, each layer is a ciphertext of a specific

encryption methodology (e.g., DET, OPE, HOM, or RAN).

The inner layer is the ciphertext of the algorithm with the

lowest security level, while the outer layer is the ciphertext

with the highest security level (i.e., randomized). The main

flaw of this approach is the intensive computation that results

from decrypting all of the encryption layers, which leads to

slower query processing. In addition, the space required for

the encrypted databases is about 3.75 times that required for

the unencrypted databases [2].

B. SUMMARY OF CONTRIBUTIONS

In this research, we first designed a novel indexing scheme

for randomized encrypted databases, which is based on

defining a partitioning tree (PT) for all domain partitions

for sensitive columns in a table (i.e., dividing each column

into sub-columns where each sub-column represents a set

of values). The PT is then used to encode records into bit

vectors (BVs), wherein each bit position is mapped to a

specific partition and is only set to one if the value belongs

to the set of values represented by that partition. The BVs

are used to retrieve only part of the outsourced encrypted

records. Second, we developed a secure model based on our

proposed indexing technique. In this model, we use store and

handling the BVs on a private cloud server. Third, we pro-

posed different algorithms to process most of the relational

algebra operators on encrypted data without revealing the

confidentiality of data. Fourth, we conducted several exper-

iments to evaluate different aspects of the proposed system

including computation overhead and space overhead against

three well-known approaches: CryptDB [2], columns-based

fragmentation [9], and one block-based encryption [10]. Our

experiments showed that the proposed system outperformed

most of the competing approaches in both time and space

overhead.

The rest of this document is organized as follow: in sec-

tion II, we explain different security enforcement schemes

for the cloud databases, then we survey the state-of–the-

art approaches to secure outsourced databases. Section III

details the proposed system, followed by the implementation

and evaluation details in section IV. Finally, we provided a

conclusion of this research in section V.

II. RELATED WORK

The powerful features of the cloud computing environment,

such as enormous capacity and high-performance computing

units, have attracted database owners in both small and

large companies. These features have made it necessary to

obtain and maintain the incredibly expensive storage and

computation units to process vast databases at affordable

prices. In spite of the advantages of cloud computing, data

security is the main drawback of using cloud services to

outsource databases. The work of securing databases began

when networking and internet technology advanced and were

adopted by major companies. This, in turn, fueled the need

for databases as a service for individuals and entities re-

quiring high storage capacity and computation. Data privacy,

integrity, and confidentiality are in danger when databases are

outsourced, since the database owner loses control over who

can access and read their data.

To address these issues, researchers began to develop vari-

ous approaches to protect user data from unauthorized access

and data breaches, using data access control, data encryption,

or both [11] [12]. Data access control functions by regulating

what object O a subject S can access and what operations

Op that S can perform on O. Encryption, in contrast, works

by encoding plaintext data into ciphertext (i.e., an unreadable

format). Each method has its advantages and disadvantages.

For example, access control is intended to increase comput-

ing performance, while encryption decreases it. In addition,

encryption protects against data breaches from both internal

and external attacks, whereas data privacy can be compro-

mised in such cases when the access control mechanism is

enforced, since adversaries might bypass predefined access

roles to access data. Regardless of the heavy computational

work required by encryption schemes, encryption is still the

preferred security mechanism for most database users.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

1) Security Issues in Cloud Computing

Despite the powerful features of cloud computing, there are

many issues and vulnerabilities that can be exploited by

malicious actors against outsourced data. One type of secu-

rity issues, privileges abuse, involves the use of legitimate

privileges for malicious purposes (e.g., a user in company A

with the privilege to view company A’s sales records who

uses their privileges to fetch sales tuples and pass them to

competitor company B). Another vulnerability in the cloud

environment occurs when a user is assigned privileges that

exceed what is necessary to perform their job. This can create

a potential threat if such privileges are abused, either by the

user or an attacker compromising the user’s account. Cloud

environments may also be vulnerable to SQL injection, i.e.,

injecting SQL queries to act against the objective of an

application. The injected SQL statement is inserted into an

executable statement which, in turn, can fetch data that the

attacker wants to obtain (e.g., injecting a query to retrieve

all of the records in a given table). Malicious insider attacks

are a form of attacks that are performed from inside the

cloud organization, with very little chance of detection. The

attacker can access sensitive data and leak or maliciously

process them in a way that violates system policies.

A data breach is defined as the accessing or obtaining

of sensitive information—such as medical records, student

information, employees’ salaries, and so on—in an unau-

thorized manner. Such problems occur when data access is

not restricted and when API access control is weak. Other

cloud attacks may exploit the following: weak authentication;

unpatched services; or insecure system architecture (e.g.,

keeping sensitive and non-sensitive data in the same database

without implementing any form of encryption for the sensi-

tive data).

One solution to concerns about the above-mentioned vul-

nerabilities is applying data encryption to the sensitive data.

For example, in an SQL injection attack, if the attacker injects

a query to fetch the entire set of the database, the attacker will

learn nothing if the sensitive data are encrypted. However,

security level differs by the type of encryption used. Weak

encryption techniques can be compromised by cryptographic

attacks, which exploit a vulnerability in the cryptographic,

such as a weakness in a cipher, key management scheme,

code, or cryptographic protocol. In this dissertation, we focus

on encryption strategy as a method of protecting data from

the cloud database vulnerabilities listed above. In the next

sub-section, we survey the most popular encryption schemes

that have been used by state-of-the-art database security

systems in the field of cloud computing.

2) Encryption-Based Solutions to Protect Cloud Databases

Encryption is defined as encoding plaintext into unreadable

formats, which preserves the confidentiality and privacy of

the data. There are two types of encryptions: symmetric and

asymmetric. In symmetric encryption, only one encryption

key (i.e., the secret key sk) is used to encrypt and decrypt

the data. The sk is known by both the encryptor and de-

cryptor entities; however, it must be kept secret. The most

popular symmetric encryption algorithms are the Advanced

Encryption Standard (AES) and Blowfish algorithms. In [13],

the authors conducted a comparative analysis of the AES

and Blowfish algorithms and found that AES was faster than

Blowfish by nearly 200 ms when used to encrypt or decrypt

the same file. Asymmetric encryption, on the other hand,

involves using two keys—a public key and a private key—to

encrypt and decrypt the data. To guarantee confidentiality,

the receiver’s public key is used to encrypt the data, while

the private key, associated with the receiver’s public key, is

the only key used in the decryption process and must be kept

secret. Asymmetric encryption systems are computationally

intensive and slow down the encryption and decryption

processes [14]. Some examples of well-known asymmetric

encryption systems include RSA, ElGamal, Diffie-Hellman,

and ECC. For more details about asymmetric encryption

algorithms, see [15] [16] and [17].

When choosing an encryption system, a variety of factors

must be considered, including security level, computation

overhead, and complexity, among others. For instance, the

computation overhead of asymmetric encryption is higher

than that of symmetric encryption because, in an asym-

metric system, the usage of CPU cycles is higher than in

a symmetric scheme. Moreover, the security level in both

systems differs based on the type of algorithm used (e.g.,

randomized algorithms are more secure than deterministic

algorithms) and whether a strong sk was used to encrypt the

data. In a symmetric system, the security level is high, and

the chance of compromising the sk (for, e.g., a sk length

of 256 bits in AES) is virtually nonexistent. Accordingly,

symmetric algorithms are more widely used than asymmetric

algorithms.

Data encryption is the only solution for protecting out-

sourced databases that prevents data leakage resulting from

any form of unauthorized data access in the cloud. However,

it is challenging to execute SQL queries over encrypted

databases. The existing literature on cloud database security

offers a variety of techniques to overcome this problem and

deal with outsourced encrypted databases. While most state-

of-the-art systems aim to provide security, efficiency (i.e.,

time required to execute SQL queries) varies depending on

the technique used; the higher security level provided, the

lower performance level achieved. In the following subsec-

tion, we explore each strategy used to deal with outsourced

encrypted databases. We then review the research offering

solutions within each strategy.

3) Current Approaches to Process SQL Queries over

Encrypted Databases

Early attempts to secure databases encrypted the whole

database, with each record encrypted as one block (e.g.,

if a table has four sensitive columns before encryption,

the encrypted table will have just one column to store the

encrypted values). However, as mentioned earlier, problems

occur when SQL queries must be executed over the encrypted

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

data. The simplest solution to this matter is to fetch the

entire outsourced table and decrypt it, then execute the query.

While this approach can work well for small databases, it

suffers from higher computation costs when applied to larger

databases (e.g., a table holding millions of records).

Researchers have proposed numerous solutions to avoid

retrieving entire outsourced encrypted databases by classi-

fying records into categories before proceeding to the en-

cryption process. The encrypted table will have an additional

column(s) to store the category of the record. By using

these categories, the end-user is able to retrieve only part

of the encrypted data. In addition, the amount of fetched

encrypted tuples is impacted by how data are categorized in

the cloud (i.e., the more data categories there are, the fewer

data are fetched). To address the issue of categorizing data,

many authors (e.g., [18] - [19]) have proposed approaches to

dividing attributes into categories that can be used to query

encrypted data. The techniques are based on dividing each

attribute into ranges. The main encrypted table in the cloud

will then have additional attributes—as many as the number

of partitions among all attributes—to hold numeric values.

The whole record will then be encrypted as one block and

stored as an attribute value in the cloud. The early attempts

technique was developed by [10], who proposed different

techniques to execute relational algebra operators over the

encrypted records. Their solution assigned an identifier for

each value in the tuple, then used those identifiers to re-

trieve only encrypted records whose identifiers matched the

requested identifier. Nevertheless, there are several limita-

tions to using such an approach, including vulnerability to

statistical attacks, as mentioned in [20] , and heavy client-

side computation due to decrypting every retrieved record’s

data (because all the fields of each record are encrypted as

one block). The authors in [21] proposed a system to build an

index for the plain data, then encrypt each page of the index

individually. To execute a query, the corresponding page is

loaded and decrypted. However, since all pages are encrypted

with one key, the security of this scheme is downgraded. In

addition, the size of the index will continue to grow, which

could impact performance. To improve the security level, a

unique encryption key could be used to encrypt each page

of the index. In [20], the researchers suggested building a B-

tree index, maintained on the client-side, over the plaintext

data. In [22], the authors introduced a single values level

encrypted index and suggested splitting the index into sub-

indexes, i.e., each sub-index is for encrypted values using

the same key in the column. The authors in [23] proposed

a none–order-preserving index for the encrypted database.

This index does not require interaction with the user once the

query is submitted. The security of this scheme is higher than

that of models based on order-preserving indexes, which may

be vulnerable to statistical attacks. Hahn et al. [24] propose

a system to join encrypted databases. The idea is based on

applying a selection operation first, then enforce the join over

selected data. That only leaks the frequency of use and access

patterns. This method is interesting; however, the delay is

high because of the asymmetric cryptosystem they use.

In [2], Popa et al. developed CryptDB as the first prac-

tical system for executing Standard Query Language (SQL)

queries over encrypted databases. Two attack scenarios were

addressed using onion layers encryption: cloud attack and

proxy attack. Each datum is encrypted by more than one

encryption algorithm in which the outer layer ciphertexts

produced by a randomized encryption algorithm. CryptDB

uses a proxy to perform the crypto operations for the user.

One of the drawbacks of CryptDB is that, because of the

excessive crypto operations and many layers of decryption, it

introduces a high computational burden. In addition, because

it is challenging to execute an analytical load to encrypted

data on a server, CryptDB was improved in [25] to support

complex queries and large data sets. MONOMI solves this

problem by splitting the execution into two sets: a set of

queries to outsourced encrypted data and a set to be executed

on decrypted data on the user’s side. Authors in [26] proposed

an enhanced version of CryptDB to accelerate query process-

ing. Instead of using AES, they used AES-NI, which was

reflected in the speed of the query processing time. They also

suggested improvements to the hardware to accelerate query

processing in CryptDB. There are many different systems

proposed on top of CryptDB, such as the one presented in

[27] .

Liu et al. [28] proposed a fully homomorphic order-

preserving encryption system (FHOPE) to execute complex

SQL queries over encrypted numeric data. This system al-

lows cloud providers to run arithmetic and comparison oper-

ators over encrypted data without repeating the encryption,

thus helping to resist homomorphic order-preserving attacks.

The downside of that study is that the authors conducted

their experiments using tables with less than 9,000 records.

For improved measurement of the efficiency and scalability

of this system, the tables should have more records (e.g.,

100,000 or more). A variety of studies related to this system

are provided in references [29]- [30].

Cui et al. proposed P-McDb [31] , a privacy-preserving

search approach that allows users to execute queries over en-

crypted data. To avoid inference attack, this system requires

two cloud servers, one for database re-randomizing and shuf-

fling and one for data storing and searching. Instead of a

total search, P-McDb supports partial searches of encrypted

records that are described as a sub-linear manner. Further, P-

McDb is a multi-user system. In the case of a user revocation,

the data cannot be re-encrypted. Another limitation of this

system is that communication with two cloud providers will

add more latency when compared to other systems such as

those described in [2]. More proposed systems related to P-

McDb are described in references [9] , and [32]- [33].

Osama et al., in [34], proposed different approaches for

partitioning attributes of tables into multiple sub-columns

based on the attribute’s domain values. The methods were

tested and introduced various delays. They use an order-

preserving mapping function, which enables cloud servers to

run different types of SQL-queries. The major disadvantage

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

of this research is that only attributes with numeric values

but not with string values were considered. Moreover, such a

system only supports select statements.

In [35] , the researchers proposed a secure database (SDB)

approach, a system that divides data into sensitive and non-

sensitive, with only sensitive data being encrypted. The initial

idea was to split the sensitive data into two shares. The data

owner (DO) keeps one share, and the second share is kept

by the cloud service provider (CSP). Assuming the CSP is

curious, the CSP can learn nothing from its share unless

it obtains the DO’s share. Also, the SDB allows different

operators to share the same encryption, thus providing secure

query processing with data interoperability. Similar studies

can be found in [25], [36], and [37].

As presented in [38], some researchers used a technique

called “Bucketization,” in which the tuples are mapped to

more than one bucket. This technique enables a “database

as a service” (DAS) server to execute SQL-style queries

over encrypted data. Each bucket contains a set of encrypted

records ranging from the minimum to maximum value and

assigned an identification (ID). Several studies based on this

approach have been conducted [39] - [40].

Some researchers [31], [41],and [42] have addressed cloud

database privacy by adopting what is called a hybrid cloud.

The technique is based on dividing data into sensitive and

non-sensitive. Then, the sensitive data or attributes are out-

sourced to the user’s private cloud while the non-sensitive

data are migrated to the public cloud. The problem is that,

because most users consider their data to be sensitive, this

scheme is not practical for users of non-sensitive data. Also,

the complexity of integration for this solution is high.

On the other hand, Amjad et al. [9] proposed a technique

to prevent untrusted and suspicious cloud service providers

from being able to learn from private data. This technique

is based on vertical fragmentation, in which each sensitive

encrypted column is outsourced to a different cloud server

(slave cloud). In contrast, while the whole encrypted table

is stored at the central server (master cloud). Because the

encryption algorithms [2] and the proxy were used in this

system, the proxy performed all the work of interpreting

queries, encryption, and decryption. One of the limitations

of this work is more communication delays, especially if

the query condition contains more than one clause. Another

example of research that uses this technique is [43].

Bouganim et al. [44] introduced a hardware/software sys-

tem to address the problem of confidentiality leakage in the

outsourced databases. The idea is that the user maintains and

controls a mediator smartcard that is plugged in on the side.

This smartcard is responsible for encrypting the data before

putting them into the database and decrypting data before

sending them to the user. The major disadvantage of this

technique is that the user is limited by the capacity of the

smartcard and cannot benefit from the storage provided by

the cloud services. Similar studies can be found in [44] - [45].

SafeBox [46] is a system based on an approach called

access security broker (CASB). This approach allows users

to search and share encrypted data while protecting sensitive

information from being leaked if an attacker gains access

to the cloud server (CS). This technique can be applied

over encrypted databases or files and supports keyword-based

searches within the encrypted contents. Several studies that

use CASB can be found in [47] and [?]. Also, a detailed

survey about the use of brokers in the Cloud can be found

in [48].

III. METHODOLOGY

A. INTRODUCTION

The primary goal of this research, as stated in our previous

work [49], [50] is to address the significant drawbacks of

some of the state-of-the-art research in the field of cloud

database security . They are described below.

Onion layers encryption means encrypting each datum

using different encryption algorithms. The inner layer is the

ciphertext of the algorithm with the lowest security level,

while the outer layer is the ciphertext of the algorithm with

the highest security level (i.e., randomized encryption algo-

rithm) [2]. When it comes to search for a value, the whole

column’s values must be updated to the next layer (take

off layers) This process might be executed more than once

to achieve the desired result. For a large encrypted table,

more excessive crypto operations are performed, leading

to substantial computational overhead. To enable the cloud

server to remove and adjust layers, the secret key is passed

to the server, making the system vulnerable to an in-session

attack. Also, the trusted but curious cloud provider(s) could

learn about the data if the security layer is adjusted to a

low-security level layer. To overcome this limitation, our

proposed approach was designed to encrypt each datum in the

table using only a randomized encryption algorithm (AES-

CBC). Also, we fetch only those encrypted rows from the

cloud server that are related to the query of the user, which

reduces undesirable computations. We eliminate passing the

secret keys to the cloud server to ensure that curious cloud

provider(s) cannot learn from the outsourced database.

In systems that use vertical fragmentation (i.e., column-

based fragmentation), the table is fragmented throughout a

multi-cloud. So, each column is outsourced to a different

cloud to preserve privacy and speed up the query processing

[9]. This approach might be practical for tables that have

a few attributes but not for tables that have hundreds of

attributes. The reason is because the table owner must have

multiple accounts with more than one cloud server. If two or

more cloud providers collude, privacy will be compromised.

Communication delay is another concern when using such

systems. To address this issue, the developed system requires

only one server to outsource the encrypted table, a feature

that will minimize communication costs, improve privacy,

and accelerate query processing.

Homomorphic encryption (HE) is a technique in which

SQL queries can be executed over the ciphertexts as if

the data were not encrypted. HE is used to encrypt only

numeric values and support arithmetic operators over en-

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

crypted numeric data. However, the space required to store

the ciphertexts is too large. Also, the integrity of encrypted

data is not preserved in such systems because the attacker

can change the ciphertexts undetected. To date, this type of

encryption supports only addition and multiplication over

encrypted digital data. To overcome this, we use a symmetric

randomized algorithm AES-CBC to preserve integrity be-

cause the modification of a ciphertext leads to an incorrect

decryption result.

B. ENCRYPTION STRATEGY

To provide privacy and a high level of security, our approach

used AES-CBC to encrypt sensitive data. Only the query

manager (QM) keeps and maintains the secret keys (SKs).

We used a symmetric algorithm rather than an asymmetric

algorithm to gain a higher level of security and faster crypto

processing.

C. THE QUERY MANAGER (QM)

In our work [49], we defined the query manager (QM) as a

trusted server that resides in an organization’s or company’s

private cloud. It works as an intermediary between users

and the Cloud and is responsible for processing queries and

encoding BVs for each table (we explain this step in detail

in the discussion of partitioning trees). Also, the proposed

system supports individuals’ cases in which QM would be

light software residing in the end user’s system. For an orga-

nization, it performs the same functions as the QM server.

While we assume that the user can encrypt only columns

that have sensitive data, the proposed approach even supports

encrypting all of a table’s attributes.

D. PARTITIONING TREE (PT)

As stated in our previous work [49], [50], the PT is the

primary element of proposed system in which the query is

appropriately rewritten for execution by the cloud server. The

owner of the table participates in the construction of the

PT by specifying which columns are sensitive and should

be encrypted. Then, the table owner defines the possible

partitions for each column and indicates whether the parti-

tions are ranges of values or non-ranges of values. Thus, the

values in each column are partitioned into multi-partitions

in which each partition includes a set of values. Then, the

QM builds the PT based on these specifications. As shown in

Figure.2, the name of the table is the root of the tree, and the

second-level nodes are the sensitive columns that have to be

encrypted. Nodes in the third level, each of which is assigned

an ID, represent the partitions of all the sensitive columns.

The second-level nodes are assigned a color of either white

or gray. Gray nodes imply that the partitions of the column

are ranges of values (e.g., the Name column must have

range partitions based on the first letter of the name, while

students Visa Type have non-range partitions, such as F-1, F-

2, etc.). The PT is stored locally in the QM. We encourage

the data owner to define as many as possible partitions for

each SC, which can narrow the range of retrieved encrypted

TABLE 1. The Students Table

ID Name SSN VisaType Department

01 Alice 12701 J-1 MATH
02 Ryan 25678 F-2 BUSN
03 Mark 46932 F-1 CSCI
04 John 42213 J-2 PHYS

records from the outsourced table and, in turn, increase the

performance of the proposed systems, and achieve faster

query processing.

Algorithm 1 PT Construction

1: Input: file.txt containing the name of the table, sensitive

columns, and partitions;

2: Create a tree and add a node, represent the table name

(TN), as the root of the tree;

3: int Id=0;

4: for each sensitive SCi do

5: Nodei = TN.addchild(the name of the SCi)

6: if SCi contains range of values then

7: Nodei.AssignColor (‘Gray’)

8: else

9: Nodei.AssignColor (‘White’)

10: end if

11: while partitions! = null do

12: Nodei.addchild(‘partition value’)

13: end while

14: end for

We are not concerned about memory consumption in our

solutions because the sensitive information in every row is

encoded into bits (i.e., the smallest computation unit). Based

on the PT, this does not consume memory or searching time.

In section III-F, we explain in detail how and where to store

bit vectors in each proposed system. Algorithm 1 shows how

the QM constructs the PT of the students’ table (Table.??)

and Figure.2 shows the PT of the students’ table.

E. ENCODING APPROACH

The encoding process is an essential step in the proposed

systems. The proposed scheme is used to encode records’

sensitive data into bit vectors (BVs), which can be exploited

to retrieve the required encrypted records (i.e., candidate

records for the user’s query without the need for decrypting

data). The QM parses each record to get the names of the

sensitive columns and their values. It then uses the PT to en-

code the tuples before proceeding to the encryption process,

to bit vectors (BVs). Each bit position in the BV is mapped

to a partition node from the third level nodes (e.g., the first

bit in the BV is mapped to the node having the ID =1). The

encoding process is accomplished as follows:

1) 1) For each record Rj in the main table T, the QM

creates a BV having a length equal to the number of

nodes in the third level of the corresponding PT. It then

initializes all its bits to zeroes (e.g., if the bit vector has

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

FIGURE 2. An example of the partitioning tree (PT) of the students table, see Table.1.

FIGURE 3. The BVs of Records in Table.1

10 bits, the number of nodes at the third level of the PT

is 10).

2) For each record Rj , the bit bm that mapped to the

partition node PNm under SCi is set to one if the

datum equals the values represented by PNm. Then,

the QM assigns an index to the newly created BV.

For the sake of clarity, the encoded BVs of the records in

Table.1 are as in Figure.3. In section III-F, we present the

details of how and where to store the BVs . Algorithm.2

delineates the process of the encoding step.

F. PROPOSED SYSTEM: BIT VECTORS AS A MATRIX

(BVM)

In this section, we explain in details the proposed system.

Please note that we have published part of this work in [49].

a: System Description

In this system, we store and process the BVs of each out-

sourced table locally at the QM. We assume that the QM is

a trusted server residing in either the end user’s machine as

an application or in the private cloud, Figure. 4. Because the

only thing outsourced in this prototype is the encrypted table,

the highest level of security is provided. The outsourced

encrypted table preserves the structure of the original table.

However, we add a column (used as a foreign key) to store the

Algorithm 2 PT Construction

1: Define a vector V ;

2: for each record Rj in Table-T do

3: Parse Rj to get the value(s) of the sensitive columns

SCs;

4: Define a bit vector BVj of length n where n = the

number of nodes in the 3rd level of the T

5: for each SCi in Rj do

6: if value v = value of the nth sub-node of the SCi ||

v ∈ value of the nth sub-node of SCi then

7: Set nth bit in BVj to 1

8: else

9: Set nth bit in BVj to 0

10: end if

11: end for

12: end for

rows’ indices (during the encoding process, the QM assigns

a unique index number to every encrypted row and its BV).

Further, we need these indices to fetch the encrypted records.

To process a query, the QM needs to load the BVs to the main

memory from the hard disk drive (HDD) and perform a rapid

look-up to find which records are candidates for the user’s

query. Then, it pushes their indices into a list and rewrites the

query to fetch any record whose index is on the list. In the

following sub-sections, we present the supported statements

for the relational algebraic operations.

b: Basic Operations

The basic operations in database applications are

insert, select, update, alter, and delete statements. We

extended this prototype to support these operations, as ex-

plained below.

Insertion statements are straightforward. The QM re-

ceives the insert query, creates a new BV for the newly

inserted record, appends it to the corresponding bit vectors

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

FIGURE 4. BVM Architecture.

matrix (BVM), and then encrypts sensitive data and sends it

to the Cloud.

Select is an essential statement in all database applications.

In our approach, it is also part of the execution of other

statements like update and delete. In the QM, the process of

executing the select statement algorithm is to check which

of the following cases is applicable and then enforce it.

• Case 1: None of the column(s) in the query condition

is sensitive, so they are not stored in encrypted form in

the Cloud. In this case, the QM directly searches and

retrieves the data corresponding to the query condition

from the Cloud. For example, in Table.1, Figure.1 and

Figure.2, if the query condition is “WHERE ID = 03”,

the QM retrieves the records directly from the Cloud

that satisfy this condition.

• Case 2: All column(s) in the query condition are sensi-

tive, so they are stored in encrypted form in the Cloud.

In this case, for each column that appears in the query

condition, the QM retrieves the indices of corresponding

bit vector(s) (BVs) from the BVM. Then it performs

logical AND/OR operations based on conditions among

indexes returned for each column. For example, if the

query condition is ıName = Mark AND visatype =
F1, the QM will find any BV having the bit that

mapped to the node representing the values of the PD

“Q-Z.” Because “Mark” belongs to this group (i.e., PD

“Q-Z”), any BV has the bit mapped to this partition

is set to one will be added to a list L[]. The QM will

do the same for visa type, then perform the logical

operation AND between the two lists and rewrite the

query accordingly to fetch the candidate records.

The update process is one of the functions provided by the

QM. Through this function, the user issues a query to update

record(s). The QM identifies record(s) using our select algo-

rithm. Then based on the results of select algorithm, the QM

issues a query to retrieve encrypted record(s) from the Cloud,

decrypts them to find the exact records that match the query

conditions, and issues a query to update the encrypted record

and its BV. The steps are shown in Algorithm.4.

The delete process is used to delete a record from a table.

In this case, the QM uses the search algorithm to find the

candidate record(s), then removes the record(s) from the

outsourced encrypted table and deletes the corresponding

BVs from the BVM. Algorithm.5 outlines the steps in the

deletion process.

Alter is one of the fundamental operations in any database

that allows users to drop/add columns from/to relations.

However, in this model, the QM first determines whether the

dropped or added column is a sensitive column. In the case

of “drop,” the QM will look at the corresponding partitioning

tree (PT) and drop all partition nodes of the predecessor node

that represents the dropped column. It then deletes all bits

mapped to the deleted nodes from the BVM. The QM then

forwards the alter query to the Cloud, which will execute the

query to drop the encrypted column. In the “add column”

case, the QM asks the user if the column is sensitive. If it is

sensitive, then it will add it with its partitions to the PT after

receiving information from the user.

c: Relational Algebra Operators

Join Most current research in database security does not

support the join operator because dealing with encrypted

databases it is not a straightforward task, especially if AES-

CBC is the encryption algorithm. The simple solution for

such a task is to retrieve all encrypted tables from the Cloud

and perform the join operator after decrypting them. How-

ever, this is not the optimal choice when it comes to massive

tables. In this model, to avoid unnecessary computation, we

need to move as much of the join computation as possible

to the cloud site without decrypting data, leaving minimal

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

work for the QM. To make BVM both practical and efficient

in the join operator, we need to consider the following

cases for the join condition: 1) The join condition has only

non-sensitive columns. 2) The join condition involves only

sensitive columns having limited distinct value partitions

such as USA visa types. 3) The join condition contains only

sensitive columns that have range partitions such as salary.

4) The join condition has at least two of the previous cases.

So, we design an algorithm to enable the cloud provider

to implement a join operator over encrypted tuples without

decrypting the encrypted attributes.

To solve the first case, in which the join condition involves

only non-sensitive attributes (i.e., unencrypted attributes), the

QM will first determine if the attributes are sensitive or not. If

they are non-sensitive, it will forward the query to the cloud

database, which will implement the join query and return the

join result to the QM. The QM then decrypts the join result

and removes duplication if found. In the second case, the join

condition contains only sensitive attributes that are not ranges

of values. In this case, the QM creates a list Li[] for every

partition of the attribute mentioned in the join condition,

where Li[] will have the index of any record having its bit

that mapped to partition nodei is set to 1, before searching

the BVM. Then the QM will rewrite the query to join all the

tuples from both tables based on the indices of these lists. For

example, there are two tables, A and B, both having the same

attributes: ID, name, rank, department, salary. Now, assume

that the query was to join them where A.rank = B.rank.

Then let us say that the partition domains for rank attributes

are manager, secretary, and employee. Now, the QM will

create three lists for each table. The first list will contain

the indices of the bit vectors in the corresponding BVM that

have their bits mapped to the PD"manager" set to 1. The

second list will hold the indices that have the bits mapped

to the PD"secretary" set to 1, and the third list will contain

the indices that have the bits mapped to the PD"employee"

set to 1. In the next step, the QM rewrites the query to join

the tuples that have their indices in list Li[] from Table A

with the tuples that have their indices in list Li[] from Table

B. In the third step, the Cloud will execute the query and

return the result to the QM, which will decrypt and remove

any duplications before sending the result back to the user.

In the third case, the join condition contains only sensitive

columns that are ranges of values. This case is similar to

the second case. However, in this case, the mapping between

joined partitioning lists can be one too many. To illustrate

this, consider Figure 3.4. Assume we want to join tables A

and B by equality of salary. The salary column in Table A has

three PDs that are [(10,000 to 20,000), (20,001 to 30,000),

(30,001 to 40,000)], and the salary column has two PDs that

are [(10,000 to 25,000), (25,001 to 40,000)]. We need to

make sure that the QM rewrites the join query in a way that

it maps the PDs from Table A to the corresponding PDs from

Table B. To do that, the QM will create n lists for each table

where n is the number of PDs in the table that has the fewest

PDs in the joining column. So, in the above example, n =2

since Table B has the least PDs. In the first list L1[] in table

A, the QM adds indices with bits that represent PD1, or PD2

is 1. In the second list L2[] of table A, the QM adds indices

with bits that represent PD2 or PD3 as 1. The following

figure, Figure 3.4, shows how the PDs are mapped. The QM

rewrites the query before forwarding it to the Cloud. After

getting the join result back from the Cloud for each tuple,

the QM decrypts only the encrypted column’s value (only

the encrypted columns involved in the join condition) and

enforces the join condition. If the join condition is satisfied,

the QM proceeds to decrypt all of the tuple’s values before

moving to the next tuple. If the join condition is not met, the

QM will not decrypt the entire tuple’s values and will move

to the next tuple. We do so to avoid unnecessary decryption

processes for those tuples that do not meet the join condition.

The last case is when the join condition involves two or more

of the previous cases. In that case, the QM might rewrite the

query. Algorithm.6 below shows how the QM performs the

join.

Algorithm 3 Select

1: Receive user query < Table name, List of columns

c1, c2, c3. . . , list of values v1, v2, v3. . .>

2: Check query columns used in search condition

3: CASE 1:

4: if none of columns mentioned in query is sensitive then

5: Search the corresponding table in cloud

6: Return data.

7: end if

8: CASE 2:

9: if each column Ci is sensitive then

10: for each value v being searched for under column Ci

do

11: Search the column representing that domain value

in PT then for each BVj entry under domain value in Ci

12: if bit =1 then

13: Add the index of BVj to List Li []

14: end if

15: Define list F where F [] is the final list that con-

tains the indices from the lists (L1[], L2[], . . . , Li[]) after

performing AND or OR (based on query conditions)

operations between them.

16: end for

17: Return F

18: Retrieve encrypted records from the cloud based on

the list F [].

19: Decrypt and return data

20: end if

21: CASE 3:

22: if mixed columns (Sensitive and Non-sensitive) then

23: Do Case 1 AND Case 2

24: Remove duplication if found

25: Return data

26: end if

Union is one of the widely used operations in database

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

systems in which tuples from two or more tables are merged.

However, to execute a union operator, the number of at-

tributes and datatype of both tables must be compatible. Even

though the union operation removes the duplication from the

union results, dealing with encrypted data complicates this

step. To accomplish this, we could enable the cloud server

to execute the union operator over encrypted tables and then

send the result back to the QM. Doing so will move the union

computation to the cloud server leaving only decryption and

duplication removal to the QM. The QM will decrypt each

tuple in the union result set and add it into a LinkedHashSet

as soon as it receives it from the Cloud. Note that both tables

must be encrypted with the same secret key to execute the

union algorithm. Algorithm.7 delineates the processes.

Intersection is the process of finding the common subset

out of two or more sets. However, executing intersection over

encrypted databases is not easy without decrypting the data.

If the tables to be intersected have a large number of records,

the user is going to add a significant computational overhead

by decrypting the whole set of the encrypted tuples from the

intersected tables before executing the intersection operator.

As a result, we cannot benefit from the cloud services because

the computation is moved to the user’s side rather than on

the cloud side. Some of the previously proposed systems in

[2], [9], [10] can process queries over encrypted databases

but will experience delays if the tables to be intersected have

large numbers of tuples.

In this model, our goal is to move the computation as

much as possible to the cloud side while eliminating unnec-

essary decryption processes at the QM. Moreover, we want

to execute the intersection operator partially in the cloud

database server leaving only the elimination of duplication at

the QM. In this way, we exploit the high computational speed

provided by a cloud database server to accelerate the query

processing time. We explain the simulation of intersection as

follows:

• The user sends the query to the QM, which is going to

parse it to remove the headers of tables and columns.

• If the intersect operation involves k columns out of n

columns, where n denotes the total number of columns

in a table, the QM uses our join algorithm to join

both tables by k columns and then rewrites the query.

Otherwise, the QM chooses all SCs that are not in

ranges to join the tables using our join algorithm before

rewriting the query.

• The QM sends the translated query to the cloud database

server, which will execute the query and send back the

join result to the QM.

• Before returning the intersecting result to the user, the

QM decrypts the encrypted join set and pushes it to a

hash list to remove duplicates, if found.

Difference To execute the difference in this prototype, the

intersection is first enforced between the tables to find the

common tuples. Second, the QM sends a query to retrieve all

tuples except the join result set. Third, the QM decrypts the

Algorithm 4 Update

1: Receive user query < Table name, List of columns

c1, c2, c3. . . , List of values v1, v2, v3. . .>

2: Use search Algorithm.3 to find the candidate record(s)

3: Fetch the record(s) from the encrypted table

4: Decrypt and find the exact record(s)

5: for each update value uv in record Rj do

6: if uv falls under non-sensitive column then

7: Update the old value with uv in the outsourced table

8: if uv falls under a sensitive column SCi then

9: for each SCi in the update query do

10: if the uv falls under a PD other than the

previous PD then

11: Set the bit that mapped to this PD to 1 and

unset the rest of bits that mapped to other PDs for this

SCi.

12: end if

13: end for

14: end if

15: end if

16: end for

17: Encrypted the updated values

18: Send data back to the cloud

Algorithm 5 Delete

1: Use Algorithm 3 (select algorithm) to find the required

record.

2: Add the index of each fetched record satisfying the delete

condition into list L [].

3: Generate a delete query to delete any record from the

outsourced encrypted table its index is in L [].

4: Delete the BVs of the deleted records from the corre-

sponding BVM.

result and sends back the result.

Duplication Removal Enforcing duplication removal over

a query result (encrypted tuples) at the Cloud is impossible

because we use a non-deterministic encryption algorithm

(AES-CBC). Therefore, we leave the execution of this op-

erator to be accomplished at the QM before sending back the

user’s result. That means the QM will decrypt the encrypted

tuples retrieved from the Cloud. If the query contains the

duplication elimination keyword distinct the QM will define

a LinkedHashSet data structure that does not allow duplicated

elements in the set. It will then add each decrypted tuple to

the set. Note that the translated query to be executed by the

cloud server will not have the ıdistinct keyword. Further,

the keyword distinct usually appears in select queries, in

which case the algorithm to eliminate duplication is the

select algorithm, and we add three more steps to execute the

distinct operator. See Algorithm.8.

Aggregation and Sort To implement the aggregation and

sort operators (max, min, and count) over encrypted tables

in the Cloud, we consider two cases for sensitive columns,

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

Algorithm 6 Join

1: Input: the QM Parses user’s query to get tables’ names,

attributes, and values.

2: QM checks the PT of each table in the join and performs

the following:

3: Case:1

4: if join column(s) is non-sensitive (not present in the PT)

then

5: Forward the query to the cloud server (CS)

6: Define LinkedHashSets
7: for every fetched recordi do

8: decrypt all values in i

9: push i to s

10: send s to the user

11: end for

12: end if

13: Case:2

14: if join column(s) is a sensitive AND not ranges then

15: for each PDj under the node that represent a SCi in PT

of Table x do

16: Create a list Lxj []

17: for each BV in BVMx do

18: if the bit mapped to PDj is not 0 then

19: Push the BV’ index to Lxj[]

20: end if

21: end for

22: for each PDj under the node that represent a SCi in

the PT of Table x1 do

23: if the value v of PDj of SCi from table x1 equals

to the v of PDj of SCi from Table x2 then

24: PDj of x1 join PDj of x2

25: end if

26: end for

27: Rewrite the query and send it to the cloud

28: Define LinkedHashSet s

29: for every fetched record i do

30: decrypt all values in i

31: push i to s

32: end for

33: Send s to the user

34: end for

35: end if

36: Case:3

37: if join column(s) is a sensitive AND ranges then

38: for each PDj under the node that represent the SCi in

PT of Table x do

39: Create a list Lxj []
40: for each BV in BVMx do

41: if the bit mapped to PDj is not 0 then

42: Push the BV’ index to Lxj []

43: end if

44: end for

45: for each PDj under the node that represent the SCi

in PT of Table x1 do

46: if the PDj of SCi from table x1 contains at least one

value v where v ∈ PDjfromtablex2 then

47: PDj of x1 join PDj of x2

48: end if

49: end for

50: Rewrite the query and send it to the cloud

51: Define LinkedHashSet s

52: for each fetched record i do

53: Decrypt only the join columns’ values

54: if the join condition satisfied then

55: Decrypt the whole tuple’s values

56: Push i to s

57: else

58: Proceed to the next encrypted tuple

59: end if

60: end for

61: Send s to the user

62:

63: Case:4

64: The query involves two or more of the above cases.

Algorithm 7 union

1: Forward the user’s query to the cloud server

2: Define a vector v

3: for each fetched recordi in the union result set do

4: Decrypt i

5: Add i to v

6: end for

7: v.distinct()

8: Send v to the user.

9: v.clear() =0

ranges, and non-range columns. In non-range columns, we

can process the query locally at the QM with no need to

communicate with the Cloud. In such a case, we avoid the de-

cryption computation that results from retrieving encrypted

records from the Cloud. Consequently, we will achieve faster

query processing. Specifically, the QM searches the BVM

after looking up the corresponding PT using our search

algorithm to obtain a list of all BVs’ indices that satisfy

the query condition. Note that the QM might not need to

do further computations such as decryption processes and

will, therefore, send the query result back to the user. For

the sake of clarity, consider Table 3.1, Figure 3.1, and Figure

Algorithm 8 duplication removal

1: execute steps 1-9 of Algorithm.3

2: if distinct keyword is present in the original query then

3: define LinkedHashSets
4: for each fetched tuplei do

5: decrypt values of i

6: push i to s

7: end for

8: send s to the user.

9: end if

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

3.2, suppose a user send the following query:

select count(name) from students where department =

‘computer science’; then, the query is processed as below:

• The QM will search the PT and find that Dept is a non-

range column (node’s color is gray). Then it will search

the BVM (Figure 3.2) and push the index of any BV

having the bit representing the PD “computer science”

is not zero into a list L[].

• The QM counts the number of the elements in L[] and

returns the number to the user.

On the other hand, the query process is divided into two

phases. The first phase is accomplished at the QM, while

the second phase is handled in the Cloud. The QM executes

the aggregation or sort operators over decrypted records

after the QM processes the query to retrieve only candidate

encrypted tuples that are related to the query. For example,

the query Select count (‘name’) from student where the

name =’Alice’; is processed as follows:

• The QM looks up the PT and will find the name is a

range column (node’s color is not gray). It will then

search the corresponding BVM and add to the list L[]

the indices of all BVs that have the bit assigned to the

PD “A-F” is one.

• The QM then looks for any encrypted record in which its

index is present in L[] from the Cloud using this query

syntax: select name from the student where index in

(“elements of L[] separated by commas “).

• The QM decrypts every fetched tuple’s name and incre-

ments the count value only if the decrypted name value

equals ‘Alice.’

• The QM returns the value of the count variable to the

user.

The SUM and AVERAGE functions are processed simi-

larly as a count, but we sum the decrypted numbers. If the

operation is average, we divide the sum over the number

of decrypted values that meets the query conditions. The

sorting operator can be executed similarly to the aggregation

operator. However, we need to run the sort operator over

decrypted data before sending the result back to the user.

Algorithm.9 shows the process.

Project In project queries, the QM does a column-based

retrieval; it will select all tuples for specific column(s). Fur-

ther, we do not need to perform a PT lookup in the project.

However, we need to decrypt the whole set of retrieved tuples

at the QM. We do not need to remove duplication of doing

any filtration at the QM.

IV. EXPERIMENTS AND EVALUATION

A. EXPERIMENTAL SETUP

We used a PC with 6GB of RAM, 1TB HDD, and a Core

i5 processor with 2.8 GHz to conduct all the experiments

for all the systems (BVM, OBT, CBF, and CryptDB). To

implement the functions of the QM in the proposed system,

we used Java to simulate each task as a java class or method.

MySQL server was used on the user’s machine and we used

Algorithm 9 aggregate functions

1: Do steps 1 to 6 of Algorithm.3.

2: if all SCs are non-ranges then

3: if the operator is count then

4: Do steps 9 to 12 of Algorithm.3

5: Let x = Count the number of Li []

6: Return x

7: end if

8: if the operator is max then

9: Let m = the value of right most PD of the SC

predecessor node in the PT

10: Return m

11: end if

12: if the operator is min then

13: Let n = the value of left most PD of the SC prede-

cessor node in the PT

14: Return n

15: end if

16: end if

17: if all SCs are ranges then

18: if the operator is count then

19: Do steps 9 to 15 of Algorithm.3

20: Define List Lk[]
21: for each fetched record i do

22: Decrypt i

23: if i meets the query condition then

24: Add it to Lk[]
25: end if

26: end for

27: end if

28: Return size of Lk[] to the user.

29: if the operator is max then

30: for the right most PD of the SC do

31: Do steps 10 to 15 of Algorithm.3

32: Define a variable x

33: for each fetched record i do

34: Decrypt i

35: if i > x then

36: x= i

37: end if

38: end for

39: end for

40: end if

41: Return x to the user

42: if the operator is min then

43: for the left most PD of the SC do

44: Do steps 10 to 15 of select algorithm

45: Define a variable x

46: for each fetched record i do

47: Decrypt i

48: if i < x then

49: x= i

50: end if

51: end for

52: end for

53: end if

54: Return x to the user.

55: end if
VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

TABLE 2. The Structure of the Original (Plaon) Students’ Table

Name of the Attribute Datatype Storage Required (bytes)

ID int 4
Name varchar 20
SSN int 4
Visa Type varchar 6
Salary int 4
Department varchar 20

Java Database Connectivity (JDBC) as a connector from Java

to the MySQL engine. All the experiments were performed

on the local machine; therefore, the communication delay

variable was removed from all the reported delays.

We implemented the OBT and CBF because their imple-

mentations are not available online unlike CryptDB, which is

available for public use on GitHub [51]. While implementing

the CBF, we adopted the implementation in [52] to encrypt

numerical values in a way that preserves the order (OPE) and

in [53] to support the additive homomorphic property. In our

models, we used the randomized version of the AES-CBC to

encrypt sensitive data. In our systems, each tuple’s data are

transmitted to the encryptor class as soon as the encoding

step has been accomplished. The encryptor and decryptor

classes call numerous cryptographic packages, including the

“javax.crypto” package offering the classes and interfaces

for crypto tasks; more information can be found in [54],

and the table owner’s secret key (SK) and the pre-generated

initialization vectors (IVs) can be used to encrypt or decrypt

each tuple. The SK is 256 bits, and each IV is 128 bits (the IV

size equals the block size in the AES). To store the bit vectors

(BVs), we stored them locally at the QM, and we wrote them

in a text file for future use (in the future, the QM just reads the

BVs set from the file.txt and loads them to the data structure).

B. DATASETS AND PARTITIONING TREE

We randomly generated four tables. We defined a list of

values for each attribute and let a java program constructs

tuples by randomly picking values from the lists. The sizes

of the tables (i.e., the number of records) were 10k, 20k,

50k, and 100k records. We had 24 attributes in total for all

tables, and we considered all of them, except ID attributes, as

sensitive attributes. In our study, although we could use the

proposed models with small tables, we focused on the large

tables since it is easier to test the penalties introduced by each

scheme. Table.2 presents the structure of the main tables. For

each table, we created a table in the cloud according to the

created algorithm for each model. We built a partitioning

tree (PT) for all the tables based on Table.3 Table 4.2. We

generated the tables so that they were fairly distributed to the

PT. For example, for the attribute (Name), not all the records

were mapped to the first partition (node #1) under the name

predecessor; instead, approximately 33% of the records were

mapped to the first node, 33% assigned to the second node,

and 34% assigned to the third node. We considered the same

technique for the rest of the attribute partitions.

TABLE 3. The sensitive attributes and the number of partitions for students

table

Attribute Sensitivity Number of Partitions

ID No 0

Name Yes 3

SSN Yes 2

Visa Type Yes 4

Salary Yes 5

Department Yes 6

| Total number of partitions 20

TABLE 4. The delay of the original database encryption comparison among

all systems in minutes

N.R BVM CryptDB CBF OBT

10k 12 44 55 13
20k 26 66 112 24
50k 65 158 291 55
100k 147 308 578 113

C. EVALUATION

The evaluation consisted of the following:

1) Testing and evaluating basic database operations (cre-

ate, select, insert, update, and delete statements) execu-

tion cost

2) Testing and evaluating aggregation operations (sum,

average, count, max, and min) execution cost

3) Testing and evaluating joining and setting operations

(join, union, and intersection) execution cost

For each part, we considered different factors that play a

role in the efficiency, such as the number of clauses in the

query conditions, what the logic operation (AND/OR) is in

the condition, and what encrypted attributes to retrieve for

the tuples. In the discussion, we explore the factors that make

the proposed models more efficient and what makes them

inefficient. In addition, we discuss the impact of the PT size

on the efficiency of the proposed model.

1) Execution Delay Comparison

a: Original Database Encryption and Insert Statements

In the proposed model, the original database encryption step

involves parsing records, generating indices, building BVs,

encrypting sensitive data, and inserting the encrypted data

into the encrypted table in the cloud server. In Table.4 , we

compare the time taken by each system to encrypt each table.

As seen in Table.4, the OBT is the most efficient system

followed by BVM. On the other hand, the CBF experienced

the highest delay since the encryption process required N

insertion (N = number of columns + 1) into N different

tables in different cloud servers. The second slowest model

is CryptDB in both the creation and insertion processes due

to heavy computation results from the onion layer encryption

as seen in Figure.5. In summary, the proposed model is faster

than the CryptDB and CBF models in both the creation and

insertion processes.

Experiment 1:

In this experiment, we calculated the average percentage of

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

FIGURE 5. The delay comparison of insert statements for all systems, in milliseconds

fetched encrypted tuples from the encrypted tables for the

proposed system. We also studied how the number of clauses

in the query condition can contribute to narrowing the range

of the fetched set. Figure.6 illustrates how our model dramat-

ically drop the average retrieved encrypted candidate records

for select statements to about 31% when only one clause

is present in the query condition, while it fetched the least

percentage when the condition clause had three clauses. On

the other hand, without using the proposed system to manage

the randomized encrypted database (i.e., no indexing), we

must retrieve the entire outsourced encrypted table.

Experiment 2:

• Select (*) Latency: Table.5 presents the total runtime

for all systems when executing select statements to

retrieve single column values. The runtime we measured

was the time from query parsing until the final query

result was formed in milliseconds (ms). In the first case,

we measured the average runtime when the condition

clause of the queries features only one clause. The

delay is the average delay of executing a select state-

ment on each sensitive column. Furthermore, we tested

select∗ statements when the condition had two and

three clauses. Figure.7, Figure.8, and Figure.9 present

the total execution time of select∗ statements for each

model. As seen in the figures, the proposed system

(BVM) performed better for databases with more than

50k rows, and the main factor that affects the perfor-

mance of the BVM is the time for loading the BVs from

the hard drive to the main memory and then searching

them. Forming the final lists of the candidate record

indices is another factor that affects the delay in this

model.

In terms of comparing the proposed system with the

other approaches, as seen in Table.5, Figure.7, Figure.8,

and Figure.9 the proposed system is faster than all the

competing systems except for the OBT for select state-

ments with two or three clauses. The OBT experienced

the least delay since the amount of decrypted data was

less than in our approaches (all values are stored as

one block leading to fewer bytes to decrypt for each

row). Cell-based encryption produces longer ciphertexts

(i.e., the blocks less than 16 bytes will be padded) and

then higher decryption overhead. However, when the

select query is not to select all (select∗), our system

performs better than the OBT because we eliminate

decrypting whole rows in our models, whereas the OBT

does not. When the query condition involved a single

clause, the CBF system experienced delays comparable

to our system, but when the number of clauses in the

select statements was two or three, its delay was almost

double that of our system’s delays since two or three

tables are searched to form the final select query (the

query that retrieves the records from the main encrypted

table in the master cloud). Finally, the CryptDB incurs

the highest delay among the systems as a result of the

decryption of the onion layers overhead. The delay also

increases when the statement condition has two or three

clauses because more onion layers are required to be

slipped off in different columns.

• Throughput: Throughput is defined as the amount of

data transferred at a given time. By measuring the

throughput, we can tell which system is more responsive

to user’s queries when the requested data are increased

since the end user is the one who will be affected by

the system slowdown. To measure the throughput, we

executed a set of queries to retrieve 25% then 50% of

the records from a table holding 100,000 records. Then,

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

FIGURE 6. The percentage of retrieved encrypted tuples for the proposed model

TABLE 5. Delays in milliseconds of executing (select∗).
The average required records are 8% for one clause, 5% for two clauses, and 3% for three clauses.

1 clause 2 clauses 3 clauses
BVM OBT CBF CryptDB BVM OBT CBF CryptDB BVM OBT CBF CryptDB

10k 242 200 231 870 136 98 238 1329 115 77 324 1558

20k 326 275 338 1633 259 179 483 2016 213 142 542 12626

50k 624 481 547 10764 479 289 746 18969 440 221 893 21634

100k 1107 791 970 20135 840 562 1478 37078 835 493 1604 59910

we measure the amount of plain data (records’ data after

decryption) and divide it by the time taken by each

system to deliver the required data to the user [55].

Throughput =
n∑

k=0

(unencrypted record′s size (in bytes))

Total time taken to deliver the data (MS)
(1)

As seen in Table.6, the proposed system achieved a

higher throughput when compared with CryptDB and

CBF systems which makes it the best choice for end

users who seek a faster responsive system. OBT has the

highest throughput and that is because it requires the

least bytes requirements among all systems to encrypt

data.

In Figure.10, we show the percent of the throughput

for each system and we compare the systems with the

throughput of MySQL when dealing with unencrypted

data. To calculate the percent, we multiply the system

throughput by 100 and divide it by the unencrypted

TABLE 6. The amount of plain data in kB that each system can deliver to the

user per second

kilobytes per second (kB/s)
BVM OBT CBF CryptDB MySql

Requested rows = 25% 794 1440 727 66 4720

Requested rows = 50% 971 1447 816 57 10114

throughput.

Throughput Percent =

(System throughput ∗ 100)

(Unencrypted throughput)
× 100 (2)

By examining Figure.10, we can say that our system

achieved a reasonable throughput percent and as the

amount of required data increased (up to 50% of the

rows), the throughput dropped slightly and still outper-

form CryptDB and CBF.

Experiment 3:

• Update and Delete Statements:

Figure.11 depicts the average time cost taken by each

system to execute update statements. In this experiment,

we executed update statements with only one predicate.

As seen in Figure.11, the update time cost is high in all

systems and is the result of updating an encrypted field

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

(a)Average total processing time for all models, including

CryptDB.

(b)Average total processing time for all models, including

CryptDB.

FIGURE 7. The delay comparison of executing select all statements (select∗)

for all models in ms when the query condition contains only one clause.

in the database systems. The x-axis represents the num-

ber of rows affected by the update statements, which

means selecting the required data and then issuing 100

insert statements in the first case, 200 insert statements

in the second, and so on. The OBT system has an update

delay (7,130 ms), however, the update process is risky

when two or more substrings in the decrypted block

match the updated value (i.e., any substring from the

updated record that matches the new substring will be

updated to the new substring). Thus, update in the OBT

is not practical. By zooming to the delays of our system,

it experienced a slightly higher delay than the OBT

but still performed faster than CBF and CryptDB. In

CryptDB, the update cost is the highest of the compared

systems.

Figure.12 demonstrates the time taken by each model to

delete different numbers of records (100, 200, 500, and

1,000 tuples) when the delete condition has only one

clause. The delete process selects the required rows and

then deletes them. The delete is efficient in the proposed

system since the deletion is performed after executing

the select operation to retrieve the needed tuples. Instead

of sending a single query to delete each record, we

maintain the index of the record and then issue one

query at the end to delete any record of its index in the

delete query, that is, delete from TABLE_NAME where

(a)Average total processing time for all models, including

CryptDB.

(b)Average total processing time for all models, excluding

CryptDB.

FIGURE 8. The delay comparison of executing select all statements (select∗)

for all models in ms when the query condition contains two clauses.

index in (). On the other hand, CryptDB is the slowest

system to execute delete statements for the same reasons

we mentioned earlier (i.e., onion layers decryption).

• Join, Union, and Intersection:

In this study, we report the delay of the proposed system

for join and union queries. In join queries, we did

not include the competing systems in this experiment

because the join has not been implemented in CryptDB

(as the author stated in [51] and the CBF. Therefore,

we excluded all the competing systems from this exper-

iment, and we performed the experiment on tables with

the specifications displayed in Table.7.

We joined two tables by the equality of the encrypted

ID, and their structures are in Table.9 and Table.8 below.

The ID column in both tables is partitioned into 10

partitions based on the last digit in the ID as (0, 1,

2, 3, 4, 5, 6, 7, 8, and 9). Figure.13 demonstrates that

the delay of the proposed system (BVM). The high

delays in the join queries is due to the nature of the

join calculation and the amount of the decrypted data.

Then, after enforcing the join condition (at the QM), the

decrypted tuples were pushed into a LinkedHashSet to

remove the duplication. In conclusion, although we ex-

perienced high join delays, we succussed to execute the

join statements in our system over databases encrypted

with a randomized encryption algorithm, such as AES-

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

(a)Average total processing time for all models, including

CryptDB.

(b)Average total processing time for all models, excluding

CryptDB.

FIGURE 9. The delay comparison of executing select all statements (select∗)

for all models in ms when the query condition contains three clauses.

FIGURE 10. The percent of throughput of all system compared with the

throughput of MySQL when requesting unencrypted data. Note, the requested

data are fetched by a select query from a table with 100,000 records.

CBC.

Figure 14 demonstrates the average total time of pro-

cessing the union queries of the proposed system. The

delay we measured is from the time the QM intercepts

the query until the final query result is formed. To

remove the duplications, we pushed the decrypted tuples

from both tables to a LinkedHashSet, which ensures

no duplicated records exist. As seen in Figure.14, our

system experienced a linear delay growth as the sizes of

the tables increased.

FIGURE 11. Comparison of the average delay of update statements for all

models to update a number of existing tuples (100, 200, 500, and 1,000

tuples).

FIGURE 12. Comparison of the average delay of delete statements for all

models to delete a different number of tuples (100, 200, 500, and 1,000

tuples).

In Figure.14, we show the latency, in milliseconds, of

the intersection operator when executed on different

tables with a different number of records. To perform

this experiment, we reduced the tables’ sizes because

we experienced execution failures due to the lake of

memory. Moreover, the leading cause to get this kind of

error is the massive join computations that result from

implementing the intersection operator. Note that the

intersection queries were to intersecting tables based on

all columns (i.e., not a partial intersection).

In Figure.15, we show the latency, in milliseconds, of

the intersection operator when executed on different

tables with a different number of records. To perform

this experiment, we reduced the tables’ sizes because

we experienced execution failures due to the lake of

memory. Moreover, the leading cause to get this kind of

error is the massive join computations that result from

implementing the intersection operator. Note that the

intersection queries were to intersecting tables based on

all columns (i.e., not a partial intersection)

V. CONCLUSION

Cloud computing is an attractive computing environment for

all kinds of users and companies. But, privacy breaches, not

only by malicious attackers but also by curious providers,

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

TABLE 7. Specifications of the joined tables

Table size (number of rows) Number of rows matching the join condition

500 100

1000 200

10000 1000

FIGURE 13. Join delay

FIGURE 14. Union delay growth for different table sizes

FIGURE 15. Union delay growth for different table sizes

TABLE 8. The structure of original international students table

Name of the Attribute Data type Is sensitive?

ID int Yes

Name varchar Yes

Address int Yes

Citizenship varchar Yes

TABLE 9. The structure of TA students table

Name of the Attribute Data type Is sensitive?

ID int Yes

Name varchar Yes

SSN int Yes

Visa_Type varchar Yes

Salary int Yes

Department varchar Yes

is the downside of this type of service, because users lose

access control over outsourced data. There are many solution

for this problem and data encryption is the effective one.

However, executing SQL queries over encrypted data is

challenging, especially if a randomized encryption algorithm,

like AES-CBC, is used for the encryption. In this research,

we first introduce the QM, a trusted server, which works as

an intermediate between the cloud server and user(s) and

performs all the crypto processes. In addition, we design

a novel indexing technique based on predefining partitions

for each sensitive attribute, and then encode each tuple to

bits, accordingly. The bits are used to retrieve candidate

tuples for a specific query that minimize the range of the

retrieved encrypted tuples. Based on this encoding scheme,

we proposed a secure systems to stores and maintains the

index data (i.e., the bit vectors [BVs]) locally at the QM, i.e.,

in the private cloud. Besides, we design different algorithms

to accomplish query execution of different SQL relational

algebra operators, and we make it resistant to diffrent attack

scenarios, such as inference attacks. We test the proposed

system by implementing it and comparing its performance

against some of well known state-of-the-art systems like

CryptDB. We evaluate it in terms of execution time and space

requirements. We find that the proposed system require both

less execution time and space when compared with most

other competing systems.

REFERENCES

[1] Online. Cloud database market. https://www.marketresearchfuture.com/

reports/cloud-database-market-6847/, 1999.

[2] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari

Balakrishnan. Cryptdb: processing queries on an encrypted database.

Communications of the ACM, 55(9):103–111, 2012.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.

Order preserving encryption for numeric data. In Proceedings of the 2004

ACM SIGMOD international conference on Management of data, pages

563–574, 2004.

[4] Young-Dal Jang and Ji-Hong Kim. A comparison of the query execution

algorithms in secure database system. International Journal of Electrical

& Computer Engineering (2088-8708), 6(1), 2016.

[5] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference

attacks on property-preserving encrypted databases. In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications

Security, pages 644–655, 2015.

[6] David Pouliot and Charles V Wright. The shadow nemesis: Inference

attacks on efficiently deployable, efficiently searchable encryption. In

Proceedings of the 2016 ACM SIGSAC conference on computer and

communications security, pages 1341–1352, 2016.

[7] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar.

Exploring the feasibility of fully homomorphic encryption. IEEE Trans-

actions on Computers, 64(3):698–706, 2013.

[8] Frédérique Oggier and Miodrag J Mihaljević. An information-theoretic

VOLUME 4, 2016 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

security evaluation of a class of randomized encryption schemes. IEEE

Transactions on Information Forensics and Security, 9(2):158–168, 2013.

[9] Amjad Alsirhani, Peter Bodorik, and Srinivas Sampalli. Improving

database security in cloud computing by fragmentation of data. In 2017

International Conference on Computer and Applications (ICCA), pages

43–49. IEEE, 2017.

[10] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Execut-

ing sql over encrypted data in the database-service-provider model. In

Proceedings of the 2002 ACM SIGMOD international conference on

Management of data, pages 216–227, 2002.

[11] Mohamed Nabeel, Elisa Bertino, Murat Kantarcioglu, and Bhavani Thu-

raisingham. Towards privacy preserving access control in the cloud. In

7th International Conference on Collaborative Computing: Networking,

Applications and Worksharing (CollaborateCom), pages 172–180. IEEE,

2011.

[12] Yan Zhu, Hongxin Hu, Gail-Joon Ahn, Dijiang Huang, and Shanbiao

Wang. Towards temporal access control in cloud computing. In 2012

Proceedings IEEE INFOCOM, pages 2576–2580. IEEE, 2012.

[13] Jaime Raigoza and Kapil Jituri. Evaluating performance of symmetric en-

cryption algorithms. In 2016 International Conference on Computational

Science and Computational Intelligence (CSCI), pages 1378–1379. IEEE,

2016.

[14] Muneer Bani Yassein, Shadi Aljawarneh, Ethar Qawasmeh, Wail Mardini,

and Yaser Khamayseh. Comprehensive study of symmetric key and

asymmetric key encryption algorithms. In 2017 international conference

on engineering and technology (ICET), pages 1–7. IEEE, 2017.

[15] Moumita Chakraborty, Bappaditya Jana, Tamoghna Mandal, and Malay

Kule. An performance analysis of rsa scheme using artificial neural

network. In 2018 9th International Conference on Computing, Communi-

cation and Networking Technologies (ICCCNT), pages 1–5. IEEE, 2018.

[16] Tutubalin Pavel Innokentievich and Mokshin Vladimir Vasilevich. The

evaluation of the cryptographic strength of asymmetric encryption algo-

rithms. In 2017 Second Russia and Pacific Conference on Computer

Technology and Applications (RPC), pages 180–183. IEEE, 2017.

[17] Alexandru Boicea, Florin Radulescu, Ciprian-Octavian Truica, and

Cristina Costea. Database encryption using asymmetric keys: a case study.

In 2017 21st International Conference on Control Systems and Computer

Science (CSCS), pages 317–323. IEEE, 2017.

[18] Osama M Ben Omran and Brajendra Panda. Efficiently managing en-

crypted data in cloud databases. In 2015 IEEE 2nd International Con-

ference on Cyber Security and Cloud Computing, pages 266–271. IEEE,

2015.

[19] Osama M Ben Omran and Brajendra Panda. A new technique to partition

and manage data security in cloud databases. In The 9th International

Conference for Internet Technology and Secured Transactions (ICITST-

2014), pages 191–196. IEEE, 2014.

[20] Ernesto Damiani, S De Capitani Vimercati, Sushil Jajodia, Stefano Para-

boschi, and Pierangela Samarati. Balancing confidentiality and efficiency

in untrusted relational dbmss. In Proceedings of the 10th ACM conference

on Computer and communications security, pages 93–102, 2003.

[21] Bala Iyer, Sharad Mehrotra, Einar Mykletun, Gene Tsudik, and Yonghua

Wu. A framework for efficient storage security in rdbms. In International

Conference on Extending Database Technology, pages 147–164. Springer,

2004.

[22] Erez Shmueli, Ronen Waisenberg, Yuval Elovici, and Ehud Gudes. De-

signing secure indexes for encrypted databases. In IFIP Annual Con-

ference on Data and Applications Security and Privacy, pages 54–68.

Springer, 2005.

[23] Wai-Kit Wong, Kwok-Wai Wong, Ho-Yin Yue, and David W Cheung.

Non-order-preserving index for encrypted database management system.

In International Conference on Database and Expert Systems Applications,

pages 190–198. Springer, 2017.

[24] Florian Hahn, Nicolas Loza, and Florian Kerschbaum. Joins over en-

crypted data with fine granular security. In 2019 IEEE 35th International

Conference on Data Engineering (ICDE), pages 674–685. IEEE, 2019.

[25] Stephen Lyle Tu, M Frans Kaashoek, Samuel R Madden, and Nickolai

Zeldovich. Processing analytical queries over encrypted data. 2013.

[26] Yi-feng ZHUANG, Chang-zheng WEI, LI Jian, and Wei-gang LI. Per-

formance enhanced for cryptdb based on aes-ni acceleration. DEStech

Transactions on Computer Science and Engineering, (ameit), 2017.

[27] Ashutosh Kumar and Muzzammil Hussain. Secure query processing over

encrypted database through cryptdb. In Recent Findings in Intelligent

Computing Techniques, pages 307–319. Springer, 2018.

[28] Guoxiu Liu, Geng Yang, Huaqun Wang, Yang Xiang, and Hua Dai. A

novel secure scheme for supporting complex sql queries over encrypted

databases in cloud computing. Security and Communication Networks,

2018, 2018.

[29] Craig Gentry. Fully homomorphic encryption using ideal lattices. In

Proceedings of the forty-first annual ACM symposium on Theory of

computing, pages 169–178, 2009.

[30] Ke Li, Weiming Zhang, Ce Yang, and Nenghai Yu. Security analysis on

one-to-many order preserving encryption-based cloud data search. IEEE

Transactions on Information Forensics and Security, 10(9):1918–1926,

2015.

[31] Shujie Cui, Muhammad Rizwan Asghar, Steven D Galbraith, and Giovanni

Russello. P-mcdb: Privacy-preserving search using multi-cloud encrypted

databases. In 2017 IEEE 10th International Conference on Cloud Com-

puting (CLOUD), pages 334–341. IEEE, 2017.

[32] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo

Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic search-

able encryption in very-large databases: data structures and implementa-

tion. In NDSS, volume 14, pages 23–26. Citeseer, 2014.

[33] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical

dynamic searchable encryption with small leakage. In NDSS, volume 71,

pages 72–75, 2014.

[34] Osama M Omran. Data partitioning methods to process queries on

encrypted databases on the cloud. 2016.

[35] Samraddhi Shastri, Ray Kresman, and Jong Kwan Lee. An improved algo-

rithm for querying encrypted data in the cloud. In 2015 Fifth International

Conference on Communication Systems and Network Technologies, pages

653–656. IEEE, 2015.

[36] Muhammad Rizwan Asghar, Giovanni Russello, Bruno Crispo, and Mi-

haela Ion. Supporting complex queries and access policies for multi-user

encrypted databases. In Proceedings of the 2013 ACM workshop on Cloud

computing security workshop, pages 77–88, 2013.

[37] Wai Kit Wong, Ben Kao, David Wai Lok Cheung, Rongbin Li, and

Siu Ming Yiu. Secure query processing with data interoperability in a

cloud database environment. In Proceedings of the 2014 ACM SIGMOD

international conference on Management of data, pages 1395–1406, 2014.

[38] Tracey Raybourn. Bucketization Techniques for encrypted databases:

Quantifying the impact of Query Distributions. PhD thesis, Bowling Green

State University, 2013.

[39] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index

for range queries. In Proceedings of the Thirtieth international conference

on Very large data bases-Volume 30, pages 720–731, 2004.

[40] Jieping Wang, Xiaoyong Du, Jiaheng Lu, and Wei Lu. Bucket-based

authentication for outsourced databases. Concurrency and Computation:

Practice and Experience, 22(9):1160–1180, 2010.

[41] Jin Li, Yan Kit Li, Xiaofeng Chen, Patrick PC Lee, and Wenjing Lou.

A hybrid cloud approach for secure authorized deduplication. IEEE

Transactions on Parallel and Distributed Systems, 26(5):1206–1216, 2014.

[42] Ming Tao, Jinglong Zuo, Zhusong Liu, Aniello Castiglione, and Francesco

Palmieri. Multi-layer cloud architectural model and ontology-based se-

curity service framework for iot-based smart homes. Future Generation

Computer Systems, 78:1040–1051, 2018.

[43] Vahit Hakan Hacigumus, Balakrishna Raghavendra Iyer, and Sharad

Mehrotra. Query optimization in encrypted database systems, March 23

2010. US Patent 7,685,437.

[44] Luc Bouganim and Philippe Pucheral. Chip-secured data access: Con-

fidential data on untrusted servers. In VLDB’02: Proceedings of the

28th International Conference on Very Large Databases, pages 131–142.

Elsevier, 2002.

[45] Christian Priebe, Kapil Vaswani, and Manuel Costa. Enclavedb: A secure

database using sgx. In 2018 IEEE Symposium on Security and Privacy

(SP), pages 264–278. IEEE, 2018.

[46] Guofeng Wang, Chuanyi Liu, Yingfei Dong, Hezhong Pan, Peiyi Han, and

Binxing Fang. Safebox: A scheme for searching and sharing encrypted

data in cloud applications. In 2017 International Conference on Security,

Pattern Analysis, and Cybernetics (SPAC), pages 648–653. IEEE, 2017.

[47] Chuanyi Liu, Guofeng Wang, Peiyi Han, Hezhong Pan, and Binxing Fang.

A cloud access security broker based approach for encrypted data search

and sharing. In 2017 International Conference on Computing, Networking

and Communications (ICNC), pages 422–426. IEEE, 2017.

[48] Sameer Singh Chauhan, Emmanuel S Pilli, Ramesh Chandra Joshi, Gird-

hari Singh, and Mahesh Chandra Govil. Brokering in interconnected cloud

computing environments: A survey. Journal of Parallel and Distributed

Computing, 133:193–209, 2019.

20 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3082139, IEEE Access

Almakdi et al.: An Efficient Secure System for Fetching Data from the Outsourced Encrypted Databases

[49] Sultan Almakdi and Brajendra Panda. Secure and efficient query process-

ing technique for encrypted databases in cloud. In 2019 2nd International

Conference on Data Intelligence and Security (ICDIS), pages 120–127.

IEEE, 2019.

[50] Sultan Ahmed A Almakdi. Secure and Efficient Models for Retrieving

Data from Encrypted Databases in Cloud. PhD thesis, University of

Arkansas, 2020.

[51] R. A. Popa. Crypdb. https://github.com/CryptDB/cryptdb/, 2014.

[52] A. Madkour. Ope. https://github.com/aymanmadkour/ope/, 2018.

[53] Paillier. https://www.csee.umbc.edu/~kunliu1/research/Paillier.html/.

[54] Package javax.crypto. https://docs.oracle.com/javase/7/docs/api/javax/

crypto/package-summary.html#package_description/.

[55] Jake Douglas. Querying over encrypted databases in a cloud environment.

2019.

SULTAN ALMAKDI received the B.S. degree in

computer science from King Khalid University,

Abha, KSA, in 2010. Dr. Sultan received M.S

degree in Computer Science from the University

of Colorado, Denver, USA, in 2014, and Ph.D.

degree in Computer Science from the University

of Arkansas, Fayettiville, USA, in 2020. Dr. Sultan

recieved a graduate certificate in Cybersecurity

from the University of Arkansas in 2020. Dr. Sul-

tan is currently working as an assistant professor

at the department of computer science and information systems at Najran

University, Saudi Arabia. His research interests include cloud security, fog

security, edge computing security, IoT security, and Computer Security.

BRAJENDRA PANDA Brajendra Panda ob-

tained his M.S. Degree in Mathematics from Utkal

University, India in 1985 after which he taught

Mathematics in a four-year college in India. He

came to the United States in 1988 to pursue higher

education in Computer Science and received his

Ph. D. Degree in Computer Science from North

Dakota State University in 1994. He taught un-

dergraduate computer science at the College of

West Virginia, Beckley from 1993 to 1994. After

completion of his Ph.D., he joined the Computer Science Department of

Alabama AM University and in 1997, he moved to the University of North

Dakota as a Computer Science faculty. Dr. Panda worked as a research

fellow at the Rome Research Site of the Air Force Research Laboratory in

Summers of 1997 and 1998. He joined the Computer Science Computer

Engineering Department at University of Arkansas as an Associate Pro-

fessor Fall Semester 2001. Dr. Panda’s research interests include Database

Systems, Computer Security, and Information Assurance. He has published

extensively in these areas and has received almost 2.5 million dollars in

research funding. Dr. Panda’s research has been mostly supported by the

National Science Foundation, Department of Defense, Air Force Office of

Scientific Research, and Air Force Research Laboratory.

MOHAMMED S ALSHEHRI received the B.S.

degree in computer science from King Khalid

University, Abha, KSA, in 2010. Mohammed re-

ceived M.S degree in Computer Science from

the University of Colorado, Denver, USA, in

2014, and Ph.D. degree in Computer Science from

the University of Arkansas, Fayettiville, USA, in

2021. Mohammed recieved a graduate certificate

in Cybersecurity from the University of Arkansas,

Fayetteville, USA, in 2020.

ABDULWAHAB ALAZEB received his B.S. de-

gree in Computer Scince from King Khaled Uni-

versity, Abha, Saudi Arabia in 2007, and M.S.

degree in Computer Scince from the Department

of Computer Scince, University of Colorado, USA

in 2014. He is currently working towards his Ph.D.

degree at the University of Arkansas, USA. His re-

search interests include Cybersecurity, Cloud and

Edge Computing security, and Internet of Things.

VOLUME 4, 2016 21

