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Abstract 

Process synthesis often involves the solution of large nonlinear discrete-
continuous optimization problems, which are usually formulated as mixed-
integer nonlinear programming (MINLP) or generalized disjunctive 
programming (GDP) problems and solved with MINLP solvers. This paper 
presents an efficient solution method for these problems named successive 
relaxed MINLP (SR-MINLP), where the model formulations are reformulated 
to contain only continuous variables. The discrete decisions are relaxed and 
successively tightened in a sequential solution procedure to facilitate 
convergence and to obtain local optima of good quality. The solution method is 
illustrated by a simple numerical example as well as a large and complex 
example from process synthesis. 
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1. Introduction 

Chemical processes often demand enormous capital as well as operating costs. 
Designing the optimal, i.e. most cost effective process can save significant 
amounts of financial resources. In practice, this task is often approached by 
tedious, repetitive simulation studies of the process. In addition to the tedious 
nature of this procedure, the simulation studies suffer the drawback that good 
solutions for the process design are often overlooked. Rigorous economic 
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optimization of chemical processes, however, is capable of identifying local 
optimal solutions by applying mathematical programming methods, which are 
often stated as MINLP [1] or GDP problems [2]. The discrete-continuous nature 
of these optimization problems stems from the discrete design variables (e.g. 
number of units, number of column trays) and the continuous design and 
operating variables (e.g. vessel sizes, flowrates, energy duties). 
MINLP problems are usually solved with mixed-integer algorithms including 
Outer Approximation iterations or Branch and Bound, where a tree evaluation 
in the integer search space is performed. When applied to large and non-convex 
process design problems like the economic optimization of distillation 
processes, these MINLP procedures often suffer from robustness problems, 
require long computation times and often identify optima of low quality.  
A discrete-continuous optimization problem can be reformulated as a purely 
continuous optimization problem and solved with reliable NLP solvers by 
replacing the discrete variables with continuous variables. Stein et al. suggested 
adding non-convex special constraints to the continuously reformulated 
optimization problem in order to force integer decisions on the continuously 
relaxed decision variables. It has been observed, however, that the solution of a 
continuously reformulated problem with these non-convex special constraints is 
highly dependable on good initial guesses due to the non-convex nature of the 
formulation. To overcome this drawback of continuous reformulations we 
propose in this work to relax and subsequently tighten the special constraints in 
a sequential solution procedure. In the resulting optimization formulation called 
successive relaxed MINLP (SR-MINLP), a succession of NLP problems with 
decreasing bounds is solved. 
The solution procedure is illustrated by two case studies. The first case study is 
a simple example to illustrate the SR-MINLP solution procedure. The second 
case study covers a complex MINLP optimization problem from process 
design: the economic optimization of an extractive distillation process in terms 
of capital and operating costs. The optimization results obtained with the SR-
MINLP procedure are compared to results obtained with established MINLP 
solvers applied to the discrete-continuous or the continuously reformulated 
MINLP problems without relaxation. 

2. Methodology 

Nonlinear optimization problems involving discrete and continuous variables 
can be formulated as MINLP problems or as generalized disjunctive programs 
(GDP). The general MINLP problem formulation is as follows: 
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where x  are continuous variables and y  are integer variables. A discrete-
continuous optimization problem can also be formulated as a GDP problem 
composed of disjunctive regions in the following form: 
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Comments on the notation of the GDP problem can be found in [1], [2] and [3]. 
GDP problems can be solved with logical solvers that are capable of handling 
logic constraints. However, the development of such solvers has not yet 
progressed sufficiently. Therefore GDP problems are usually reformulated as 
MINLP problems and solved with available MINLP solvers.  
Recently, different continuous reformulations (CR) of MINLP/GDP problems 
have been proposed. Stein et al. [3] introduced the continuous reformulation of 
GDP problems with tailored big-M constraints, where all discrete decisions are 
represented by exact continuous variables. The discrete decisions are enforced 
by special constraints which force the continuous variables to discrete values. 
The problem formulation reads as [3]: 
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Equation FBϕ  is the so-called Fischer-Burmeister function that constitutes the 
special constraints which force the integer decisions on the continuously relaxed 
decision variables kiy , : 
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Similarly, MINLP problems can be reformulated by relaxing the integer 
variables and introducing the Fischer-Burmeister function or comparable special 
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constraints. However, continuous reformulations employing non-convex 
Fischer-Burmeister or comparable functions should only be employed if the 
original MINLP/GDP optimization problem is non-convex itself. The solution 
of a continuously reformulated problem can be attained with a reliable NLP 
solver like SNOPT and, thus, the iterations or the tree search of MINLP solvers 
like Outer Approximation and Branch and Bound, respectively, are avoided. As 
a consequence, large nonlinear optimization problems can be solved 
substantially faster after continuous reformulation. Still, the continuous 
reformulation suffers from the drawback that the quality of the local optimal 
solution is highly dependable on the specified initial values to start the solution 
procedure due to the distinct non-convexity.  
To counter this drawback of the continuous reformulation we propose here to 
relax the Fischer-Burmeister according to 
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and to subsequently tighten it again in a sequential solving procedure. The 
resulting so-called successive relaxed MINLP (SR-MINLP) is solved in a 
sequential solving procedure where the SR-MINLP problem is tightened with 
each step by reducing the value of the big-M-like parameters FBM . In the 
succession of optimization steps FBM  takes on the values 0.5/0.2/0.1/0.05/0. 
Note that the successive steps are suitably initialized by the previous step and 
therefore very short solution times are observed. 

3. Case Studies 

3.1. Simple illustrative example 

In order to illustrate the solution procedure, the first case study is a simple GDP 
problem with one disjunction taken from Lee and Grossmann [5]: 
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Lee and Grossmann [5] reformulate and solve the GDP as an MINLP and 
identify the global optimum of 1.172, since Eq. (6) is a convex optimization 



An efficient solution method for the MINLP optimization of chemical processes 5  

problem. Stein et al. [3] reformulate the problem according to Eq. (3). The 
introduction of Eq. (4) gives rise to additional non-convexities and as a 
consequence, only local optimal solutions are found depending on the specified 
initial guesses.  
For the SR-MINLP solution, the Fischer-Burmeister constraints are relaxed (cf. 
Eq. (5)) and successively tightened as explained above. With these 
modifications to the continuous reformulation of Stein et al., the sequential 
solution procedure of the SR-MINLP returns the global optimal solution for any 
choice of initial guesses. The initial problem of the solution procedure with a 
fully relaxed Fischer-Burmeister equation is convex and returns a good initial 
point for the subsequent steps with tightened bounds.   
 
 
 
 
 
 
 

 
Fig. 1. Superstructure for the extractive distillation process. 

3.2. Complex example from process design 

The second case study covers a large and complex example from process 
design: the economic optimization of an extractive distillation process in terms 
of capital and operating costs for the separation of the homogeneous azeotropic 
mixture of water and ethanol with the help of glycol as the entrainer. The 
superstructure of the process optimization problem is sketched in figure 1. The 
process is fed with a mixture of 39.56 mol/s ethanol and 6.44 mol/s water from 
a bioethanol preconcentrator column. An ethanol purity greater than 0.9995 
mol% is specified for the extractive column product. Water with a purity of 
0.995 mol% is drawn of the recycling column and the entrainer glycol is 
recycled. Optimal integer values need to be determined for the number of 
column trays and for the locations of the feed streams, while optimal continuous 
values need to be found for the column energy duties and for the flow rates and 
compositions of the recycle and intermediate streams. The resulting nonlinear 
optimization problem is very complex due to its size, non-convexity and 
number of degrees of freedom. The arising optimization difficulties can be 
tackled by integrating the detailed optimization of distillation processes in a 
synthesis framework providing a favorable initialization [6] and by applying the 
SR-MINLP optimization described in Section 2.  
The SR-MINLP column model formulations employed for this case study are 
based upon the formulations for single columns as presented by Kossack et al. 
[4]. The optimal values for the discrete variables in the process model are not 
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necessarily located on integer values as it is the case for simple single columns 
[4]. Therefore relaxed Fischer-Burmeister functions as in Eq. (5) are added in 
order to force the continuously relaxed discrete variables to take on integer 
values in the solution. A performance chart of the considered solution methods 
is given in table 1. The SR-MINLP solution identifies a better local optimum 
and requires less CPU time than the MINLP solution of the same process 
model. The continuous reformulation without relaxation suffers from the 
significant dependence of the solution quality on the initial guess. 
 
Table 1. Comparison of solution methods for the process optimization example. 

 total annualized cost CPU time 
MINLP (Branch & Bound) € 1214501 897.5 s 
MINLP (Outer Approximation)  did not converge 
Continuous Reformulation € 1271429 80.3 s 
SR-MINLP € 1209237 120.2 s 

4. Summary and Conclusion 

In this contribution, discrete-continuous optimization problems (MINLP/GDP) 
are solved by an efficient solution method based on continuous reformulations 
and a sequential solution procedure with tightened bounds (SR-MINLP). The 
tedious iterations or tree searches of conventional MINLP solution algorithms 
can be avoided by the SR-MINLP solution procedure since the solver can resort 
to reliable NLP algorithms. Two case studies are presented and it is shown that 
the SR-MINLP solution compares favorably to the MINLP solution and the 
continuous reformulation without relaxation. It is planned to apply the SR-
MINLP optimization method for heterogeneous distillation and also for hybrid 
processes with different unit operations like membrane separation cascades or 
crystallization cascades in the near future.   

Acknowledgement 

This work was funded by the Deutsche Forschungsgemeinschaft under grant 
MA 1188/26-1. 

References 

1. I.E. Grossmann, Optimization and Engineering, 3 (2002) 227. 
2. R. Raman and I.E. Grossmann, Comp. Chem. Eng., 18(7) (1994) 563. 
3. O. Stein, J. Oldenburg and W. Marquardt, Comp. Chem. Eng. 28(10) (2004) 1951. 
4. S. Kossack, K. Kraemer and W. Marquardt, Ind. Eng. Chem. Res., 45(25) (2006) 8492. 
5. S. Lee and I.E. Grossmann, Comp. Chem. Eng., 24 (2000) 2125. 
6. S. Kossack, K.Kraemer and W. Marquardt, Distillation & Absorption, London, (2006) 122. 


