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Abstract— In this paper an efficient off-line signature 

verification method based on an interval symbolic representation 
and a fuzzy similarity measure is proposed. In the feature 
extraction step, a set of Local Binary Pattern (LBP) based 
features is computed from both the signature image and its 
under-sampled bitmap. Interval-valued symbolic data is then 
created for each feature in every signature class. As a result, a 
signature model composed of a set of interval values 
(corresponding to the number of features) is obtained for each 
individual’s handwritten signature class. A novel fuzzy similarity 
measure is further proposed to compute the similarity between a 
test sample signature and the corresponding interval-valued 
symbolic model for the verification of the test sample. To 
evaluate the proposed verification approach, a benchmark off-
line English signature dataset (GPDS-300) and a large dataset 
(BHSig260) composed of Bangla and Hindi off-line signatures 
were used. A comparison of our results with some recent 
signature verification methods available in the literature was 
provided in terms of average error rate and we noted that the 
proposed method always outperforms when the number of 
training samples is eight or more. 
 

Index Terms— Off-line signature verification; Interval-valued 
symbolic representation; Fuzzy similarity measure; Texture 
feature extraction. 
 

I. INTRODUCTION 
IOMETRICS is defined as an automated use of 
physiological or behavioural characteristics of an 

individual for identification/authentication purposes. Many 
different biometric identification systems have been proposed 
as a means of determining or verifying personal identity using 
different behavioural characteristics. Signatures, as one of the 
behavioural human characteristics, are extensively used as a 
proof of identity for legal purposes on many documents such 
as bank cheques, credit cards, and wills in our daily lives. 
Considering the large number of signatures handled daily 
through visual inspection by authorized persons, construction 

 
 

of an efficient automatic system to handle such a huge volume 
of signatures has many potential benefits for signature 
authentication to reduce fraud and other crimes [1, 23-26]. 

A quick look at the literature of signature identification / 
verification indicates that handwritten signature identification 
/ verification systems are well established. A wide range of 
algorithms have already been developed in the past few 
decades to automatically process handwritten signatures in 
various signature-based applications, such as person 
identification / verification, cheque fraud detection, bank 
transactions, and crime detection [1, 23-26]. Considering the 
way in which the proposed methods in the literature dealt with 
the handwritten signatures, the methods can be categorized 
into two groups: a) identification, and b) verification [4]. The 
identification methods decide the signature group among a 
number of groups that the claimed signature belongs to, and 
the verification methods decide acceptance or rejection of a 
person's claimed signature. Three different types of forgeries 
(random, simple and skilled forgeries) have commonly been 
used in the literature [1]. Random and simple forgery samples 
are generated by individuals without any knowledge about the 
signers and their signatures, whereas, samples of skilled 
forgeries are produced by people who have already seen an 
original instance of a signature and try to generate a copy of 
the original signature as close as possible to the original one. 
Indeed, the problem of signature verification considering 
skilled forgeries is a challenging task [1, 4]. 

Since data/signature collection can be performed using on-
line and off-line mediums, the signature verification methods 
in the literature can consequently be grouped into on-line and 
off-line approaches [1, 4]. On-line signature verification 
systems generally have higher performance compared to off-
line signature verification systems. This is because on-line 
systems take into account different dynamic information such 
as velocity, acceleration, pressure, stroke order, force, etc. that 
are not available in off-line systems. Moreover, as off-line 
signature verification systems use statistical information 
determined from the signature images, the problem becomes 
much more complicated. Nevertheless, off-line signature 
verification systems are more popular as most signatures are 
written on papers, documents, checks, etc. 

In this research work, a new model-based writer-dependent 
technique employing interval-based symbolic representation 
and a fuzzy membership function for off-line signature 
verification is proposed. Interval-valued symbolic data is 
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created using texture-based features. The proposed signature 
verification system is further evaluated using different 
datasets. 

The remainder of this paper is organized as follows. 
Section II explains the related work. The main contributions 
of the work are discussed in Section III. In Section IV, the 
proposed method is detailed. Database details, experimental 
settings and evaluation metrics are presented in Section V. 
The experimental results are provided in Section VI. In 
Section VII, a comparative analysis of the proposed method 
with other existing methods is provided. Finally, conclusions 
and future work are presented in Section VIII. 

II. RELATED WORK 
In the off-line handwritten signature verification area, a 

significant volume of research has been undertaken for the 
development of different authentication methods [1-14, 19, 
23-45, 51-54]. Reviews of different methods proposed for 
signature identification/verification at different periods of 
time can be found in [1, 23-26]. Recently, some competitions 
have also been organized to evaluate the technological 
achievements in terms of reliability and accuracy in the field 
of signature verification [2, 9]. 

The state-of-the-art methods for signature verification are 
commonly composed of the following steps: pre-processing, 
feature extraction, training a classifier or creating a 
knowledge-based model followed by the final verification 
criteria [1, 24]. In the pre-processing step, different tasks such 
as signature extraction, size normalization, binarization, 
skeletonization, skew/slant correction, and noise removal have 
generally been undertaken to prepare the signature images for 
further processing [24].  

 Various feature extraction techniques based on geometric 
or Connected Component (CC) analysis, directional and 
gradient of orientation, mathematical transformations, profiles 
and shadow-code, texture information, and interest points 
have been proposed in the literature to interpret different 
aspects of signature images for the purpose of verification [3-
14, 19, 27-31]. Off-line signature verification methods can 
broadly be categorized into local [3, 6, 7, 8, 10-14, 19, 27-31, 
34-37, 39, 41, 42, 55] and global [3-6, 11, 13, 32, 33, 36-38, 
40] approaches considering the features extracted at the local 
or global level in the feature extraction stage. It is worth 
mentioning that local features have predominantly provided 
better verification accuracies than the global features. 

Different learning strategies, such as machine learning and 
similarity-based approaches, have been proposed in the 
literature to solve the problem of signature verification. 
Machine learning approaches include Neural Networks (NNs) 
[4, 7, 19, 42], Bayes classifier [3], Hidden Markov Models 
(HMMs) [30, 34, 36, 38, 41], Support Vector Machines 
(SVMs) [5, 10-14, 27-28, 31, 37, 38, 40-42], Gaussian 
Mixture Models (GMMs) [6], Gentle AdaBoost algorithm 
[39], and Ensembles of classifiers [41]. Similarity-based 
approaches comprise the following: k-Nearest Neighbour 
(kNN), Dynamic Time Warping, and point matching [3, 6, 8, 
12, 19, 29, 32-36]. These models can further be categorized 

into writer-dependent and writer-independent models. In a 
writer-dependent approach, a specific model is trained for 
each individual’s signatures (class) using some genuine 
signatures of the individual and a few random forgeries. In the 
testing phase, using the trained model, a test signature is 
classified as a genuine or forged one. For the writer-
independent approach, on the other hand, a single model is 
trained for all the signature classes to be used for the 
verification task. Hybrid models have also been used for 
signature verification [1, 23-26]. 

Signature verification methods based on the concept of 
fuzzy sets and different fuzzy membership functions have also 
been developed in the literature [43-46]. In [43], geometric 
features, as a family of shape factors, and the coding of 
information related to the dynamics of the signature, have 
been used to characterize signature images. A fuzzy technique 
has then been adapted to combine these two types of 
information for off-line signature verification. In the studies 
presented in [44, 45], a signature image has initially been pre-
processed using binarization, size normalization, and thinning 
methods. The thinned image has then been partitioned into a 
number of sub-images to compute features consisting of angle 
information. A fuzzy system based on the Takagi–Sugeno 
(TS) model and an exponential membership function has 
further been used for the signature verification task [44, 45]. 
The TS model with structural parameters takes into account 
the local variations in the characteristics of the signature [45]. 
The membership functions constitute weights in the proposed 
modification of the TS model to provide better results [45]. A 
method based on the spectral analysis of a directional gradient 
density function and a weighted fuzzy classifier has been 
proposed for off-line signature verification in [46]. The 
outline of a signature image was initially extracted and the 
frequency spectrum was then computed using a directional 
gradient density function as the feature set. A weighted fuzzy 
classifier based on a triangular membership function was 
adapted for the verification of forgeries [46]. 

An overview of the signature verification methods, which 
exist in the literature, is provided in Table I. From the 
literature reviewed, it is noted that there has been significant 
progress in the off-line signature verification domain. 
However, despite the progress in the area over the past 
decades, it remains an open research problem [1, 2, 23, 24]. In 
addition to the limitations mentioned in Table 1, some general 
challenges [24] in the area of off-line signature verification 
that still attract many researchers for further investigation in 
this field are indicated as follows: i) high intra-class 
variability in handwritten signatures of every individual 
compared to the physiological biometrics, such as fingerprints 
or iris of the individual, ii) low inter-class variability between 
genuine signatures and skilled forgeries of every individual, 
iii) the existence of only genuine signatures as partial 
knowledge for training off-line signature verification systems, 
iv) limitations in the amount of signature data available for 
training off-line signature verification systems in real 
scenarios, as during the enrolment process users often provide 
only a few samples of their signatures, and v) the presence of 
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signatures written in different scripts. Furthermore, with 
particular reference to fuzzy-based signature verification 
methods, we noted that only a few related papers have been 
reported in the literature despite the progress achieved in the 
signature verification field. Moreover, the membership 
functions and also the fuzzification processes used for 
signature verification are mostly based on the exponential and 
Gaussian membership functions, which provide a probability 
very close to zero for a sample that deviates much from the 
mean in the Gaussian as well as in the log-space models. This 
would mean a very large negative number is added to the 
accumulation probability result. That is a big penalty for the 
cases where handwritten genuine signatures are roughly 
written by genuine authors. In the present research work, we 
mainly focus on the problem of inter-/intra-class variability of 
handwritten signatures. 

III. MAIN CONTRIBUTIONS 
In the past, the concept of symbolic data analysis and its 

representation [16] has been used in various applications of 
document image analysis, such as document classification and 
signature verification [17-19]. In this research work, a new 
model-based writer-dependent technique is proposed to create 
a fuzzy set for each feature by means of an interval-based 
symbolic representation. This process provides only one 
representative model for each individual’s handwritten 
signature instead of many feature vectors, which represent 
different signatures of an individual. The proposed interval-
valued symbolic representation can take care of intra-class 
variability of the signatures in each class. A fuzzy 
membership function as a fuzzy similarity measure is also 
proposed to obtain a similarity measure between a test feature 
vector and the interval-valued symbolic data. The proposed 
fuzzy similarity measure can handle the problem of inter-class 
variability between genuine signatures and skilled forgeries 
providing low membership values for the forged signature 
features compared to the genuine signature features. For 
feature extraction, we consider texture features, as they have 
demonstrated their strength on different applications of 
biometrics and texture analysis [27, 47, 48]. A texture feature 
extraction technique based on under-sampled bitmaps of the 

signatures is further proposed. The applicability of the 
proposed method is demonstrated using two different 
benchmark datasets. The proposed system is simple and can 
be constructed with a few samples. Furthermore, the proposed 
scheme does not need to retrain the model whenever a new 
writer is added to the system. 

IV. PROPOSED METHOD 
The proposed method includes four main steps: a) pre-

processing, b) feature extraction, c) creation of an interval-
valued symbolic model for each individual, and d) 
computation of similarity values and the final decision. An 
overview of our proposed signature verification method is 
shown in Fig. 1. Each step of the proposed method is detailed 
in the following subsections.  

Fig. 1. An overview of the proposed method. 
 
 

TABLE I 
OVERVIEW OF DIFFERENT SIGNATURE VERIFICATION METHODS. 

Type / approach Methods Limitations 
HMM-based  30, 34, 36, 38, 41 Poor performance when few signature samples are available for training, needs 

reconstruction whenever a new writer is added to the system. 
NN-based  4, 7, 19, 42 Needs enough data for training and convergence, needs to retrain the neural networks in 

the case of changing the number of signature classes. 
SVM-based  5, 10-14, 27-28, 31, 37, 38, 40-42 Needs to find an appropriate kernel and then tuning its parameters, has high algorithmic 

complexity and extensive memory requirements in large-scale tasks. 
GMM-based  6 Needs to estimate an appropriate number for the Gaussian components, lacks the 

generalisation ability to make accurate predictions for new data. 
Bayesian-based  3 There is no precise way to obtain prior knowledge, posterior distributions are heavily 

influenced by the prior knowledge. 
Similarity-based 3, 8, 12, 29, 32, 33, 35, 36 Needs to choose an appropriate distance, it is very sensitive to irrelevant features as all 

features contribute to the similarity and thus to the classification 
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A. Pre-processing 
Similar to most pattern recognition problems, pre-

processing plays an important role in signature verification 
systems as well. Signature images, even genuine signatures of 
an individual, include significant variations in terms of size, 
rotation/slant, pen thickness, etc. Therefore, the pre-
processing step, prior to the application of feature extraction 
methods, is employed on the images to make the images 
noise-free and have transition invariant features. To do so, 
first, a histogram-based threshold technique is applied to 
convert the digitized grey-scale signature images to two-tone 
images. A mean filter is also employed on the signature 
images to remove noise. The input images are then cropped to 
find minimum bounding boxes of the signature images. The 
cropped signature images of size M × N are then used for 
feature extraction. 

Under-sampled bitmap images have been used in the 
literature for pattern recognition [50]. In this research work, 
we have further considered the under-sampled bitmap for 
feature extraction, since the under-sampled version of an 
image can be considered as a low resolution version of the 
image whilst keeping the whole visual appearance of the 
original one. To compute the under-sampled bitmap, the input 
image is divided into a number of non-overlapping blocks of 
similar size, say b × b. The number of black pixels in each 
block is then counted and represents the block intensity. This 
generates a matrix of size M/b × N/b with each element 
being an integer in the range 0 to the size of the non-
overlapping block. Dividing these values by the size of the 
block and multiplying the results by 255 provides an under-
sampled grey image where all pixel values are normalized 
between 0 and 255. A pictorial representation of the 
techniques involved in the pre-processing step is shown in 
Fig. 2(a-h). 

B. Feature extraction 
In the present research work, texture-based features are 

considered for feature extraction. Texture features, such as the 
Local Binary Pattern (LBP), the Local Derivative Pattern 
(LDP), and Grey Level Co-occurrence Matrix (GLCM), have 
widely been employed in different biometric systems 
including signature verification and some promising results 
have also been provided [10, 15, 27]. Notable results obtained 
in signature verification using the texture features, especially 
the LBP-based features, are due to the exceptional properties 
of the LBP-based features, which can provide important 
information about the personal characteristics of a signer 
including such elements as the amount of pressure and speed 
changes, pen-holding, ink distribution, etc. [27]. The LBP 
features are also computationally efficient and these features 
have shown their robustness to monotonic illumination 
change [54]. The LBP features are, however, sensitive to 
random noise and non-monotonic illumination variation [47-
49]. 

 

  
(a)             (b) 

    
(c)             (d) 

            
(e)             (f) 

        
(g)             (h) 

Fig. 2. Examples of different steps of pre-processing used on an input 
signature: (a) An original grey image, (b) The image after binarization, (c) 
The image after cropping, (d) Non-overlapping windows of size b × b (here 
4×4), e) A block of size 4×4 from (d), f) Obtaining an under-sampled pixel by 
summing all the pixel values in (e), g) Computing the pixel intensity of the 
under-sampled pixel using the formula (12/16×255=191.25), and (h) The 
under-sampled grey image of size M/b × N/b. 
 

In the basic LBP feature extraction method, an image is 
processed in such a way that a binary code is generated for 
each pixel in the image. This code determines whether the 
intensities of the neighbouring pixels are greater or less than 
the reference pixel’s intensity. For instance, in a 3×3 
neighbourhood with the reference pixel being the centre, a 
binary code of length 8 is generated according to the relative 
intensities of its neighbours. A histogram of 256 bins is then 
computed to count the number of occurrences of each binary 
code, describing the proportion of common textural patterns 
in the image [47]. By computing the occurrence histogram, 
structural and statistical information is effectively combined. 
The LBP map detects microstructures, such as edges, lines, 
spots and flat areas, whereas their underlying distribution is 
estimated by the LBP histogram [47]. The basic LBP-based 
feature extraction technique has further been extended to a 
generalised rotation invariant feature extraction method in 
[48]. The generalised LBP feature extraction (LBPP,R

u2) and 
rotation invariant (LBPP,R

riu2) methods have been derived based 
on a symmetric 𝑃 members neighbourhood on a circle of 
radius 𝑅. The parameter 𝑃 controls the quantisation of the 
angular space and 𝑅 determines the spatial resolution of the 
operator. Interested readers can find more about the LBP-
based feature extraction method in [47, 48].  

Similar to the authors in [27], the LBPP,R
riu2 with only two 

variations (𝑅 = 1,𝑃 = 8 and 𝑅 = 2,𝑃 = 16) is initially 
employed on the pre-processed original image to extract 
signature features. 

Furthermore, an effective feature extraction technique 
based on under-sampled bitmaps and LBP-based features is 
proposed in this paper. To do so, first, an under-sampled 
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bitmap image is created and then LBP-based features are 
extracted from the under-sampled bitmap image. The main 
reason for the use of the under-sampled image in the proposed 
feature extraction method is to compute the LBP-based 
features from the grey level low-resolution version of the 
input signature image. The significance of LBP-based texture 
features obtained from the grey images compared to the 
binary images has been pointed out in [27]. As most of the 
LBP patterns in an image are generally uniform patterns, and 
also the uniform LBP (LBPP,R

u2 ) operator can keep the 
distribution of the LBPs in the image, the LBPP,R

u2  with 
𝑅 = 1 and 𝑃 = 8 is applied on the resultant under-sampled 
grey image to obtain a set of 59 LBP-based texture features 
called UB − LBPP,R

u2 . The LBP-based features extracted based 
on the UB-LBP8,1

u2, LBP8,1
riu2 and LBP16,2

riu2 from the under-
sampled and original signature images are concatenated to 
create a set of 87 (59+10+18) features. It is worth mentioning 
that both grey-level information as well as binary information 
are captured in the proposed feature set, ensuring a better 
interpretation of the signature images. 

C. Creation of an interval-valued symbolic model 
Patterns/objects are commonly characterized using a set of 

single real-value data parameters called the feature vector/set. 
The feature vectors extracted for different objects constitute a 
data-array, where each cell (𝑖, 𝑗) comprises the value of the 
feature 𝑗 for the object 𝑖. Apart from its simple representation, 
this kind of modelling cannot take into account the variability 
and/or uncertainty of the feature values. In the signature 
verification domain, different fuzzification methods have been 
employed to take care of the uncertainty in handwritten 
signatures [43-46]. From a different perspective, interval- and 
histogram-valued symbolic variables have also been 
introduced in the domain of symbolic data analysis to 
represent the variability, uncertainty and distribution of 
feature values in a specific class object [16]. An interval-
variable can be defined using minimum and maximum values 
of a set of values as the lower or upper bound of the values, 
respectively. For instance, a set of continuous values 𝑋 can be 
defined using finite support [𝑥, 𝑥], where 𝑥 and 𝑥 are the 
minimum and maximum values of 𝑋, respectively. 

In this research work, the interval-valued symbolic data is 
considered to model each feature of every individual’s 
signature extracted during the training phase. To create the 
interval-valued symbolic data, the minimum and maximum 
values of the features can be used. However, if the training 
samples are very similar in shape, the minimum and 
maximum values of the feature values will be very close to 
each other and cannot represent an appropriate interval-value 
of a set of feature values. Therefore the median and standard 
deviation of each feature, as two main statistics of features 
along with a tuning parameter, are used to define interval-
valued symbolic data for each feature. As a result, an 
individual’s signature is represented by a range of interval-
valued data. For easy reading and formulation of the problem, 
specific mathematical descriptions are further provided in the 

following. 
Let Sj = �sj1, sj2, … , sjl � be a set of l samples from a 

signature class Cj and let Fji = �fj1i , fj2i , … , fjni  � be a feature 
vector of size n extracted from the set sji. For the 𝑘𝑡ℎ 
feature fjk°  in every class Cj, we compute the statistical 
median mjk and standard deviation σjk. The statistical 
standard deviation σjk is computed based on the median mjk. 
Considering mjk and σjk, the lower and upper bound values of 
the  fjk°  are computed as follows: 

 
𝑚𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀� 𝑓𝑗𝑗° �                                      (1)  

        𝜎𝑗𝑗 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆( 𝑓𝑗𝑗° )  

𝑓𝑗𝑗− = 𝑚𝑗𝑗 − 𝜆 ×  𝜎𝑗𝑗 

𝑓𝑗𝑗+ = 𝑚𝑗𝑗 + 𝜆 ×  𝜎𝑗𝑗 

where λ is a parameter which should be tuned during the 
training phase.  

A symbolic representation of the 𝑘𝑡ℎ feature of class 𝑗 (Cj) 
is further defined using an interval-value and 2 continuous 
values (median and standard deviation). 

 
𝑠𝑠𝑗𝑗 = ([𝑓𝑗𝑗−, 𝑓𝑗𝑗+],𝑚𝑗𝑗 ,𝜎𝑗𝑗)                    (2)         

The symbolic representation of  Cj called 𝑆𝑆𝑆𝑆𝑆𝑗 is finally 
defined considering 𝑛 symbolic features (sf) corresponding to 
𝑛 features as follows: 

 
𝑆𝑆𝑆𝑆𝑆𝑗 = {𝑠𝑠𝑗1, 𝑠𝑠𝑗2, … , 𝑠𝑠𝑗𝑗}    (3) 

Considering 𝑞 classes in a particular signature verification 
problem, the complete interval symbolic representation of the 
problem contains 𝑞 signature models composed of 𝑛 interval 
values. A complete overview of the symbolic models is shown 
in Table II. 
 

TABLE II 
INTERVAL-SYMBOLIC REPRESENTATION OF A q-CLASS PROBLEM WITH N 

FEATURES BASED ON THE PROPOSED APPROACH. 
Feature 

 
Class 

𝑠𝑠𝑗1 … 𝑠𝑠𝑗𝑗  

SymbC1 ([𝑓11− , 𝑓11+],𝑚11,𝜎11) … ([𝑓1𝑛− , 𝑓1𝑛+ ],𝑚1𝑛,𝜎1𝑛) 
SymbC2 ([𝑓21− , 𝑓21+ ],𝑚21,𝜎21) … ([𝑓2𝑛− , 𝑓2𝑛+ ],𝑚2𝑛,𝜎2𝑛) 

⁞ ⁞ ⁞ ⁞ 
SymbCj ([𝑓𝑗1−, 𝑓𝑗1+],𝑚𝑗1,𝜎𝑗1) … ([𝑓𝑗𝑗− , 𝑓𝑗𝑗+],𝑚𝑗𝑗 ,𝜎𝑗𝑗) 

⁞ ⁞ ⁞ ⁞ 
SymbCq ([𝑓𝑞1− , 𝑓𝑞1+ ],𝑚𝑞1,𝜎𝑞1) … ([𝑓𝑞𝑞− ,𝑓𝑞𝑞+ ],𝑚𝑞𝑞,𝜎𝑞𝑞) 

D. Computing similarity values and the verification process 
Euclidean, City-block and Mahalanobis distances are some 

simple, but well-established, distance measures frequently 
used in the literature for computing similarity/dissimilarity 
between two feature vectors. These distances cannot be used 
in our proposed model, since our proposed representation 
model for each signature class is composed of interval-values 
and each feature extracted from a test signature is a single 
numerical real value.  
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(a) 

 
(b) 

 
(c) 

Fig. 3.  Examples of different patterns: (a) A bell shape distribution, (b) A 
half-bell shape distribution, and (c) An approximate bell shape distribution 
obtained from the values extracted for three different features using genuine 
signatures considered for training. 

 

 
Fig. 4. The proposed interval-valued symbolic representation and a similarity 
measure obtained for F11 based on a fuzzy trapezium-shaped membership 
function. 

Based on a statistical analysis performed on the feature 
values extracted from the training data for every individual 
feature, we found three common types of patterns, such as bell 
shape, half-bell shape and approximate bell shape, as three 
distributions of feature values repeated in all the features. 
These three patterns could easily be modelled using different 
Gaussian distribution models with different means and 
standard deviations, as shown in Fig. 3. However, the main 
problem with the mean value is its significant change in the 
presence of a value, which is highly deviated from other 
values. This problem results in an erroneous Gaussian model. 
Furthermore, a Gaussian model generally provides a 
probability of very close to zero for the sample, which 
deviates much from the mean in the Gaussian model [43-44]. 
This provides inaccurate results in the case where a genuine 
signature has much variation with respect to the other original 
genuine signatures. 

To this end, a fuzzy similarity function is further proposed 
in this research work to take care of those two issues with a 
standard Gaussian model. The proposed fuzzy similarity 
measure is a fuzzy trapezium-shaped membership function, 
which is relatively similar to the Gaussian distribution as are 
our feature value distributions. It can further take care of both 
the mean value and also the low probability of the features, 
which are far from the mean, by considering the median value 
and properties of the fuzzy trapezium-shaped membership 
function. It can also take into account the inter-class 
variability problem between skilled forgeries and genuine 
signatures providing small similarity (membership) values for 
the forged signature features in comparison to the genuine 
signature features. A pictorial representation of the interval-
valued symbolic 𝑠𝑠11, and the similarity measure in relation 
to 𝐹11 obtained based on a fuzzy trapezium-shaped 
membership function, is shown in Fig. 4. The 𝑠𝑠21 shown in 
Fig. 4 is computed in the same way as the first feature values 
extracted from 𝑙 signature samples of the class 𝐶2. 

There are many aggregation operators, such as t-norms, t-
conorm and averaging operators, proposed in the literature to 
compute the final fuzzy value for a set of fuzzy values [56]. In 
this research work, a simple Algebraic Sum from a t-conorm 
aggregation group is used for the aggregation process. The 
main reason for choosing the Algebraic Sum aggregation is to 

Frequency 

Feature value 

Frequency 

Feature value 

Frequency 

Feature value 
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equally consider the effect of all fuzzy similarity values 
computed for all the features in the final fuzzy similarity 
measure. As a result, the similarity 𝑆𝑆𝑆 (𝐹𝑇 ,  𝑆𝑆𝑆𝑆𝑆𝑗) 
between a test sample (𝑇) and a symbolic reference of a 
particular class 𝑗 (𝑆𝑆𝑆𝑆𝑆𝑗) is computed as follows: 

𝑆𝑆𝑆(𝐹𝑇 , 𝑆𝑆𝑆𝑆𝑆𝑗) = 1
𝑛
∑  𝜌𝑗𝑗𝑛
𝑘=1      (4) 

where 𝜌𝑗𝑗  is a fuzzy trapezium-shaped membership function 
providing similarity values between every feature value of a 
test sample feature vector, whereby a signature model 
 (𝑆𝑆𝑆𝑆𝑆𝑗) and 𝑆𝑆𝑆(𝐹𝑇 , 𝑆𝑆𝑆𝑆𝑆𝑗) is the accumulated 
similarity value obtained for all the feature values. The 
proposed fuzzy trapezium-shaped membership function is 
defined as follows. The ±sigma around the median value 
provides a support (kernel) of the membership function. 

𝜌𝑗𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧0                                                             𝑖𝑖   𝑓𝑗𝑗− < 𝐹𝑇𝑇  𝑜𝑜 𝐹𝑇𝑇 >  𝑓𝑗𝑗+        

 
1                                                            𝑖𝑖   𝑚𝑗𝑗 –𝜎𝑗𝑗 ≤ 𝐹𝑇𝑇 ≤ 𝑚𝑗𝑗 + 𝜎𝑗𝑗

 
(𝐹𝑇𝑇 − 𝑓𝑗𝑗– )/[(𝑚𝑗𝑗 –𝜎𝑗𝑗)− 𝑓 jk

– ]     𝑖𝑖   𝑓 jk
– ≤  𝐹𝑇𝑇 < 𝑚𝑗𝑗 – 𝜎𝑗𝑗        

 
(𝑓 j𝑘

+ − 𝐹𝑇𝑇)/[𝑓 jk
+ − (𝑚𝑗𝑗 + 𝜎𝑗𝑗)]   𝑖𝑖   𝑚𝑗𝑗 + 𝜎𝑗𝑗 < 𝐹𝑇𝑇 ≤ 𝑓 jk

+        

     (5) 

In our proposed signature verification method, an adaptive 
writer-dependent acceptance threshold is defined to decide 
whether a test signature is genuine or a forgery. Based on the 
similarity value (𝑆𝑆𝑆 (𝐹𝑇𝑇 , 𝑆𝑆𝑆𝑆𝑆𝑗)) computed from the 
training samples, the acceptance threshold (𝜃𝑗) is defined as 
the confidence value for the class 𝐶𝑗 as follows: 

𝜃𝑗 = 𝑀𝑀𝑀𝑀(𝑆𝑆𝑆�𝐹𝑇𝑇 , 𝑆𝑆𝑆𝑆𝑆𝑗� + 𝛼 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆(𝐹𝑇𝑇 ,𝑆𝑆𝑆𝑆𝑆𝑗))  (6) 

where 𝑇𝑇 varies from 1 to 𝑙 training samples from the class 𝐶𝑗   
and 𝛼 is a parameter, which is tuned during the training step 
in order to obtain the optimal results.  

V. DATABASE, METRICS AND EXPERIMENTAL SETTINGS 

A. Database Details and Evaluation Metrics 
To evaluate the proposed verification model we initially 

used a benchmark off-line signature dataset called the GPDS-
300 [52, 51] dataset. We also used a large dataset [53] of 
Bangla and Hindi off-line signatures (BHSig260) for 
experimentation. The GPDS-140 was used for tuning the 
parameters of the proposed signature verification system and 
GPDS-160 and BHSig260 were considered for testing 
purposes.  

The GPDS-300 signature dataset is composed of 16200 off-
line signature images [52]. Three hundred individuals 
participated to create the dataset. Each signer provided 24 
genuine samples in a single day at different writing sessions. 
For each genuine signature, 30 skilled forged signatures were 
obtained from 10 different forgers. Forgers could practice as 
long as they wish to provide the forged signatures. The 
signatures were binary images and were saved in "bmp" 
format with a resolution of 300DPI [52]. The BHSig260 
dataset [53] consists of 260 sets of handwritten off-line 
signatures of which 100 sets were written in Bangla and the 
rest (160 sets) were written in Hindi. The handwritten off-line 

signatures were collected from 260 different individuals with 
different educational backgrounds and ages. Individuals used 
different pens and surfaces for noting down their signatures. 
Each set consists of 24 genuine signatures and 30 skilled 
forgeries. Signatures were collected during 2 different 
sessions. In the first session, the genuine signatures were 
collected, whereas in the second session, the skilled forgery 
signatures were collected, showing a genuine signature to an 
individual to train and mimic the forgeries. A total number of 
(260 × 24) 6240 genuine and (260 × 30) 7800 skilled 
forgery signatures were collected from all 260 individuals. 
The data collected was acquired using a flatbed scanner with 
the resolution of 300DPI in grey scale and stored in TIFF 
format. A histogram-based thresholding technique was 
applied for binarization to convert digitized grey-level images 
to two-tone images. The skilled forgery signatures collected 
are quite similar to the genuine signatures that make the 
dataset quite a challenging one [53]. To have an idea about the 
type of signatures and the complexity of the forged signatures, 
some binary genuine signature samples of the GPDS-300 and 
BHSig260 datasets, with their corresponding forgeries, are 
displayed in Table III. 
 

TABLE III 
 SAMPLES OF GENUINE AND FORGED SIGNATURE OF THREE DIFFERENT 

INDIVIDUALS FROM DIFFERENT DATASETS USED IN THIS RESEARCH WORK. 
Some samples of the GPDS-300 dataset 

Genuine Signatures Forged Signatures 

  

  

 
 

 
 

Hindi Signatures from the BHSig260 dataset 
Genuine Signatures Forged Signatures 

  

  

 
 
 
 

 
 

Bangla Signatures from the BHSig260 dataset 
Genuine Signatures Forged Signatures 

  

  

  
 
In the literature detailing signature verification methods, 

two classical types of error have frequently been computed as 
metrics for evaluation. These are: Type I error or False 
Rejection Rate (FRR) or False Non-Match Rate (FNMR), 
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which means a genuine signature is rejected by the system, 
and a Type II error or False Acceptance Rate (FAR) or False 
Match Rate (FMR), which means a forgery is accepted as a 
genuine signature by the system. As the majority of papers in 
the literature used the terms FAR and FRR for evaluation 
purposes, these terms are used in this paper as well. The 
mathematical definition of the FAR and FRR are further 
provided using the confusion matrix presented in Table IV. 

TABLE IV 
CONFUSION MATRIX USED TO DEFINE THE EVALUATION METRICS. 

  Predicted label 
  G F 

T
ru

e 
la

be
l G GG FG 

F GF FF 
 

𝐹𝐹𝐹 = 𝐹𝐹
𝐺𝐺+𝐹𝐹

        (7) 

𝐹𝐹𝐹 = 𝐺𝐺
𝐹𝐹+𝐺𝐺

        (8) 

𝐴𝐴𝐴 = 𝐹𝐹𝐹+𝐹𝐹𝐹
2

       (9) 
In Table IV, 𝐹 and 𝐺 represent forged and genuine 

signatures, respectively. 𝐺𝐺 is the number of genuine 
signatures which have been predicted as genuine. 𝐹𝐹 is the 
number of genuine signatures which have been predicted as 
forgeries. 𝐺𝐹 is the number of forged signatures, which have 
been predicted as genuine and 𝐹𝐹 is the number of forged 
signatures that have been predicted as forgeries. The Equal 
Error Rate (𝐸𝐸𝐸) and the Average Error Rate (𝐴𝐴𝐴) have 
also been used for the evaluation of the signature verification 
systems. The 𝐸𝐸𝐸 indicates where the 𝐹𝐹𝐹 and 𝐹𝐹𝐹 are 
equal and 𝐴𝐴𝐴 is the average of 𝐹𝐹𝐹 and 𝐹𝐹𝐹. It may be 
noted that the 𝐹𝐹𝐹, 𝐹𝐹𝐹, 𝐴𝐴𝐴 and 𝐸𝐸𝐸 metrics were 
computed knowing that the classes are imbalanced. 

B. Experimental Settings 
In the proposed symbolic representation model in this 

research work, there are three main parameters, which should 
be set during the tuning/development stage.  To do so, the last 
140 classes of the GPDS-300 dataset were considered for 
tuning the parameters of the proposed model. Only a number 
of (e.g. 12, 10,…) genuine signatures from the training dataset 
were used for training the proposed model in the 
tuning/development step. The rest of the genuine signatures 
and all the forgeries from the training dataset, were used to 
tune the parameters of the proposed model and to obtain the 
optimal acceptance/rejection threshold. In this way, writers 
have their own symbolic model. However, the parameters are 
the same for all writers. In Table V a brief description of the 
dataset and the number of genuine signatures (𝑁𝑔) and 
forgeries (𝑁𝑓) used for each experiment is provided.  

For tuning the parameters, initially, 12 genuine signatures 
of each individual from the training dataset were considered 
in order to train and build the proposed symbolic 
representation model. The remaining 12 genuine signatures 
and all the skilled forgeries (30) of each individual from the 

training dataset were further used for tuning the parameters. 
The samples for training and tuning were chosen randomly. 
The parameters in our proposed models that should be tuned 
are: λ, which is used to compute the lower and upper bounds 
of feature values, the size of the block (𝑏 × 𝑏) for the under-
sampling process in our proposed feature extraction method, 
and the parameter α in the acceptance/rejection threshold (𝜃𝑗). 
We considered different values (2, 3, and 4) for b to analyse 
the effect of under-sampling in the final signature verification 
results. To analyse the significance of the parameter λ in the 
final verification results, λ was set to 2, 4 and 6. When 
changing each of the parameters λ and b, the other one 
remains constant. In the tuning process, the parameter α was 
tuned in such a way that the FAR and FRR became equal as a 
trade-off between false acceptance rate and false rejection rate 
to obtain an EER. To obtain reliable and consistent results, the 
training and tuning procedures were repeated 10 times with 
different training and tuning subsets of signatures from the 
GPDS-140 dataset. The results obtained using different values 
of b and λ, when the average EER value was computed from 
10 iterations, are presented in Table VI. 

From Table VI, it is evident that the results presented in 
each row are consistent with respect to the changes of 
parameter λ when the parameter b is the same. However, the 
best result was obtained when λ was set to 4. Therefore, we 
fixed the λ to 4 in the rest of our experiments. The proposed 
method is not very sensitive to parameter λ and can provide 
stable results with different values of λ, whereas the proposed 
system is sensitive to the values of b. The best result was 
obtained when the block size was 2×2. Hence, we set the 
value of b to 2. The value of α was set to 3.74 based on the 
average value of α values obtained during 10 repetitions of 
our experiments. To get an idea about the effect of the 
parameter α on the signature verification results, the results 
obtained using different values of α are plotted in Fig. 5, in 
the form of a Receiver Operating Characteristic (ROC) curve. 
The results are further plotted in Fig. 6 to demonstrate the 
relationship between FAR and FRR metrics. Considering the 
results, we can see that the value of α was adapted depending 
on the number of training samples especially to compensate 
when there is a lack of training data to build a correct support 
for fuzzy features, integrating well-estimated intra-class 
variability. 

Keeping the same values for the parameters b (=2) and λ 
(=4), we applied the same process considering a different 
number of (e.g. 10, 8, 6, 5, 4) genuine signatures of each 
individual from the GPDS-140 dataset for training the 
proposed model. Consequently, different values of the 
parameter α were obtained when 14, 16, 18, 19 and 20 
genuine signatures and 30 forged signatures were considered 
to achieve the EER results. A graphical representation of the 
average EER results computed from 10 iterations and their 
respective parameter α with a different number of signatures 
for training and tuning are shown in Fig. 7. From Fig. 7, we 
observed that the value of α has a direct relation to the number 
of training samples (𝑁𝑔). 
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TABLE VI 
RESULTS OBTAINED WITH DIFFERENT BLOCK SIZES AND VARIOUS VALUES OF 
𝜆 WHEN THE PROPOSED METHOD WAS TRAINED USING 12 SAMPLES OF THE 
GPDS-140 DATASET. 

Result 
 

b × b                       𝜆 
EER (%) 

2 4 6 
2×2 16.76 16.67 16.84 
3×3 17.47 17.75 17.78 
4×4 18.88 18.97 19.11 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 
To evaluate the proposed signature verification method, 

several experiments were carried out using different numbers 
of samples from the GPDS-160, and BHSig260 datasets for 
testing. The results considering different numbers of training 
and testing samples are shown in Table VII. Since we have 
repeated the training and testing/evaluation experiments with 
different randomly chosen samples, the average of FAR, FRR, 
and AER were computed as the metrics of evaluation. The 
standard deviation (σ) of the AER results was also provided to 
demonstrate how the results are stable throughout our 
experiments with different training and testing samples. From 
Table VII, it is clear that the standard deviations of the AERs, 
which were obtained employing the proposed method on two 
datasets, also indicate that the results were quite stable 
throughout different experiments. In relation to the number of 
signatures considered for training the proposed model, we 
noted that the AER gradually increases when the number of 
signatures for training decreases. However, the results 
suddenly drop when the number of training samples is less 
than 6 (inclusive). This is because, both the interval-valued 
symbolic model and the fuzzy similarity measure are based on 
the statistical median and standard deviation of feature values 
extracted from the training samples. Sample signatures are not 
uniformly distributed in GPDS. Therefore, the median and 
standard deviation computed based on a small number of 
samples (here less than 5) may not perfectly represent the 
median and standard deviation of the rest of the data. As a 
result, our model may not provide high accuracy results when 
very few samples (< 5) are considered for training.  

Furthermore, the results obtained from the BHSig260 are 
poorer compared to the results achieved from the GPDS 
dataset. The main reason for this low performance is the 
complexity of the forgeries collected in the BHSig260, as the 
majority of the signatures in the BHSig260 dataset are in 
textual form, the forged signatures obtained from the forgers 
are substantially similar to those of genuine signatures 
collected from the genuine signature writers. 
 

 
Fig. 5. FAR and FRR curves for different values of the parameter α. 

 
Fig. 6. The ROC curve drawn based on the results obtained from the proposed 
model using 12 genuine samples for training. 

 

Fig. 7. The EERs and the respective values of α obtained from the proposed 
model using different genuine samples (Ng) from the GPDS-140 for training. 

VII. COMPARATIVE ANALYSIS 
To provide a comparative analysis of the results obtained 

by our proposed method with the results of the state-of-the-art 
methods, some recent methods evaluated on the GPDS dataset 
were considered for experimentation. A fair comparison with 
other methods was difficult due to the use of different 
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TABLE V 
DIFFERENT NUMBER OF SAMPLES USED FOR TUNING AND TESTING IN OUR EVALUATION PROTOCOL 

Dataset 

Training 
(Samples per class) 

Tuning the parameters 
(Samples per class) 

Training 
(Samples per class) 

Testing 
(Samples per class) 

Ng Nf Ng Nf Ng Nf Ng Nf 
GPDS-140 12, 10, 8, 6, 5, 4 0 12, 14, 16, 18, 19, 20 30 - - - - 
GPDS-160 - - - - 12, 10, 8, 6, 5, 4 0 12, 14, 16, 18, 19, 20 30 
BHSig260 - - - - 12, 10, 8, 6, 5, 4 0 12, 14, 16, 18, 19, 20 30 

 
EER 
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numbers of signatures from each writer and also various 
signature types used in the tuning/designing and evaluation 
steps for signature verification in different systems. 
Considering the GPDS dataset for experiments, a comparison 
of the results obtained from the proposed model and some of 
the methods in the literature is shown in Table VIII.  

TABLE VII 
 RESULTS OBTAINED FROM THE PROPOSED SYMBOLIC REPRESENTATION 

MODEL CONSIDERING DIFFERENT DATASETS FOR VALIDATION 

Dataset 
Training Testing FAR 

(%) 
FRR 
(%) 

AER 
(%) 

AER 
(σ) Ng Nf Ng Nf 

GPDS-160 

4 

0 

20 

30 

20.61 21.84 21.22 1.06 
 5 19 17.31 17.22 17.61 0.90 
 6 18 16.51 16.53 16.18 0.94 
 8 16 10.64 17.43 13.85 1.69 

10 14 9.50 14.49 12.38 1.80 
12 12 7.90 14.76 11.74 1.99 

 

BHSig260 

4 

0 

20 

30 

32.02 25.73 28.88 0.95 
 5 19 26.36 25.85 26.13 0.76 
 6 18 24.24 25.31 24.78 0.66 
 8 16 19.26 28.23 23.74 0.47 
 10 14 17.69 28.61 23.08 0.34 

12 12 16.18 30.12 23.15 0.40 

TABLE VIII 
AER (%) OBTAINED BY THE PROPOSED MODEL COMPARED TO OTHER 

SYSTEMS USING THE GPDS-160 DATASET 

Method Feature 
AER (%) 

Ng=4 for 
training 

Ng=8 for 
training 

Ng=12 for 
training 

[5] Directional features - - 17.25 
[7] Surroundedness Trained with Ng =24 & Nf = 24 13.76 
[8] Local descriptors Trained with Ng =12 & Nf = 12 15.30 
[39] Boosting feature - - 15.24 
[38] Curvelet transform 16.92 15.95 15.07 
[41] Grid segmentation 20.53 17.24 16.84 
[51] Geometric features 16.10 14.15 13.35 
Proposed method LBP-based features 21.22 13.85 11.74 

TABLE IX 
 RESULTS OBTAINED FROM THE PROPOSED MODEL EMPLOYING DIFFERENT 

NOISES ON THE GPDS-160 

Noise type Noise parameters 
AER (FAR, FRR) 

(%)  
Ng=12 for training 

Salt & Pepper 

d = 0.001 11.74 (0, 23.49) 
d = 0.01 11.95 (0, 23.91) 
d = 0.1 12.18 (0, 24.37) 
d = 0.2 12.21 (0, 24.43) 

Gaussian White noise 

m = 0, v = 0.01 11.88 (0.08, 23.69) 
m = 0, v = 0.1 12.16 (0.0, 24.32) 
m = 0.3, v = 0.01 12.39 (0.0, 24.79) 
m = 0.3, v = 0.1 12.29 (0, 24.58) 

 
The authors in the study [7] used genuine and forged 

signatures for training the classifier, whilst the methods 
presented in [38], [41] and [51] used only genuine signatures 
for training. The results presented in Table VIII show that our 
proposed method outperforms the state-of-the art methods 
considered for comparison when 8 or more signatures were 
used for training. The results demonstrate that a significant 
improvement was achieved employing our proposed method 

on the GPDS-160 dataset. From the existing literature we 
noted that the method presented in [51] reported minimum 
AER was 14.15% (13.35%) considering 8 (12) genuine 
signatures from each individual for training. Whereas our 
proposed method shows 13.85% (11.74%) AER when 8 (12) 
genuine signatures were considered for training. Thus, our 
method provides 1.61% lower AER than the existing work 
when 12 genuine signatures were used for training.  

However, from Table VIII we can see that the result 
obtained based on the method presented in [51] showed better 
performance when 4 genuine signatures from each individual 
were used for training. The main reason for the lower 
performance of our proposed model when trained with a small 
number of signatures is the use of the statistical measures 
(mean and standard deviation) in both the symbolic 
representation process and the fuzzy similarity measure of the 
proposed model that do not actually reflect the distribution of 
entire signature samples. Hence, it provided lower 
performance. 

We further noted that for the methods presented in [5, 38, 
41], at first, an appropriate kernel needs to be determined and 
then their parameters should be tuned. Also, these methods 
have high algorithmic complexity and extensive memory 
requirements in large-scale tasks. Furthermore, the methods 
proposed in [7, 38, 41] show poor performance when few 
signature samples are available for training, and they need 
reconstruction whenever a new writer is added to the system. 
The method presented in [8] is very sensitive to irrelevant 
features as all features equally contribute to the similarity 
measure and thus to the classification. However, the proposed 
method does not require to be re-trained when a new class is 
added to the system. The proposed method is also inexpensive 
in terms of memory usage and computing time. Moreover, the 
interval based symbolic model and fuzzy similarity measure 
proposed in this work can take care of irrelevant features, as 
every feature does not contribute to the proposed fuzzy 
similarity measure equally. 

To get an idea of the performance of the proposed system 
on degraded and noisy data, two different types of noise, such 
as Salt & Pepper, and Gaussian White noise with various 
noise level were employed on the GPDS-160 dataset to 
generate noisy signature images. These two types of noise 
commonly appear in images during the data collection 
process. Salt & Pepper noise adds black and white noise to the 
image, where d is a parameter that indicates noise density, 
Gaussian White noise adds Gaussian noise of mean m and 
variance v to the image. The results obtained by the proposed 
signature verification system using noisy data are shown in 
Table IX when 12 signatures were used for training. From the 
results presented in Table IX it is clear that the results have 
slowly decreased when signature images were severely 
affected by the noise. However, from Tables VIII and XI it 
can be seen that the results of our method on such noisy data 
are still better than the results of the state-of-the-art methods 
when applied on non-noisy data of GPDS-160. This is 
because the proposed signature verification system can take 
care the issues of feature variation by using the interval-value 
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representation model and the fuzzy similarity membership 
function. 

To compare the signature verification methods in the 
literature in relation to their time complexities, a theoretical 
time complexity analysis is further provided in Table X. As 
shown in Table X, we compared the time complexity of 
learning algorithms as most of the methods have used a 
feature extraction technique of linear complexity. The time 
complexity of the HMM-based algorithms [41, 51] is of 
O(k2𝑁), where 𝑁 is the length of sequences and k is the 
number of symbols in the state alphabet of the HMM. The 
time complexity of the NN-based approach [4, 7] to converge 
to an optimal solution is of O(2𝑁), where N is the dimension 
of the feature vector. In the case of the SVM-based methods 
[7, 38, 51], the time complexity is of O(N3). For the GMM-
based approach [6] the time complexity is O(DKN3), 
where 𝐷 represents the data points, 𝐾 is the number of 
Gaussian components and 𝑁 is the dimension of the feature 
vector. However, the complexity of the proposed symbolic 
representation model in this work is of 𝑂(𝑁), as all the 
operations (mean, standard deviation, comparison) used here 
have a linear complexity. As a result, the proposed signature 
verification method is computationally less expansive 
compared to all the existing approaches. 

TABLE X 
 COMPUTATIONAL COMPLEXITY COMPARISON 

Method Time Complexity 
HMM-based algorithms [41] O(k2𝑁) 
NN-based approach [7] O(2𝑁) 
SVM-based methods [38] O(N3) 
GMM-based approach [6] O(DKN3) 
Proposed method 𝑂(𝑁) 

VIII. CONCLUSIONS AND FUTURE WORK 
 In this investigation, the performance of the proposed 

writer-dependent interval-based symbolic representation 
model for off-line signature verification is demonstrated, 
whereby a wide range of experiments was conducted on 
different datasets. A symbolic representation is used to model 
the feature vectors, constructing a set of interval values 
suitable for characterization of intra-class variability of 
features extracted from different signature samples of an 
individual. A fuzzy similarity measure applicable to an 
interval-value symbolic model is proposed to address the 
inter-class variability of features. A new texture feature based 
on a low-resolution image obtained employing the under-
sampling technique is further introduced. The proposed 
method provided significantly improved results compared to 
the state-of-the-art methods considering two different off-line 
signature datasets. The main advantage of the proposed model 
is that it allows the design and integration of a model for a 
new individual using only genuine signatures with the same 
parameters as before, without any need of re-tuning all the 
parameters. However, in the case of training with very few 
samples, the proposed method is not as efficient as when the 
training is performed with 6 or more signatures. 

In future, because of the difficulty of acquiring enough 
genuine samples, we plan to extend this research work by 

constructing a representative model, which is composed of 
different models for feature encoding, using only a very small 
number of genuine signature samples of each signer for 
training. 
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