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We introduce a new efficient spectral element approach to solve the two-dimensional
magnetotelluric forward problem based on Gauss–Lobatto–Legendre polynomials. It
combines the high accuracy of the spectral technique and the perfect flexibility
of the finite element approach, which can significantly improve the calculation
accuracy. This method mainly includes two steps: 1) transforming the boundary
value problem in the partial differential form into the variational problem in the
integral form and 2) solving large symmetric sparse systems based on the
combination of incomplete LU factorization and the double conjugate
gradient stability algorithm through the spectral element with quadrilateral
meshes. We imply the spectral element method on a resistivity half-space
model to obtain a simple analytical solution and find that the magnetic field
solutions simulated by the spectral element approach matched closely to the
exact solutions. The experiment result shows that the spectral element solution
has high accuracy with coarse meshes. We further compare the numerical
results of the spectral element, finite difference, and finite element
approaches on the COMMEMI 2D-1 and smooth models, respectively. The
numerical results of the spectral element procedure are highly consistent
with the other two techniques. All these comparison results suggest that the
spectral element technique can not only give high accuracy for modeling results
but also provide more detailed information. In particular, a few nodes are
required in this method relative to the finite difference and finite element
methods, which can decrease the relative errors. We then deduce that the
spectral element method might be an alternative approach to simulate the
magnetotelluric responses in two- or three-dimensional structures.
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1 Introduction

As a special geo-electromagnetic method, magnetotelluric sounding can identify the
resistivity or conductivity distributions in a geological medium based on harmonic and
variable electromagnetic fields (Chave and Jones, 2012). Magnetotelluric sounding is based
on naturally occurring electromagnetic fields, which can provide a comprehensive and
continuous spectrum of the geo-electromagnetic field. This electrical resistivity, measured by
comparing the electric field’s horizontal component to the magnetic field on the surface, can
detect a depth of several tens of kilometers associated with the acquisition frequency. With
the rapid advancement in magnetotelluric modeling and inversion, it has become one of the
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essential tools for recognizing deep geological structures (Unsworth,
2010; Avdeeva et al., 2012; Azeez et al., 2017; Nagarjuna et al., 2021)
and geophysical investigations, such as geothermal exploration
(Barcelona et al., 2013; Patro, 2017; Tarek et al., 2023), mineral
deposit exploration (Benjamin et al., 2018; Jiang et al., 2022), and gas
exploration (Zhang et al., 2014).

There are some numerical approaches for solving two-
dimensional magnetotelluric forward problems, such as finite
difference and finite element, and they are applied to two-
dimensional magnetotelluric inversion (deGroot-Hedlin and
Constable, 1990; Rodi and Mackie, 2001; Siripunvaraporn and
Egbert, 2007; Lee et al., 2009; Kelbert et al., 2014; Guo et al.,
2020; Liao et al., 2022). The finite difference numerical approach
can solve partial differential equations for approximating first-order
or second-order derivatives with a difference scheme (Pek and
Verner, 1997; deGroot-Hedlin, 2006; Rao and Babu, 2006; Kumar
et al., 2011). They also investigated the efficiency of computing two-
dimensional magnetotelluric responses. This method also has high
accuracy on the electric field and magnetic field components (Guo
et al., 2018; Kalscheuer et al., 2018; Sarakorn and Vachiratienchai,
2018). Unfortunately, it is not easy to compute the resulting fields’
accurate apparent resistivities and phases. As another important
numerical approach, finite element can be applied to solve the two-
dimensional magnetotelluric forward problem (Wannamaker et al.,
1986; Key and Weiss, 2006; Franke et al., 2007; Lee et al., 2009;
Sarakorn, 2017; Yao et al., 2021). It involves the hypothetical
functional form of the model and the field in a small area of the
specified geometry. The finite element method can introduce
complex information from the real world to construct the initial
model, including surface topography, and can also improve the
flexibility of mesh discretization. However, it requires fine meshing
to obtain high accuracy, which results in high computational costs.
Some other numerical methods are also used to simulate two-
dimensional magnetotelluric forward modeling, such as the
boundary element (Xu and Zhou, 1997), the finite-volume (Du
et al., 2016; Wang et al., 2019), the mesh-free (Wittke and Tezkan,
2014; Wittke and Tezkan, 2021), the domain decomposition (Bihlo
et al., 2017), the numerical manifold (Liang et al., 2021), and the
pseudo-spectral methods (Tong et al., 2020). These numerical
methods provide an essential practical basis for two-dimensional
magnetotelluric forward modeling.

Compared to other numerical approaches, the finite element
method requires fine grids to obtain higher calculation accuracy.
This will bring challenges, especially when computational resources
are limited. Moreover, in practical geophysical applications, when
the discrete meshes need be refined to a geo-electrical model, the
convergence rate will decrease gradually, while the number of
meshes and the computational cost can increase largely (Key and
Weiss, 2006). The spectral method, as a novel approach, can provide
the numerical approximation of partial differential equations (Zou
and Cheng, 2018). In this numerical approach, the field in the
computational domain can be approximated by polynomials or
Fourier expansions. Since high-order orthogonal basis functions are
applied in the spectral method, it has exponential convergence. In
addition, the spectral interpolation points are densely distributed at
the boundary, which can avoid the Runge phenomenon in the
traditional high-order interpolation (Tong et al., 2020). The method
that combines the finite element and spectral method is called the

spectral element method. In the past 20 years, geophysicists have
dedicated these numerical methods to developing efficiency and
accuracy. Some recent developments found that the spectral
element approach can be seen as a high-order finite element
method and its high-accuracy is derived from the properties of
the spectral method (Patera, 1984). It can combine the high-
accuracy of the spectral method and the flexibility of the finite
element technique. Compared with the classical finite element
method, the Runge phenomenon of isometric interpolation can
be avoided using Gaussian orthogonal basis functions and Gaussian
points (Xu et al., 2022). There are two types of spectral element
methods, one based on Legendre polynomials and another based on
Chebyshev polynomials. It is widely used in applications for wave
propagation (Komatitsch and Tromp, 1999; Seriani and Oliveria,
2008; Luo et al., 2013; Trinh et al., 2019; Lyu et al., 2020), forward
gravity modeling (Ghariti et al., 2018; Martin et al., 2017), and for
geo-electromagnetic forward modeling problems (Zhou et al., 2016;
Huang et al., 2019; Yin et al., 2019; Zhu et al., 2020; Huang et al.,
2021; Weiss et al., 2023). However, it is rarely used in two-
dimensional magnetotelluric forward modeling.

This paper proposes an efficient and accurate spectral element
approach to compute the two-dimensional magnetotelluric
responses of the boundary problem without measuring Earth’s
curvature. To benchmark the accuracy, we compare the
numerical results of the spectral element forward algorithm with
the analytical solutions and numerical results of the finite difference
and finite element schemes. Although our approach can be applied
to any two-dimensional geo-electromagnetic forward modeling, in
this study, we demonstrate its implementation mainly in numerical
experiments.

2 Boundary value problem

2.1 Electromagnetic equations

We define the z-axis at the depth and the x-axis along the
geologic strike, as shown in Figure 1. Using a time-harmonic factor

FIGURE 1
Geo-electrical model of the two-dimensional magnetotelluric
forward problem.
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e−iωt, Maxwell’s equations can then be written as (Wannamaker
et al., 1987; Yao et al., 2021)

∇× E � iωμH (1)
∇× H � σE (2)

where E means the electric field, H represents the magnetic field, ω
denotes the angular frequency, μ � 4π × 10−7H/m is the magnetic
permeability, and σ is the conductivity.

For a two-dimensional structure, due to zE/zx ≡ 0 and
zH/zx ≡ 0, we can expand the curl operators in Eqs 1, 2as follows:

zEz

zy
− zEy

zz
� iωμHx (3)

zEx

zz
� iωμHy (4)

zEx

zy
� −iωμHz (5)

FIGURE 2
Two-dimensional spectral basis functions in part of order p=4. (A)N12(ξ, η) � ϕ1(ξ)ϕ2(η); (B)N22(ξ, η) � ϕ2(ξ)ϕ2(η); (C)N34(ξ, η) � ϕ3(ξ)ϕ4(η); and (D)
N45(ξ, η) � ϕ4(ξ)ϕ5(η).

FIGURE 3
Mapping coordinate system of the spectral element of order p = 4. (A) Sub-element; (B) parent element.
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and

zHz

zy
− zHy

zz
� σEx (6)

zHx

zz
� σEy (7)

zHx

zy
� −σEz (8)

The electromagnetic equations are more complex than
homogeneous media for two-dimensional modeling, where resistivity
changes occur in the y-axis and z-axis. According to Eqs 4–6, Ex the TE
mode can yield a second-order Helmholtz equation:

z2Ex

zy2
+ z2Ex

zz2
+ iωμσEx � 0 (9)

Meanwhile, for the TM mode, Hx yields another second-order
Helmholtz equation:

z

zy

1
σ

zHx

zy
( ) + z

zz

1
σ

zHx

zz
( ) + iωμHx � 0 (10)

Then the electric field Ex or the magnetic field Hx in the
Helmholtz-type equation can be rewritten as

∇ · τ∇u( ) + λu � 0 (11)
where u, τ, and λ represent different meanings relying on the
different polarized modes. In the TE mode,

u � Ex, τ � 1
iωμ

, λ � σ (12)

and in the TM mode,

u � Hx, τ � 1
σ
, λ � iωμ (13)

2.2 Boundary conditions

We restrict the computational region for Eq. 11 to a two-
dimensional bounded domain Ω � [ymin, ymax] × [zmin, zmax],
as shown in Figure 1. Therefore, the boundary conditions in the
computational domain can be expressed as

u|z�zmin
� 1 in AB( ) (14a)

zu

zy

∣∣∣∣∣∣∣∣y�ymin

� 0 inAC( ), zu
zy

∣∣∣∣∣∣∣∣y�ymax

� 0 in BD( ) (14b)

FIGURE 4
Non-zero sparse elements of the discretization coefficient matrix obtained a 3 × 3 grid with a fourth-order polynomial spectral element approach.
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zu

zz
+ ku( )

∣∣∣∣∣∣∣∣
z�zmax

� 0 inCD( ) (14c)

where k � ������−iωμσ√
.

3 Spectral element formulation

3.1 Discretization of a variational problem

The magnetotelluric fields can be simulated by the Helmholtz
equation of Eq. 12 under the boundary conditions of Eq. 14.
Using the variational principle (Pozrikidis, 2014), the boundary
value problem of the partial differential form displayed in Eq.
12 and Eq. 14 can be written as the variational problem of the
integral form:

F u( ) � ∫∫ 1
2
τ

zu

zy
( )2

+ zu

zz
( )2[ ] − 1

2
λu2{ }dydz + ∫

CD

1
2
τku2dl � min

u | y�ymin � 0.

⎧⎪⎪⎨⎪⎪⎩
(15)

Within spectral element approximation, the magnetotelluric
field can be expanded with two-dimensional interpolation basis
functions:

u � ∑Nr

i�1
Ni ξ, η( )ui (16)

where Nr is the number of primary procedures for an element and
Ni(ξ, η) are the essential functions.

The integral of all elements, Eq. 15, can be rewritten as

F u( ) � ∑∫∫
e

1
2
τ

zu

zy
( )2

+ zu

zz
( )2[ ] − 1

2
λu2{ }dydz

+∑∫
CD

1
2
τku2dl � min (17)

This will lead to a discrete linear equation as follows:

Ku � 0 (18)
where u represents the values of the unknown magnetic field or
electric field.

FIGURE 5
Spectral element numerical modeling for the Helmholtz equation with the interpolating polynomial order. (A) Two GLL points; (B) numerical
solutionwith a second-order polynomial; (C) absolute error for a second-order polynomial; (D) threeGLL points; (E) numerical solutionwith a third-order
polynomial; (F) absolute error for a third-order polynomial; (G) four GLL points; (H) numerical solution with a fourth-order polynomial; and (I) absolute
error for a fourth-order polynomial.
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FIGURE 6
Homogeneous half-space model meshed with four GCL points per element.

FIGURE 7
Spectral element numerical solution of magnetic field Hx for the frequency f=10 Hz in the half-space resistivity model. The number of elements in
the depth direction for (A) Nz = 5 and (B) Nz = 10.
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3.2 Spectral basis functions

Its spectral accuracy characterizes the spectral element, i.e., the
numerical error depends on the order of the basis functions (Lee and
Liu, 2005). We choose Gauss–Lobatto–Legendre (GLL) element
discretization for the magnetotelluric forward problem. The Nth-
order GLL basis functions in a one-dimensional reference element
ξ ∈ [−1, 1] can be expressed by

ϕi ξ( ) � 1
N N + 1( )LN ξ i( )

ξ2 − 1
ξ − ξ i

L′
N ξ( ) (19)

for i � 1, 2,/, N + 1, where LN(ξ) is the Nth-order Legendre
polynomial and L′N(ξ) is its derivative. On a reference element
with ξ, η ∈ [−1, 1] × [−1, 1], the two-dimensional basis function can
be written as

Nij ξ, η( ) � ϕi ξ( )ϕj η( ) (20)

For example, if order p = 4, there are 25 basis functions to the
interpolation nodes. Figure 2 shows two-dimensional basis
functions of the 4th order in part, and four of the nodal basis
functions corresponding to N12(ξ, η) � ϕ1(ξ)ϕ2(η),
N22(ξ, η) � ϕ2(ξ)ϕ2(η), N34(ξ, η) � ϕ3(ξ)ϕ4(η), and N45(ξ, η) �
ϕ4(ξ)ϕ5(η) are represented.

3.3 Spectral element equation

In the spectral element method, a physical sub-element needs to
be mapped into a reference parent element and the element
coefficient matrix can be achieved in the reference element.
Figure 3 shows a mapping example of a two-dimensional spectral
element (y, z)-coordinate and the normalized
ξ, η ∈ [−1, 1] × [−1, 1] reference coordinate.

The derivatives and the volume in the (y, z)-coordinate system
in Eq. 17 can be transformed to the (ξ, η)-coordinate system as
follows:

dydz �
zy

zξ

zz

zξ

zy

zη

zz

zη

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
dξdη � J| |dξdη (21)

where J is the Jacobian matrix.
The first-term integral in Eq. 17 is

∫∫
e

1
2
τ

zu

zy
( )2

+ zu

zz
( )2[ ]dydz � 1

2
uT
eK1eue (22)

where

K1e � ∫∫
e

zu

zy
( )2

+ zu

zz
( )2[ ]dydz

� ∫1

−1
∫1

−1
τ

zNi

zξ

zξ

dy
( ) zNj

zξ

zξ

zy
( ) J| |dξdη + ∫1

−1
∫1

−1
τ

zNi

zη

zη

zz
( ) zNj

zη

zη

zz
( ) J| |dξdη

The second-term integral in Eq. 17 is

∫∫
e

1
2
λu2dydz � 1

2
uT
eK2eue (23)

where K2e � ∫∫
e
λu2dydz � ∫1

−1 ∫1

−1 λNiNj|J|dξdη.
The third-term integral in Eq. 17 is

∫
CD

1
2
τku2dl � 1

2
uT
eK3eue (24)

where K3e can be obtained with a one-dimensional line integral.
Considering the Dirichlet boundary condition at z � zmin, we

can derive the linear equations with the spectral element approach to
build the two-dimensional magnetotelluric forward modeling:

TABLE 1 RMS errors of the magnetotelluric responses for the half-space resistivity model.

Frequency (Hz) TM mode TE mode

Apparent resistivity Phase Apparent resistivity Phase

0.01 7.73e-9 3.11e-8 7.71e-9 3.09e-8

0.1 1.83e-6 1.74e-7 1.81e-6 1.72e-7

1 1.69e-4 5.32e-5 1.62e-4 5.24e-5

10 1.26e-2 1.25e-2 1.21e-2 1.22e-2

100 0.39 1.42 0.36 1.39

FIGURE 8
Resistivity distribution of the COMMEMI 2D-1 model.
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Ku � p (25)
where K � ∑Ne

i�1
K1e −∑Ne

i�1
K2e +∑Ne

i�1
K3e is the coefficient matrix

containing conductivity parameters σ, and Ne is the number of

all elements. The right-side vector p is interrelated to the Dirichlet

boundary conditions. The coefficient matrix K is a sparse, positive-

defined, symmetric matrix. Figure 4 shows the sparse elements’

distribution of the coefficient matrix for a 3 × 3 grid with the 4th

polynomial order (just for illustration purposes). We use the

biconjugate gradient-stabilized algorithm (van der Vorst, 1992;

Chen et al., 2002), preconditioned with incomplete LU

factorization (Pan et al., 2022), for our forward problem.
After obtaining Ex, the corresponding magnetic field

component Hy can be solved by Eq. 4 for the TE mode. Since
we acquired Hx, the corresponding electric component Ey can be
solved by Eq. 7 for the TM mode. Then, we can obtain the two-
dimensional impedance tensor from

Ex

Ey
[ ] � 0Zxy

Zyx 0
[ ] Hx

Hy
[ ] (26)

The impedance can be used to calculate apparent resistivities

ρxya � 1
ωμ

Zxy

∣∣∣∣ ∣∣∣∣2, ρyxa � 1
ωμ

Zyx

∣∣∣∣ ∣∣∣∣2 (27)

and impedance phases

ϕxy � arctan
Im Zxy[ ]
Re Zxy[ ],ϕyx � arctan

Im Zyx[ ]
Re Zyx[ ] (28)

4 Accuracy of the method

For all the spectral element numerical approaches, the numerical
solution of the boundary value problem depends on two parameters:
(1) the size of each spectral element and (2) the interpolating
polynomial order. To verify our spectral element method
numerically, we consider the Dirichlet boundary for a Helmholtz
equation

∇2u − u � 3 (29)
with the exact solution

FIGURE 9
Comparison of numerical results for the COMMEMI 2D-1 model in the TM mode. (A) Apparent resistivities and (B) phases.
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ue x, y( ) � ∑∞
m�1,3,/

∑∞
n�1,3,/

− 48
1 + π2m2 + π2n2( )

1
mnπ2

sin nπx( ) sin mπy( ) (30)

The physical domain Ω � [0, 1] × [0, 1] is discretized using a
uniform mesh with 5 × 5 elements. Figure 5 shows the spectral
element solutions obtained using different interpolating polynomial

orders. The maximum absolute errors of spectral element solutions for
2, 3, and 4th polynomial orders are 1.06E-4, 2.89E-5, and 7.84E-6,
respectively. The numerical results computed by our spectral element
approach are generally consistent with the series solutions.

5 Model studies and discussion

5.1 Homogeneous half-space

We developed a half-space resistivity model to test the high-
accuracy benchmark of our spectral element scheme. The half-space
resistivity is designed as 10 Ω ·m and the computational domain is
set as 20 km × 4 km. During numerical simulation, each spectral
element includes 4 GLL points in the y-direction and z-direction, as
shown in Figure 6. In addition, we assume that only one measuring
point is located on the ground, marked by a green triangle. The
numerical magnetic field Hx is simulated at f = 10 Hz.

We set the number of elements in the horizontal direction to 10
(i.e., Ny = 10), while the number of elements in the depth direction is
designed to 5 and 10, respectively (i.e., Nz = 10 and 5). Figure 7

FIGURE 10
Comparison of numerical results for the COMMEMI 2D-1 model
in the TE mode. (A) Apparent resistivities and (B) phases.

FIGURE 11
Ridge topographical model with background resistivity 100Ω ·m.

TABLE 2 Apparent resistivities simulated by the spectral element code compared to the COMMEMI results.

0 m 500 m 1,000 m 2,000 m 4,000 m

pc (T M)

SEM, p=1 1.34 41.49 120.21 117.38 108.20

SEM, p=2 1.44 44.56 114.84 115.57 107.23

SEM, p=3 1.48 45.76 114.64 116.07 107.40

SEM, p=4 1.51 46.02 114.25 116.37 107.81

COMMEMI 1.60 ± 0.27 46.70 ± 3.64 114.01 ± 3.69 116.11 ±2.67 107.62 ± 2.25

pa (TE)

SEM, p=1 2.27 3.20 6.33 16.20 37.89

SEM, p=2 2.28 3.29 6.60 16.59 38.83

SEM, p=3 2.30 3.34 6.71 17.06 38.26

SEM, p=4 2.30 3.35 6.76 17.12 38.29

COMMEMI 2.31 ± 0.12 3.39 ± 0.36 6.86 ± 0.30 17.19 ± 1.09 38.35 ± 1.96
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shows the numerical solution of the magnetic field Hx for the
homogeneous half-space frequency of f = 10 Hz. They also offer
that the real part and imaginary part of the magnetic field Hx

calculated by the spectral element method agree with the analytical
solution. This phenomenon also shows the correlation between the
number of discrete elements and computational accuracy.
Furthermore, it indicates that the number of discrete components
does not affect the computational accuracy under high-polynomial
order conditions. These results suggest that the spectral element
approach can improve the accuracy for the two-dimensional
magnetotelluric forward modeling.

To further verify the applicability of our spectral element
approach, we increase the number of elements in horizontal and
depth directions to 20. We then calculated the magnetotelluric
response, including apparent resistivity and phase, at f = 0.1, 1.1,
10, 10, and 100 Hz frequencies in the TM mode and TE mode. The
computing time of our code is about 1.6 s for each frequency. The
apparent resistivity for each frequency is identical to the true
resistivity 10 Ω ·m, and the phase was equal to 45°. The RMS
errors of the magnetotelluric responses are given in Table 1. It is
clear that the RMS error is proportional to the frequency, with the
minimum error at f = 0.01 Hz and the maximum error at f = 100 Hz.
In general, the RMS error value falls within the frequency band that
we set, which is also the acceptable error range. The results show that
our spectral element approach has high computational accuracy.

5.2 COMMEMI 2D-1 model

We conducted a numerical experiment to compare with the
finite difference method. This numerical experiment coincides with
the COMMEMI 2D-1 example (Zhdanov et al., 1997), which can test
the accuracy and reliability of the spectral element forward
algorithm. The COMMEMI 2D-1 model is shown in Figure 8. A
symmetrical, rectangular, low-resistivity body is inserted in a
homogeneous conductive half-space. The rectangular anomaly
body has a width of 1,000 m, a length of 2,000 m, and a burial
depth of 250 m from the ground surface. The resistivity of the
anomaly is set as � 0.5 Ω ·m, and the half-space resistivity is
designed as ρ � 100 Ω ·m. The frequency we applied in the next
two experiments was f = 0.1 Hz.

First, we simulated the numerical solutions for the COMMEMI
2D-1 model using the spectral element algorithm and the finite
difference method (Tong et al., 2018). In this example, the uniform
meshes of the model for the whole calculation area are set to
Δy ×Δz � 100m × 50m. For spectral element numerical
modeling, each spectral element includes two GLL points in the
y-direction and z-direction, and has nine points for each element.
The numerical apparent resistivities and phases in the TMmode are
shown in Figure 9. The results show that the numerical results
calculated by the spectral element method match well with those of

FIGURE 12
Comparison of numerical solutions for the ridge topographical
model. (A) Apparent resistivities in the TM mode and TE mode; (B)
phases in the TM mode and TE mode.

FIGURE 13
Smooth resistivity distribution inverted by the MT2DInvMatlab subroutine (Lee et al., 2009).
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the finite difference method. Compared to finite difference results,
the spectral element method shows a clear and continuous
downward smoothness in TM mode calculations. The numerical
results for the TE mode are shown in Figure 10. These results also
matched well for the numerical magnetotelluric responses in the TE

mode. The computing time of the COMMEMI 2D-1 model is about
0.5 s for the finite difference algorithm and about 1.8 s for the
spectral element algorithm.

We also compare the numerical apparent resistivities calculated by
the spectral element scheme and the finite difference approach with the

FIGURE 14
Comparison of numerical results for the smooth model. (A) TM apparent resistivity pseudo-section and (B) TM phase pseudo-section simulated by
the spectral element method; (C) TM apparent resistivity pseudo-section and (D) TM phase pseudo-section simulated by the finite element method (Lee
et al., 2009).

FIGURE 15
Comparison of numerical results for the smooth model. (A) TE apparent resistivity pseudo-section and (B) TE phase pseudo-section simulated by
the spectral element method; (C) TE apparent resistivity pseudo-section and (D) TE phase pseudo-section simulated by the finite element method (Lee
et al., 2009).
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averaged numerical solutions of the COMMEMI project (Zhdanov
et al., 1997), showing that the numerical apparent resistivities of the
spectral element scheme agree well with the averaged numerical
solutions of the COMMEMI project compared to those measured
by the finite difference approach (Figure 9 top; Figure 10 top). It means
that the modeling precision of the spectral element scheme is higher
than that of the finite difference method in calculating the
magnetotelluric responses using the same mesh size.

In the second example, we only simulate the spectral element
solutions with different polynomial orders in the COMMEMI
locations. In this experiment, we designed a non-uniform grid of
the model over the entire computational domain. To make a more
precise comparison with the resistivity values published by the
committee experiments, in Table 2, we list the standard deviation
from Table B.11 (Zhdanov et al., 1997) along with the numerical
resistivity values simulated by the spectral element approach. From
Table 2, the values produced by the spectral element method match
well with the numerical results published in the COMMEMI
experiments. The accuracy of the apparent resistivity simulated
by the spectral element might depend on the polynomial order.

5.3 Topographical model

To compute the magnetotelluric responses of the two-dimensional
undulating terrain, we applied our spectral element code to a ridge
topographical model, as shown in Figure 11, which is the same as that
used by other researchers (Wannamaker et al., 1986; Liang et al., 2021).
The ridge model has a width of 2,400 m with a height of 100 m, and its
resistivity value of half-space is � 100 Ω ·m. The calculated
magnetotelluric responses obtained by the finite element subroutine
(Wannamaker et al., 1986) are the reference for this simulation.

In this study, the non-uniform meshes in the TM mode and TE
mode are set as 15 × 10 and 20 × 10, respectively (in which 10 km is the
air media and its resistivity is equal to 1015 Ω ·m), and each spectral
element has four GLL points in the y-direction and z-direction. The
measurement profile along the atmospheric grounding interface varies
from −2,000 to 2,000 m. The frequency to be tested is only 10 Hz.
Figure 12 shows the comparison of the finite element results from
Wannamaker et al. (1986) and our spectral element forward code, and
the results match well. The maximum relative apparent resistivity error
between the two forward schemes is equal to 0.15% in the TM mode
and 0.07% in the TE mode, respectively. The maximum relative phase
error is equal to 0.04% in the TM mode and 0.05% in the TE mode,
respectively. As shown in Figure 12A, the topographic resistivity
distortion of the TE mode is smaller than that of the TM mode.

5.4 Smooth resistivity model

In this numerical example, a smooth resistivity model is set to
18 km × 4 km, as shown in Figure 13. We calculate the response of a
two-dimensional magnetotelluric model with a smooth resistivity
distribution. The least-square iterative algorithm calculated the
inversion of the resistivity distribution for this model with the
MT2DInvMatlab subroutine (Lee et al., 2009) for a fault model
tested by Sasaki (1989).

We chose nine frequencies to test this model, which are 0.1, 0.2,
0.5, 1.0, 2.0, 5.0, 10.0, 20.0, and 50.0 Hz (Lee et al., 2009). The
computational domain was set as 200 km × 100 km, and the
resistivity value for the extended region was designed as
50 Ω ·m. We chose four GLL points for each element in the
y-direction and z-direction, and 25 points per element. Figures
14, 15 show the pseudo-sections of the apparent resistivity and
phase for this smooth model in the TM mode and the TE mode. By
comparing the spectral element results and the finite element results,
we found that the accuracy of the two ways is almost the same, and
the results agree well.

6 Conclusion

The spectral element method combined with the GLL point
interpolating scheme has been developed for the first time to
solve the two-dimensional magnetotelluric forward problem.
We presented the spectral element formulas and implemented
this algorithm. Compared with the finite difference scheme and
the finite element technique, our spectral element approach
requires fewer elements and produces accurate results. In the
first investigation, we apply the spectral element strategy on a
simple half-space geo-electric model to test its high accuracy.
We presented the comparison results of the finite difference
algorithm and the spectral element algorithm for the
COMMEMI 2D-1 model. The accuracy of our spectral
element method is better than that of the finite difference
approach. We compare the numerical results from
Wannamaker et al. (1986) and our spectral element scheme
for a ridge topographical model, and they agree well. These
results demonstrate the effectiveness and flexibility of the
spectral element forward algorithm. We also applied the
spectral element method to a model with a smooth resistivity
structure and compared the simulation results with those of the
finite element code (Lee et al., 2009). This shows that the
calculation results of the spectral element algorithm are as
smooth and accurate as those of the finite element method.
These measurements and comparative results suggest that the
spectral element method can provide another effective scheme
for the two-dimensional magnetotelluric forward problem.
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